Mandibular Advancement Devices in Obstructive Sleep Apnea and Its Effects on the Cardiovascular System: A Comprehensive Literature Review
Abstract
:1. Introduction
2. Materials
2.1. Effects of MAD on Oxidative Stress
2.2. Effects of MAD on Inflammation
2.3. Effects of MAD on Endothelial Function
2.4. Effects of MAD on the Cardiovascular System
2.4.1. Heart Rate Variability
2.4.2. Left Ventricle Structure and Function
2.4.3. NT-proBNP
2.4.4. Cardiovascular Events
3. Discussion
4. Limitations
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olszewska, E.; De Vito, A.; Baptista, P.; Heiser, C.; O’Connor-Reina, C.; Kotecha, B.; Vanderveken, O.; Vicini, C. Consensus Statements among European Sleep Surgery Experts on Snoring and Obstructive Sleep Apnea: Part 1 Definitions and Diagnosis. J. Clin. Med. 2024, 13, 502. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: Recommendations for syndromedefinition and measurement techniques in clinical research. The report of an American Academy of Sleep Medicine task force. Sleep 1999, 22, 667–689. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Lu, Y. Obstructive Sleep Apnea Syndrome and Metabolic Diseases. Endocrinology 2018, 159, 2670–2675. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Khazaie, H.; Abolfathi, M.; Ghasemi, H.; Shabani, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. The effect of obstructive sleep apnea on the increased risk of cardiovascular disease: A systematic review and meta-analysis. Neurol. Sci. 2022, 43, 219–231. [Google Scholar] [CrossRef]
- Shaito, A.; Aramouni, K.; Assaf, R.; Parenti, A.; Orekhov, A.; Yazbi, A.E.; Pintus, G.; Eid, A.H. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front. Biosci. 2022, 27, 105. [Google Scholar] [CrossRef]
- Di Caro, M.V.; Lei, K.; Yee, B.; Tak, T. The Effects of Obstructive Sleep Apnea on the Cardiovascular System: A Comprehensive Review. J. Clin. Med. 2024, 13, 3223. [Google Scholar] [CrossRef]
- Pavwoski, P.; Shelgikar, A.V. Treatment options for obstructive sleep apnea. Neurol. Clin. Pract. 2017, 7, 77–85. [Google Scholar] [CrossRef]
- Lorusso, F.; Dispenza, F.; Sireci, F.; Immordino, A.; Immordino, P.; Gallina, S. Management of pharyngeal collapse in patients affected by moderate obstructive sleep apnoea syndrome. Acta Otorhinolaryngol. Ital. 2022, 42, 273–280. [Google Scholar] [CrossRef]
- O’Connor-Reina, C.; Ignacio Garcia, J.M.; Rodriguez Ruiz, E.; Morillo Dominguez, M.D.C.; Ignacio Barrios, V.; Baptista Jardin, P.; Casado Morente, J.C.; Garcia Iriarte, M.T.; Plaza, G. Myofunctional Therapy App for Severe Apnea-Hypopnea Sleep Obstructive Syndrome: Pilot Randomized Controlled Trial. JMIR Mhealth Uhealth 2020, 8, e23123. [Google Scholar] [CrossRef]
- Riachy, M.; Najem, S.; Iskandar, M.; Choucair, J.; Ibrahim, I.; Juvelikian, G. Factors predicting CPAP adherence in obstructive sleep apnea syndrome. Sleep Breath 2017, 21, 295–302. [Google Scholar] [CrossRef]
- Francis, C.E.; Quinnell, T. Mandibular Advancement Devices for OSA: An Alternative to CPAP? Pulm. Ther. 2021, 7, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, E.; De Vito, A.; O’Connor-Reina, C.; Heiser, C.; Baptista, P.; Kotecha, B.; Vanderveken, O.; Vicini, C. Consensus Statements among European Sleep Surgery Experts on Snoring and Obstructive Sleep Apnea: Part 2 Decision-Making in Surgical Management and Peri-Operative Considerations. J. Clin. Med. 2024, 13, 2083. [Google Scholar] [CrossRef] [PubMed]
