Biomarkers: Promising Tools Towards the Diagnosis, Prognosis, and Treatment of Myopia
Abstract
:1. Introduction
2. Methods
3. Anatomical Biomarkers
3.1. Myopia and High Myopia
3.2. Pathologic Myopia, Myopic Choroidal Neovascularization, and Myopic Traction Maculopathy
4. Biochemical Biomarkers
4.1. Serum Vitamin D Level
4.2. Metabolites
4.3. Cytokines
5. Genetic Biomarkers
5.1. SNPs
5.2. RNAs
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; French, A.N.; Ashby, R.S.; Guo, X.; Ding, X.; He, M.; Rose, K.A. The Epidemics of Myopia: Aetiology and Prevention. Prog. Retin. Eye Res. 2018, 62, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Bullimore, M.A.; Brennan, N.A. The Underestimated Role of Myopia in Uncorrectable Visual Impairment in the United States. Sci. Rep. 2023, 13, 15283. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, S.; Kuo, A.N.; Saw, S.-M. An Update of Eye Shape and Myopia. Eye Contact Lens Sci. Clin. Pract. 2019, 45, 279–285. [Google Scholar] [CrossRef]
- Baird, P.N.; Saw, S.-M.; Lanca, C.; Guggenheim, J.A.; Smith, E.L., III; Zhou, X.; Matsui, K.-O.; Wu, P.-C.; Sankaridurg, P.; Chia, A.; et al. Myopia. Nat. Rev. Dis. Primers 2020, 6, 99. [Google Scholar] [CrossRef]
- Haarman, A.E.G.; Enthoven, C.A.; Willem Tideman, J.L.; Tedja, M.S.; Verhoeven, V.J.M.; Klaver, C.C.W. The Complications of Myopia: A Review and Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 49. [Google Scholar] [CrossRef]
- Lanca, C.; Pang, C.P.; Grzybowski, A. Effectiveness of Myopia Control Interventions: A Systematic Review of 12 Randomized Control Trials Published between 2019 and 2021. Front Public Health 2023, 11, 1125000. [Google Scholar] [CrossRef]
- Dong, J.; Zhu, Z.; Xu, H.; He, M. Myopia Control Effect of Repeated Low-Level Red-Light Therapy in Chinese Children: A Randomized, Double-Blind, Controlled Clinical Trial. Ophthalmology 2023, 130, 198–204. [Google Scholar] [CrossRef]
- Wu, P.C.; Chen, C.T.; Lin, K.K.; Sun, C.C.; Kuo, C.N.; Huang, H.M.; Poon, Y.C.; Yang, M.L.; Chen, C.Y.; Huang, J.C.; et al. Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology 2018, 125, 1239–1250. [Google Scholar] [CrossRef]
- Ang, M.; Wong, C.W.; Hoang, Q.V.; Cheung, G.C.M.; Lee, S.Y.; Chia, A.; Saw, S.M.; Ohno-Matsui, K.; Schmetterer, L. Imaging in Myopia: Potential Biomarkers, Current Challenges and Future Developments. Br. J. Ophthalmol. 2019, 103, 855–862. [Google Scholar] [CrossRef]
- Lee, D.Y.; Wu, P.Y.; Sheu, S.J. Optical Coherence Tomography Biomarkers for Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor. Kaohsiung J. Med. Sci. 2023, 39, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Huo, Y.; Gu, Y.; Wang, J. The Role of MicroRNAs in Myopia. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, E.T.; Pietrowska, K.; Kowalczyk, T.; Mariak, Z.; Kretowski, A.; Ciborowski, M.; Dmuchowska, D.A. Omics in Myopia. J. Clin. Med. 2020, 9, 3464. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.-M.; Liu, Z.-H.; Fu, S.-Y.; Wang, K.; Du, L.-P.; Jin, X.-M. Various Configuration Types of the Foveal Avascular Zone with Related Factors in Normal Chinese Adults with or without Myopia Assessed by Swept-Source OCT Angiography. Int. J. Ophthalmol. 2022, 15, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, W.; Niu, L.; Wang, X.; Zhou, X.; Li, M. Myopic Vascular Changes Revealed by Optical Tomography Angiography and Their Association with Myopic Fundus Manifestations. Ophthalmic Res. 2023, 66, 1266–1277. [Google Scholar] [CrossRef]
- Jiang, Z.; Hou, A.; Zhang, T.; Lai, Y.; Huang, L.; Ding, X. Pattern of Choroidal Thickness in Early-Onset High Myopia. Front. Med. 2023, 10, 1156259. [Google Scholar] [CrossRef]
- Wu, H.; Peng, T.; Zhou, W.; Huang, Z.; Li, H.; Wang, T.; Zhang, J.; Zhang, K.; Li, H.; Zhao, Y.; et al. Choroidal Vasculature Act as Predictive Biomarkers of Long-Term Ocular Elongation in Myopic Children Treated with Orthokeratology: A Prospective Cohort Study. Eye Vis. 2023, 10, 27. [Google Scholar] [CrossRef]