- Ramar, K.; Dort, L.C.; Katz, S.G.; Lettieri, C.J.; Harrod, C.G.; Thomas, S.M.; Chervin, R.D. Clinical Practice Guideline for the Treatment of Obstructive Sleep Apnea and Snoring with Oral Appliance Therapy: An Update for 2015. J. Clin. Sleep Med. 2015, 11, 773–827. [Google Scholar] [CrossRef]
- Itzhaki, S.; Dorchin, H.; Clark, G.; Lavie, L.; Lavie, P.; Pillar, G. The Effects of 1-Year Treatment With a Herbst Mandibular Advancement Splint on Obstructive Sleep Apnea, Oxidative Stress, and Endothelial Function. Chest 2007, 131, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Wang, H.-Y.; Chiu, C.-H.; Liaw, S.-F. Effect of oral appliance on endothelial function in sleep apnea. Clin. Oral Investig. 2014, 19, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kang, W.; Zhang, S.; Qiao, X.; Yang, X.; Zhou, Z.; Lu, H. Mandibular Advancement Devices Prevent the Adverse Cardiac Effects of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS). Sci. Rep. 2020, 10, 3394. [Google Scholar] [CrossRef]
- Dal-Fabbro, C.; Garbuio, S.; D’Almeida, V.; Cintra, F.D.; Tufik, S.; Bittencourt, L. Mandibular advancement device and CPAP upon cardiovascular parameters in OSA. Sleep Breath 2014, 18, 749–759. [Google Scholar] [CrossRef]
- Kang, W.; Zhu, D.; Zhang, S.; Qiao, X.; Liu, J.; Liu, C.; Lu, H. Role of NF-κB in cardiac changes of obstructive sleep apnoea rabbits treated by mandibular advancement device. J. Oral Rehabil. 2024, 51, 962–969. [Google Scholar] [CrossRef]
- Niżankowska-Jędrzejczyk, A.; Almeida, F.R.; Lowe, A.A.; Kania, A.; Nastałek, P.; Mejza, F.; Foley, J.H.; Niżankowska-Mogilnicka, E.; Undas, A. Modulation of inflammatory and hemostatic markers in obstructive sleep apnea patients treated with mandibular advancement splints: A parallel, controlled trial. J. Clin. Sleep Med. 2014, 10, 255–262. [Google Scholar] [CrossRef]
- Gagnadoux, F.; Pépin, J.L.; Vielle, B.; Bironneau, V.; Chouet-Girard, F.; Launois, S.; Meslier, N.; Meurice, J.C.; Nguyen, X.L.; Paris, A.; et al. Impact of Mandibular Advancement Therapy on Endothelial Function in Severe Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2017, 195, 1244–1252. [Google Scholar] [CrossRef]
- Trzepizur, W.; Gagnadoux, F.; Abraham, P.; Rousseau, P.; Meslier, N.; Saumet, J.L.; Racineux, J.L. Microvascular endothelial function in obstructive sleep apnea: Impact of continuous positive airway pressure and mandibular advancement. Sleep Med. 2009, 10, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kwon, S.O.; Lee, W.H. Nocturnal heart rate variability may be useful for determining the efficacy of mandibular advancement devices for obstructive sleep apnea. Sci. Rep. 2020, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Glos, M.; Penzel, T.; Schoebel, C.; Nitzsche, G.R.; Zimmermann, S.; Rudolph, C.; Blau, A.; Baumann, G.; Jost-Brinkmann, P.G.; Rautengarten, S.; et al. Comparison of effects of OSA treatment by MAD and by CPAP on cardiac autonomic function during daytime. Sleep Breath 2016, 20, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Kwon, S.O.; Kim, J.W. Effectiveness of sleep surgery versus a mandibular advancement device for obstructive sleep apnea in terms of nocturnal cardiac autonomic activity. Sleep Breath 2020, 24, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Ucak, S.; Dissanayake, H.U.; Sutherland, K.; Bin, Y.S.; de Chazal, P.; Cistulli, P.A. Effect of mandibular advancement splint therapy on cardiac autonomic function in obstructive sleep apnoea. Sleep Breath 2024, 28, 349–357. [Google Scholar] [CrossRef]