- Kobia-Acquah, E.; Flitcroft, D.I.; Lingham, G.; Paudel, N.; Loughman, J. Choroidal Thickness Profiles and Associated Factors in Myopic Children. Optom. Vis. Sci. 2023, 100, 57–66. [Google Scholar] [CrossRef]
- Wan, T.; Shi, W.; Liang, R.; Li, T.; Li, B.; Zhou, X. VEGFA May Be a Potential Marker of Myopic Choroidal Thickness and Vascular Density Changes. Sci. Rep. 2024, 14, 20514. [Google Scholar] [CrossRef]
- Li, Y.; Wong, D.; Sreng, S.; Chung, J.; Toh, A.; Yuan, H.; Eppenberger, L.S.; Leow, C.; Ting, D.; Liu, N.; et al. Effect of Childhood Atropine Treatment on Adult Choroidal Thickness Using Sequential Deep Learning-Enabled Segmentation. Asia Pac. J. Ophthalmol. 2024, 2024, 100107. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Lin, J.; Chen, W.; Huang, H.; Fan, X.; Cao, X.; Shen, M.; Ye, J.; Zhu, S.; et al. Vascular Changes of the Choroid and Their Correlations with Visual Acuity in Pathological Myopia. Investig. Ophthalmol. Vis. Sci. 2022, 63, 20. [Google Scholar] [CrossRef] [PubMed]
- Bontzos, G.; Xirou, T.; Gkiala, A.; Smoustopoulos, G.; Gkizis, I.; Kontou, E.; Kabanarou, S.A.; Tsilimbaris, M. Long-Term Progression of Myopic Maculopathy in Degenerative Myopia as Imaged by SD-OCT and IR Imaging. Clin. Exp. Optom. 2022, 105, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Mularoni, C.; Servillo, A.; Sacconi, R.; Battista, M.; Crincoli, E.; Crepaldi, A.; Querques, L.; Bandello, F.; Querques, G. ‘Structural OCT Changes Distinguishing between Myopic Macular Haemorrhages Due to Choroidal Neovascularization and Spontaneous Bruch’s Membrane Rupture: The “Myopic 2 Binary Reflective Sign”. Eye 2024, 38, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Su, J.; Chen, L.; Zhang, S. The Role of Internal Limiting Membrane as a Biomarker in the Evolution of Myopic Traction Maculopathy. Front. Med. 2022, 8, 2701. [Google Scholar] [CrossRef] [PubMed]
- Park, U.C.; Ma, D.J.; Ghim, W.H.; Yu, H.G. Influence of the Foveal Curvature on Myopic Macular Complications. Sci. Rep. 2019, 9, 16936. [Google Scholar] [CrossRef]
- Yokoi, T.; Jonas, J.B.; Shimada, N.; Nagaoka, N.; Moriyama, M.; Yoshida, T.; Ohno-Matsui, K. Peripapillary Diffuse Chorioretinal Atrophy in Children as a Sign of Eventual Pathologic Myopia in Adults. Ophthalmology 2016, 123, 1783–1787. [Google Scholar] [CrossRef]
- Wang, N.-K.; Lai, C.-C.; Chou, C.L.; Chen, Y.-P.; Chuang, L.-H.; Chao, A.-N.; Tseng, H.-J.; Chang, C.-J.; Wu, W.-C.; Chen, K.-J.; et al. Choroidal Thickness and Biometric Markers for the Screening of Lacquer Cracks in Patients with High Myopia. PLoS ONE 2013, 8, e53660. [Google Scholar] [CrossRef]
- Zhao, M.; Lam, A.K.-C.; Ying, M.T.-C.; Cheong, A.M.-Y. Hemodynamic and Morphological Changes of the Central Retinal Artery in Myopic Eyes. Sci. Rep. 2022, 12, 7104. [Google Scholar] [CrossRef]
- Sung, M.S.; Heo, H.; Piao, H.; Guo, Y.; Park, S.W. Parapapillary Atrophy and Changes in the Optic Nerve Head and Posterior Pole in High Myopia. Sci. Rep. 2020, 10, 4607. [Google Scholar] [CrossRef]
- Yam, J.C.; Jiang, Y.; Lee, J.; Li, S.; Zhang, Y.; Sun, W.; Yuan, N.; Wang, Y.M.; Yip, B.H.K.; Kam, K.W.; et al. The Association of Choroidal Thickening by Atropine with Treatment Effects for Myopia: Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study. Am. J. Ophthalmol. 2022, 237, 130–138. [Google Scholar] [CrossRef]
- Li, Y.; Yip, M.; Ning, Y.; Chung, J.; Toh, A.; Leow, C.; Liu, N.; Ting, D.; Schmetterer, L.; Saw, S.M.; et al. Topical Atropine for Childhood Myopia Control: The Atropine Treatment Long-Term Assessment Study. JAMA Ophthalmol. 2024, 142, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Chun, R.K.M.; Zhang, H.; Liu, Z.; Tse, D.Y.Y.; Zhou, Y.; Lam, C.S.Y.; To, C.H. Defocus Incorporated Multiple Segments (DIMS) Spectacle Lenses Increase the Choroidal Thickness: A Two-Year Randomized Clinical Trial. Eye Vis. 2023, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, X.; Wu, J.; Huo, J.; Zhou, F.; Zhang, J.; Yang, A.; Spiegel, D.P.; Chen, H.; Bao, J. Effect of Spectacle Lenses with Aspherical Lenslets on Choroidal Thickness in Myopic Children: A 2-Year Randomised Clinical Trial. Br. J. Ophthalmol. 2023, 107, 1806–1811. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Zhu, Z.; Jiang, Y.; Wang, W.; Zhang, J.; Chen, Y.; Bulloch, G.; Yuan, Y.; Zhang, S.; Xuan, M.; et al. Longitudinal Changes and Predictive Value of Choroidal Thickness for Myopia Control after Repeated Low-Level Red-Light Therapy. Ophthalmology 2023, 130, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Garrido, F.L.; Villa-Collar, C.; Hernandez-Verdejo, J.L.; Alvarez-Peregrina, C.; Ruiz-Pomeda, A. Changes in the Choroidal Thickness of Children Wearing MiSight to Control Myopia. J. Clin. Med. 2022, 11, 3833. [Google Scholar] [CrossRef]
- Xu, S.; Wang, M.; Lin, S.; Jiang, J.; Yu, M.; Tang, X.; Xie, D.; Lu, M.; Li, Z.; Yang, X. Long-Term Effect of Orthokeratology on Choroidal Thickness and Choroidal Contour in Myopic Children. Br. J. Ophthalmol. 2024, 108, 1067–1074. [Google Scholar] [CrossRef]
- Lee, S.S.-Y.; Lingham, G.; Clark, A.; Read, S.A.; Alonso-Caneiro, D.; Mackey, D.A. Choroidal Changes During and After Discontinuing Long-Term 0.01% Atropine Treatment for Myopia Control. Investig. Ophthalmol. Vis. Sci. 2024, 65, 21. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Zhu, T.; Su, Z.; Fang, X.; Lin, J.; Chen, Z.; Su, Z.; Ye, P.; Ma, J.; et al. Optical Coherence Tomography Angiography-Based Quantitative Assessment of Morphologic Changes in Active Myopic Choroidal Neovascularization During Anti-Vascular Endothelial Growth Factor Therapy. Front. Med. 2021, 8, 657772. [Google Scholar] [CrossRef]
- Gao, R.; Ma, J.; Zhang, Z.; Shang, Q.; Duan, J. Spectral Domain-Optical Coherence Tomography Retinal Biomarkers in Choroidal Neovascularization of Multifocal Choroiditis, Myopic Choroidal Neovascularization, and Idiopathic Choroidal Neovascularization. Ann. Med. 2021, 53, 1270–1278. [Google Scholar] [CrossRef]
- Wang, S.-W.; Hsia, Y.; Huang, C.-J.; Hung, K.-C.; Chen, M.-S.; Ho, T.-C. Biomarkers in the Pathogenesis of Epiretinal Membrane and Myopic Traction Maculopathy: Effects of Internal Limiting Membrane Incompliance and Posterior Staphyloma. Photodiagnosis Photodyn. Ther. 2021, 33, 102208. [Google Scholar] [CrossRef]
- Wang, S.-W.; Hung, K.-C.; Tsai, C.-Y.; Chen, M.-S.; Ho, T.-C. Myopic Traction Maculopathy Biomarkers on Optical Coherence Tomography Angiography—An Overlooked Mechanism of Visual Acuity Correction in Myopic Eyes. Eye 2019, 33, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Deng, J.; Ohno-Matsui, K.; He, X.; Xu, X. The Existence and Regression of Persistent Bergmeister’s Papilla in Myopic Children Are Associated with Axial Length. Transl. Vis. Sci. Technol. 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Yang, W.; Qin, X.; Li, Y.; Cao, H.; Zhou, C.; Wang, Y. Serum Metabolomics Profiling and Potential Biomarkers of Myopia Using LC-QTOF/MS. Exp. Eye Res. 2019, 186, 107737. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Zhang, Z.; Cai, X.; Wu, X.; Huang, B.; Shen, Y.; Tong, J. Correlation Analysis of Aqueous Humor Metabolomics with Myopic Axial Length and Choroidal Parameters. BMC Ophthalmol. 2023, 23, 356. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.B.; Kim, H.K.; Hyon, J.Y.; Wee, W.R.; Shin, Y.J. Oxidative Stress Levels in Aqueous Humor from High Myopic Patients. Korean J. Ophthalmol. 2016, 30, 172–179. [Google Scholar] [CrossRef]
- Wu, W.; Song, Y.; Sun, M.; Li, Y.; Xu, Y.; Xu, M.; Yang, Y.; Li, S.; Zhang, F. Corneal Metabolic Biomarkers for Moderate and High Myopia in Human. Exp. Eye Res. 2023, 237, 109689. [Google Scholar] [CrossRef]