- Dieltjens, M.; Vanderveken, O.M.; Shivalkar, B.; Van Haesendonck, G.; Kastoer, C.; Heidbuchel, H.; Braem, M.J.; Van De Heyning, C.M. Mandibular advancement device treatment and reverse left ventricular hypertrophic remodeling in patients with obstructive sleep apnea. J. Clin. Sleep Med. 2022, 18, 903–909. [Google Scholar] [CrossRef]
- Hoekema, A.; Voors, A.A.; Wijkstra, P.J.; Stegenga, B.; van der Hoeven, J.H.; Tol, C.G.; de Bont, L.G. Effects of oral appliances and CPAP on the left ventricle and natriuretic peptides. Int. J. Cardiol. 2008, 128, 232–239. [Google Scholar] [CrossRef]
- Uniken Venema, J.A.M.; Knol-de Vries, G.E.; van Goor, H.; Westra, J.; Hoekema, A.; Wijkstra, P.J. Cardiovascular and metabolic effects of a mandibular advancement device and continuous positive airway pressure in moderate obstructive sleep apnea: A randomized controlled trial. J. Clin. Sleep Med. 2022, 18, 1547–1555. [Google Scholar] [CrossRef]
- Phillips, C.L.; Grunstein, R.R.; Darendeliler, M.A.; Mihailidou, A.S.; Srinivasan, V.K.; Yee, B.J.; Marks, G.B.; Cistulli, P.A. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2013, 187, 879–887. [Google Scholar] [CrossRef]
- Anandam, A.; Patil, M.; Akinnusi, M.; Jaoude, P.; El-Solh, A.A. Cardiovascular mortality in obstructive sleep apnoea treated with continuous positive airway pressure or oral appliance: An observational study. Respirology 2013, 18, 1184–1190. [Google Scholar] [CrossRef]
- Polecka, A.; Olszewska, N.; Danielski, Ł.; Olszewska, E. Association between Obstructive Sleep Apnea and Heart Failure in Adults—A Systematic Review. J. Clin. Med. 2023, 12, 6139. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, P.R.; Malhotra, A.; Palmer, L.J.; Kezirian, E.J.; Horner, R.L.; Ip, M.S.; Thurnheer, R.; Antic, N.A.; Hillman, D.R. Obstructive Sleep Apnoea: From pathogenesis to treatment: Current controversies and future directions. Respirology 2010, 15, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S. Mechanisms of cardiovascular disease in obstructive sleep apnoea. J. Thorac. Dis. 2018, 10 (Suppl. S34), S4201–S4211. [Google Scholar] [CrossRef] [PubMed]
- Fiedorczuk, P.; Polecka, A.; Walasek, M.; Olszewska, E. Potential Diagnostic and Monitoring Biomarkers of Obstructive Sleep Apnea-Umbrella Review of Meta-Analyses. J. Clin. Med. 2022, 12, 60. [Google Scholar] [CrossRef]
- Phillips, C.L.; McEwen, B.J.; Morel-Kopp, M.C.; Yee, B.J.; Sullivan, D.R.; Ward, C.M.; Tofler, G.H.; Grunstein, R.R. Effects of continuous positive airway pressure on coagulability in obstructive sleep apnoea: A randomised, placebo-controlled crossover study. Thorax 2012, 67, 639–644. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Dissanayake, H.U.; Colpani, J.T.; Sutherland, K.; Loke, W.; Mohammadieh, A.; Ou, Y.H.; de Chazal, P.; Cistulli, P.A.; Lee, C.H. Obstructive sleep apnea therapy for cardiovascular risk reduction-Time for a rethink? Clin. Cardiol. 2021, 44, 1729–1738. [Google Scholar] [CrossRef]