- Shi, W.-Q.; Wan, T.; Li, B.; Li, T.; Zhou, X.-D. EFEMP1 Is a Potential Biomarker of Choroid Thickness Change in Myopia. Front. Neurosci. 2023, 17, 1144421. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Duan, H.; Yang, T.; Ma, B.; Zhou, Y.; Chen, J.; Chen, Y.; Qi, H. Clinical Characteristic and Tear Film Biomarkers After Myopic FS-LASIK: 1-Year Prospective Follow-Up. J. Refract. Surg. 2024, 40, e508–e519. [Google Scholar] [CrossRef]
- Shao, J.; Xin, Y.; Li, R.; Fan, Y. Vitreous and Serum Levels of Transthyretin (TTR) in High Myopia Patients Are Correlated with Ocular Pathologies. Clin. Biochem. 2011, 44, 681–685. [Google Scholar] [CrossRef]
- Tang, J.; Liu, H.; Sun, M.; Zhang, X.; Chu, H.; Li, Q.; Prokosch, V.; Cui, H. Aqueous Humor Cytokine Response in the Contralateral Eye after First-Eye Cataract Surgery in Patients with Primary Angle-Closure Glaucoma, High Myopia or Type 2 Diabetes Mellitus. Front. Biosci. -Landmark 2022, 27, 222. [Google Scholar] [CrossRef]
- Guo, D.; Qi, J.; Du, Y.; Zhao, C.; Liu, S.; Lu, Y.; Zhu, X. Tear Inflammatory Cytokines as Potential Biomarkers for Myopic Macular Degeneration. Exp. Eye Res. 2023, 235, 109648. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Ye, J.; Li, Y.; Wang, S.; Jiang, Y. C-Reactive Protein and Complement Components in Patients with Pathological Myopia. Optom. Vis. Sci. 2013, 90, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Wei, Y.; Zhang, Z.; Zhang, T.; Qiu, S.; Fang, D.; Wang, L.; Zhang, S. Increased Levels of DKK1 in Vitreous Fluid of Patients with Pathological Myopia and the Correlation between DKK1 Levels and Axial Length. Curr. Eye Res. 2020, 45, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Yu, Z.; Zhou, X.; Gong, R.; Jiang, R.; Xu, G.; Liu, W. Metabolomic Profiling of Aqueous Humor from Pathological Myopia Patients with Choroidal Neovascularization. Metabolites 2023, 13, 900. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-P.; Zhang, X.-B.; Hu, Z.-X.; Lin, K.; Lin, Z.; Chen, T.-Y.; Wu, R.-H.; Chi, Z.-L. Vitreous Metabolomic Signatures of Pathological Myopia with Complications. Eye 2023, 37, 2987–2993. [Google Scholar] [CrossRef]
- Lian, P.; Zhao, X.; Song, H.; Tanumiharjo, S.; Chen, J.; Wang, T.; Chen, S.; Lu, L. Metabolic Characterization of Human Intraocular Fluid in Patients with Pathological Myopia. Exp. Eye Res. 2022, 222, 109184. [Google Scholar] [CrossRef]
- Shchuko, A.G.; Zaitseva, N.V.; Yurieva, T.N.; Chernykh, E.R.; Mikhalevich, I.M.; Shevela, E.Y.; Grigorieva, A.V. Intraocular Cytokines and Their Correlations with Clinical Parameters in Patients with Myopic Choroidal Neovascularization. Ophthalmologica 2017, 237, 96–104. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; Williams, C.; Northstone, K.; Howe, L.D.; Tilling, K.; St Pourcain, B.; McMahon, G.; Lawlor, D.A. Does Vitamin D Mediate the Protective Effects of Time Outdoors on Myopia? Findings From a Prospective Birth Cohort. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8550–8558. [Google Scholar] [CrossRef]
- Kearney, S.; O’donoghue, L.; Pourshahidi, L.K.; Richardson, P.; Laird, E.; Healy, M.; Saunders, K.J. Conjunctival Ultraviolet Autofluorescence Area, but Not Intensity, Is Associated with Myopia. Clin. Exp. Optom. 2019, 102, 43–50. [Google Scholar] [CrossRef]
- Chou, H.-D.; Yao, T.-C.; Huang, Y.-S.; Huang, C.-Y.; Yang, M.-L.; Sun, M.-H.; Chen, H.-C.; Liu, C.-H.; Chu, S.-M.; Hsu, J.-F.; et al. Myopia in School-Aged Children with Preterm Birth: The Roles of Time Spent Outdoors and Serum Vitamin D. Br. J. Ophthalmol. 2021, 105, 468–472. [Google Scholar] [CrossRef]
- Jung, B.; Jee, D. Association between Serum 25-Hydroxyvitamin D Levels and Myopia in General Korean Adults. Indian J. Ophthalmol. 2020, 68, 15. [Google Scholar] [CrossRef] [PubMed]
- Yazar, S.; Hewitt, A.W.; Black, L.J.; McKnight, C.M.; Mountain, J.A.; Sherwin, J.C.; Oddy, W.H.; Coroneo, M.T.; Lucas, R.M.; Mackey, D.A. Myopia Is Associated with Lower Vitamin D Status in Young Adults. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4552–4559. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.; Xu, H.; Chen, Q.; Zhong, H.; Pan, C.-W. Serum Metabolic Signatures of High Myopia among Older Chinese Adults. Eye 2021, 35, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Hwang, B.E.; Lee, Y.-C.; Paik, J.-S.; Yang, S.-W.; Chun, Y.-H.; Han, K.; Park, Y.G.; Park, S.H. Lower Urinary Cotinine Level Is Associated with a Trend toward More Myopic Refractive Errors in Korean Adolescents. Eye 2017, 31, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Ren, C.; Zhu, L.; Huang, L.; Qi, H.; Yu, W.; Wang, K.; Zhao, M.; Xu, Q. Unmasking of Molecular Players: Proteomic Profiling of Vitreous Humor in Pathologic Myopia. BMC Ophthalmol. 2024, 24, 352. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T.; Wang, H.; Gao, B.; Sun, C. Identification of Potential Biomarkers of Myopia Based on Machine Learning Algorithms. BMC Ophthalmol. 2023, 23, 388. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, L.; Liu, C.; Li, Z.; Yang, J.; Zeng, J. Gene Expression Profile Analyses to Identify Potential Biomarkers for Myopia. Eye 2023, 37, 1264–1270. [Google Scholar] [CrossRef]
- Kunceviciene, E.; Liutkeviciene, R.; Budiene, B.; Sriubiene, M.; Smalinskiene, A. Independent Association of Whole Blood MiR-328 Expression and Polymorphism at 3′UTR of the PAX6 Gene with Myopia. Gene 2019, 687, 151–155. [Google Scholar] [CrossRef]
- Shen, J.; Lou, H.; Yu, Q.; Yao, H.; Yuan, J. The Connection between High Myopia Patients and MiR-708a or MiR-148 Expression Levels in Aqueous Studies of Visual Acuity. Biomed. Res. Int. 2022, 2022, 3363830. [Google Scholar] [CrossRef]
- Li, J.; Jiao, X.; Zhang, Q.; Hejtmancik, J.F. Association and Interaction of Myopia with SNP Markers Rs13382811 and Rs6469937 at ZFHX1B and SNTB1 in Han Chinese and European Populations. Mol. Vis. 2017, 23, 588–604. [Google Scholar]
- Zidan, H.E.; Rezk, N.A.; Fouda, S.M.; Mattout, H.K. Association of Insulin-Like Growth Factor-1 Gene Polymorphisms with Different Types of Myopia in Egyptian Patients. Genet. Test. Mol. Biomark. 2016, 20, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, X.; Peng, J.; Zheng, H.; Lu, F.; Gong, B.; Zhao, G.; Meng, Y.; Guan, H.; Ning, M.; et al. Evaluation of MYOC, ACAN, HGF, and MET as Candidate Genes for High Myopia in a Han Chinese Population. Genet. Test. Mol. Biomark. 2014, 18, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Wang, P.; Li, S.; Li, A.; Guo, X.; Zhang, Q.; Hejtmancik, J.F. Association of Markers at Chromosome 15q14 in Chinese Patients with Moderate to High Myopia. Mol. Vis. 2012, 18, 2633–2646. [Google Scholar] [PubMed]
- You, J.; Wu, Q.; Xu, G.; Gu, C.; Allen, E.; Zhu, T.; Chen, L. Exosomal MicroRNA Profiling in Vitreous Humor Derived From Pathological Myopia Patients. Investig. Ophthalmol. Vis. Sci. 2023, 64, 9. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, L.; Zheng, R.; Luo, D.; Liu, X.; Hao, F.; Jiang, Z.; Gong, B.; Yang, Z.; Shi, Y. Genetic Association Study Between the COL11A1 and COL18A1 Genes and High Myopia in a Han Chinese Population. Genet. Test. Mol. Biomark. 2018, 22, 359–365. [Google Scholar] [CrossRef]
- Hawthorne, F.; Feng, S.; Metlapally, R.; Li, Y.-J.; Tran-Viet, K.-N.; Guggenheim, J.A.; Malecaze, F.; Calvas, P.; Rosenberg, T.; Mackey, D.A.; et al. Association Mapping of the High-Grade Myopia MYP3 Locus Reveals Novel Candidates UHRF1BP1L, PTPRR, and PPFIA2. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2076–2086. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Jiang, R.; Zhao, K.; Zhou, J. MicroRNA-29a May Influence Myopia Development by Regulating Collagen I. Curr. Eye Res. 2022, 47, 468–476. [Google Scholar] [CrossRef]
- Ando, Y.; Keino, H.; Inoue, M.; Hirota, K.; Takahashi, H.; Sano, K.; Koto, T.; Sato, T.; Takeuchi, M.; Hirakata, A. Circulating Vitreous MicroRNA as Possible Biomarker in High Myopic Eyes with Macular Hole. Int. J. Mol. Sci. 2022, 23, 3647. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.; Zhu, D.; Zhou, J. MicroRNA Profiling in the Aqueous Humor of Highly Myopic Eyes Using next Generation Sequencing. Exp. Eye Res. 2020, 195, 108034. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Hong, N.; Xia, Y.; Zhang, X.; Wang, L.; Xie, C.; Dong, F.; Tong, J.; Shen, Y. CircRNA Expression Profiles and Regulatory Networks in the Vitreous Humor of People with High Myopia. Exp. Eye Res. 2024, 241, 109827. [Google Scholar] [CrossRef]
- Chamberlain, P.; Lazon de la Jara, P.; Arumugam, B.; Bullimore, M.A. Axial Length Targets for Myopia Control. Ophthalmic Physiol. Opt. 2021, 41, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Graff, B.; Lam, C.S.Y.; Vlasak, N.; Kaymak, H. Age-Matched Analysis of Axial Length Growth in Myopic Children Wearing Defocus Incorporated Multiple Segments Spectacle Lenses. Br. J. Ophthalmol. 2024, 108, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Truckenbrod, C.; Meigen, C.; Brandt, M.; Vogel, M.; Sanz Diez, P.; Wahl, S.; Jurkutat, A.; Kiess, W. Longitudinal Analysis of Axial Length Growth in a German Cohort of Healthy Children and Adolescents. Ophthalmic Physiol. Opt. 2021, 41, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Klaver, C.C.; Roelof Polling, J.; Myopia Research Group, E. Myopia Management in the Netherlands. Ophthalmic Physiol. Opt. 2020, 40, 230–240. [Google Scholar] [CrossRef]
- Ostrin, L.A.; Harb, E.; Nickla, D.L.; Read, S.A.; Alonso-Caneiro, D.; Schroedl, F.; Kaser-Eichberger, A.; Zhou, X.; Wildsoet, C.F. IMI-The Dynamic Choroid: New Insights, Challenges, and Potential Significance for Human Myopia. Investig. Ophthalmol. Vis. Sci. 2023, 64, 4. [Google Scholar] [CrossRef]
- Titz, B.; Siebourg-Polster, J.; Bartolo, F.; Lavergne, V.; Jiang, Z.; Gayan, J.; Altay, L.; Enders, P.; Schmelzeisen, C.; Ippisch, Q.-T.; et al. Implications of Ocular Confounding Factors for Aqueous Humor Proteomic and Metabolomic Analyses in Retinal Diseases. Transl. Vis. Sci. Technol. 2024, 13, 17. [Google Scholar] [CrossRef]
Authors | Biomarker | Age | Sample Size | Ethnicity | Type of Myopia | Method of Detection | Results |
---|---|---|---|---|---|---|---|
Dong et al. (2022) [14] | FAZ, CCT, CVI, CVV | 18–60 | 127 | Chinese | Myopia (SE ≥ −10.0 D) | SS-OCT | Smaller FAZ (0.49 ± 0.12 vs. 0.35 ± 0.11 mm2), CCT (406.52 ± 64.78 vs. 272.25 ± 78.96 µm), CVI (0.42 ± 0.11 vs. 0.29 ± 0.08) and CVV (0.14 ± 0.04 vs. 0.07 ± 0.03 mm3) in high myopic eyes |
Dong et al. (2022) [14] | CRT | 18–60 | 127 | Chinese | Myopia (SE ≥ −10.0 D) | SS-OCT | Thicker CRT in high myopic eyes (242.74 ± 19.42 vs. 260.21 ± 22.46 µm) |
Xu et al. (2023) [15] | FA-OR, CT | 18–65 | 74 | Chinese | Myopia (SE ≤ −0.75 D) | OCTA | Larger FA-OR (1.231 ± 0.789 vs. 1.327 ± 0.662 mm2) and thinner CT (277.940 ± 65.099 vs. 230.272 ± 65.183 µm) in high myopia |
Jiang et al. (2023) [16] | CT | <18 | 80 | Taiwanese | Early-onset high myopia (SE ≤ −4.0 D for age ≤ 5, ≤−6.0 D for age 6–8) | SS-OCT | Thinner CT in early-onset high myopia (331.73 ± 75.23 vs. 183.96 ± 91.10 µm) |
Wu et al. (2023) [17] | CVI, SFCT | 8–12 | 50 | Chinese | Myopia receiving ortho-k (SE −0.75–−5.0 D) | SS-OCT, OCTA | AUC of a prediction model achieved 0.872 |
Kobia-Acquah et al. (2023) [18] | CT | 6–16 | 250 | European | Myopia | SS-OCT | Thinner CT associated with longer AL and higher myopic SE. |
Wan et al. (2024) [19] | CT, SFVD | 18–60 | 137 | Chinese | Myopia (SE −6.0–−0.5 D), high myopia (SE ≤ −6.0 D and/or AL ≥ 26.5 mm) | OCTA | Thinner CT and decreased SFVD in high myopia than normal. |
Li et al. (2024) [20] | CT | 6–12 (at initial recruitment) | 211 | Asian | Myopia (SE −1.0–−6.0 D and astigmatism −1.5 D or less) | SS-OCT | Thicker CT in eyes with childhood atropine use. (Mean difference: 32.1 μm, inner inferior; 23.5 μm, outer inferior; 21.8 μm, inner nasal; and 21.8 μm, outer nasal.) |
Authors | Biomarker | Age | Sample Size | Ethnicity | Type of Myopia | Method of Detection | Results |
---|---|---|---|---|---|---|---|
Wang et al. (2022) [21] | CT, CVI, LA, SA | 21–59 | 80 | Chinese | Pathologic myopia (SE ≤ −6.0 D or AL ≥ 26.5 mm with maculopathy) | SS-OCT | Smaller in size among pathologic myopia |
Bontzos et al. (2022) [22] | CT | ≥18 | 72 | Caucasian | mCNV (SE ≤ −6.0 D and AL ≥ 26 mm with mCNV) | SD-OCT | Thinner CT correlated with progression of maculopathy in mCNV |
Lee et al. (2023) [11] | SHM | N/A | 43 | Taiwanese | mCNV (SE ≤ −6.0 D or AL ≥ 26.5 mm with active CNV) | SD-OCT | Eyes with SHM had better visual improvement at 6 months |
Mularoni et al. (2024) [23] | “Myopic 2 binary sign” | N/A | 52 | Caucasian | mCNV (Myopic maculopathy with new macular hemorrhage) | SD-OCT | 100% sensitivity and 97% specificity for distinguishing mCNV hemorrhage from IMH using this sign |
Fang et al. (2022) [24] | Retinoschisis | 21–76 | 120 | Chinese | MTM (SE ≤ −6.0 D or AL ≥ 26.5 mm with MTM) | SD-OCT | Increasing severity associated with higher MTM progression rate. |
Park et al. (2019) [25] | Foveal curvature | N/A | 199 | Korean | MTM (SE ≤ −6.0 D or AL ≥ 26.5 mm with MTM) | SD-OCT | Greater curvature than mCNV and controls |
Yokoi et al. (2016) [26] | Peripapillary diffuse chorioretinal atrophy | ≤15 | 29 | Japanese | Myopic maculopathy (SE ≤ −8.0 D or AL ≥ 26.5 mm with stage 2 or higher myopic maculopathy) | Color fundus photography | Pre-existing since childhood in pathologic myopia (29/35 eyes) |
Wang et al. (2013) [27] | Lacquer cracks | N/A | 69 | Taiwanese | Myopic maculopathy (SE ≤ −6.0 D with chorioretinal atrophy) | SD-OCT | Associated with lower BCVA, higher AL, and thinner subfoveal CT |
Authors | Biomarker | Age | Sample Size | Ethnicity | Type of Myopia | Biological Material | Method of Detection | Results |
---|---|---|---|---|---|---|---|---|
Myopia | ||||||||
Dai et al. (2019) [43] | γ-glutamyltyrosine and 12-oxo-20-trihydroxyleukotriene B4 | N/A | 60 (discovery), 39 (validation) | Chinese | Myopia | Serum | QTOF-MS | AUC > 0.8 |
Shao et al. (2023) [44] | 5-methoxytryptophol and cerulenin | N/A | 34 | Chinese | Myopia | Aqueous humor | LC-MS | AUC > 0.8 in differentiation between axial length of less than 24 mm or higher. |
Kim et al. (2016) [45] | 8-OHdG | N/A | 38 | Korean | Myopia | Aqueous humor | ELISA | Lower level than cataract controls |
Wu et al. (2023) [46] | Azelaic acid, Arg-Pro, hypoxanthine | 18–45 | 221 | Chinese | Myopia | Corneal tissue | UHPLC-MS | AUC > 0.98 |
Shi et al. (2023) [47] | EFEMP1 | 18–70 | 131 | Chinese | Myopia | Tear | ELISA | Significantly lower concentration in myopia |
Zhao et al. (2024) [48] | IL-1 beta, IL-17A, TNF-alpha, and substance P | 18–45 | 73 | Chinese | Myopia underwent FS-LASIK | Tear | Luminex bead-based multiplex assay | Increased levels at 1, 3, 6 and 12-month follow-up visit compared with pre-operative baseline |
High myopia | ||||||||
Shao et al. (2011) [49] | TTR concentration | ≥18 | 202 | Chinese | High myopia with ocular pathology | Serum, aqueous humor, vitreous humor | ELISA | Higher concentration than high myopia without ocular pathology |
Tang et al. (2022) [50] | IL-13 | N/A | 40 | Chinese | High myopia | Aqueous humor | Luminex bead-based multiplex assay | Higher level than cataract controls |
Guo et al. (2023) [51] | IL-6, MCP-1 | N/A | 357 | Chinese | High myopia | Tear | Bead-based cytokine antibody array | Higher levels in high myopia group. AUC of 0.783 and 0.682 for predicting MMD, respectively. |
Wan et al. (2024) [19] | VEGFA, VEGFC and PlGF | 18–60 | 137 | Chinese | High myopia | Tear | ELISA | Lower levels in high myopia than emmetropia group |
Pathologic myopia | ||||||||
Long et al. (2013) [52] | Serum C3 level | 17–70 | 114 | Chinese | Pathologic myopia | Serum | Immune nephelometry | Higher level increases risk of mCNV |
Peng et al. (2020) [53] | DKK1 and MMP-2 | N/A | 137 | Chinese | Pathologic myopia | Vitreous humor | MILLIPLEX multiplex assay | Higher levels than low-to-moderate myopia and controls |
Wei et al. (2023) [54] | D-citramalic acid, biphenyl and isoleucylproline | N/A | 22 | Chinese | Pathologic myopia | Aqueous humor | GC-MS, LC-MS | AUC > 0.8 in differentiation of mCNV and no mCNV |
Tang et al. (2023) [55] | Uric acid | N/A | 62 | Chinese | Pathologic myopia | Vitreous humor | UPHLC-MS | AUC of 0.894 for differentiation between pathologic myopia and myopia |
Lian et al. (2022) [56] | 10 amino acids (serine, methionine, proline, creatine, lysine, arginine, tyrosine, threonine, glutamine, and asparagine) | ≥18 | 60 | Chinese | Pathologic Myopia | Aqueous humor/vitreous humor | LC-MS | Significantly higher concentration in pathologic myopia |
Shchuko et al. (2017) [57] | IL-5, IL-13, IL-8 | N/A | 34 | Russian | mCNV | Aqueous humor | Continuous-flow fluorometry with a double-beam laser automatic analyzer | Higher levels than early cataract patients. |
Authors | Biomarker | Age | Sample Size | Ethnicity | Type of Myopia | Biological Material | Method of Detection | Results |
---|---|---|---|---|---|---|---|---|
Myopia | ||||||||
Zhang et al. (2023) [66] | NR1D1, and PPP1R18 genes | N/A | N/A | N/A | Myopia | N/A | Machine-learning bioinformatics | Downregulation in myopia |
Zhang et al. (2023) [66] | PGBD2, and PPP1R3D genes | N/A | N/A | N/A | Myopia | N/A | Machine-learning bioinformatics | Upregulation in myopia |
Kunceviciene et al. (2019) [68] | PAX6 rs662702, CT genotype | 18–40 | 451 | European | Myopia | Blood | PCR | Associated with higher odds of myopia |
Shen et al. (2022) [69] | miR-708a/miR-148 | ≥18 | 30 | N/A | High Myopia | Aqueous humor | qRT-PCR | Upregulated expression in high myopia |
High myopia | ||||||||
Li et al. (2017) [70] | ZFHX1B rs13382811, minor T allele | N/A | 800 | Chinese | High myopia | Blood | PCR | Associated with higher odds ratio of high myopia |
Zidan et al. (2016) [71] | IGF-1 rs6214, GA, AA genotypes and A minor allele | N/A | 408 | Egyptian | High myopia | Blood | PCR | Associated with higher odds ratio of high myopia |
Yang et al. (2014) [72] | ACAN rs3784757 and rs1516794, T minor allele | 11–78 | 2122 | Chinese | High myopia | Blood | SNaPshot | Associated with lower odds ratio of high myopia |
Yang et al. (2014) [72] | MET rs38857 and rs10215153, homozygous minor genotypes | 11–78 | 2122 | Chinese | High myopia | Blood | SNaPshot | Associated with higher odds ratio of high myopia |
Jiao et al. (2012) [73] | rs634990 and rs524952 in the 15q14 region, minor alleles | N/A | 800 | Chinese | High myopia | Blood | PCR | Associated with higher odds ratio of high myopia |
Pathologic myopia | ||||||||
You et al. (2023) [74] | miR-143-3p, miR-145-5p | N/A | 27 | Chinese | Pathologic myopia | Vitreous humor | PCR | Most related with myopic maculopathy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruamviboonsuk, V.; Lanca, C.; Grzybowski, A. Biomarkers: Promising Tools Towards the Diagnosis, Prognosis, and Treatment of Myopia. J. Clin. Med. 2024, 13, 6754. https://doi.org/10.3390/jcm13226754
Ruamviboonsuk V, Lanca C, Grzybowski A. Biomarkers: Promising Tools Towards the Diagnosis, Prognosis, and Treatment of Myopia. Journal of Clinical Medicine. 2024; 13(22):6754. https://doi.org/10.3390/jcm13226754
Chicago/Turabian StyleRuamviboonsuk, Varis, Carla Lanca, and Andrzej Grzybowski. 2024. "Biomarkers: Promising Tools Towards the Diagnosis, Prognosis, and Treatment of Myopia" Journal of Clinical Medicine 13, no. 22: 6754. https://doi.org/10.3390/jcm13226754
APA StyleRuamviboonsuk, V., Lanca, C., & Grzybowski, A. (2024). Biomarkers: Promising Tools Towards the Diagnosis, Prognosis, and Treatment of Myopia. Journal of Clinical Medicine, 13(22), 6754. https://doi.org/10.3390/jcm13226754