- Sutherland, K.; Dalci, O.; Cistulli, P.A. What do we know about adherence to Oral appliances? Sleep Med. Clin. 2021, 16, 145–154. [Google Scholar] [CrossRef]
- Almeida, F.R.; Bansback, N. Long-term effectiveness of oral appliance versus CPAP therapy and the emerging importance of understanding patient preferences. Sleep 2013, 36, 1271–1272. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, E.; Rogalska, J.; Brzóska, M.M. The Association of Oxidative Stress in the Uvular Mucosa with Obstructive Sleep Apnea Syndrome: A Clinical Study. J. Clin. Med. 2021, 10, 1132. [Google Scholar] [CrossRef] [PubMed]
- Tham, Y.K.; Bernardo, B.C.; Ooi, J.Y.; Weeks, K.L.; McMullen, J.R. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch. Toxicol. 2015, 89, 1401–1438. [Google Scholar] [CrossRef] [PubMed]
- Lavie, L. Obstructive sleep apnoea syndrome—An oxidative stress disorder. Sleep Med. Rev. 2003, 7, 35–51. [Google Scholar] [CrossRef]
- Fiedorczuk, P.; Olszewska, E.; Polecka, A.; Walasek, M.; Mroczko, B.; Kulczyńska-Przybik, A. Investigating the Role of Serum and Plasma IL-6, IL-8, IL-10, TNF-alpha, CRP, and S100B Concentrations in Obstructive Sleep Apnea Diagnosis. Int. J. Mol. Sci. 2023, 24, 13875. [Google Scholar] [CrossRef]
- Busse, R.; Fleming, I. Regulation and functional consequences of endothelial nitric oxide formation. Ann. Med. 1995, 27, 331–340. [Google Scholar] [CrossRef]
- Wei, Q.; Bian, Y.P.; Yu, F.C.; Zhang, Q.; Zhang, G.; Li, Y.; Song, S.; Ren, X.; Tong, J. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnoea model. J. Biomed. Res. 2016, 30, 490–495. [Google Scholar]
- Zeng, X.; Guo, R.; Dong, M.; Zheng, J.; Lin, H.; Lu, H. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression. J. Transl. Med. 2018, 16, 106. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhu, D.; Xie, S.; Deng, Y.; Pan, Y.; Ren, J.; Liu, H. Inhibition of rho-kinase attenuates left ventricular remodeling caused by chronic intermittent hypoxia in rats via suppressing myocardial inflammation and apoptosis. J. Cardiovasc. Pharmacol. 2017, 70, 102–109. [Google Scholar] [CrossRef]
- Priyadarshini, P.; Singh, D.; Sharma, V.K.; Chaturvedi, T.P.; Singh, A.K. Effect of mandibular advancement therapy on inflammatory biomarkers in obstructive sleep apnea: A systematic review. Natl. J. Maxillofac. Surg. 2024, 15, 177–182. [Google Scholar] [CrossRef]
- Lin, L.; Li, T.P. Alteration of telomere length of the peripheral white blood cells in patients with obstructive sleep apnea syndrome. Nan Fang Yi Ke Da Xue Xue Bao 2011, 31, 457–460. [Google Scholar] [PubMed]
- Blackburn, E.H.; Epel, E.S.; Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015, 350, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Turkiewicz, S.; Ditmer, M.; Sochal, M.; Białasiewicz, P.; Strzelecki, D.; Gabryelska, A. Obstructive Sleep Apnea as an Acceleration Trigger of Cellular Senescence Processes through Telomere Shortening. Int. J. Mol. Sci. 2021, 22, 12536. [Google Scholar] [CrossRef] [PubMed]
- Boyer, L.; Audureau, E.; Margarit, L.; Marcos, E.; Bizard, E.; Le Corvoisier, P.; Macquin-Mavier, I.; Derumeaux, G.; Damy, T.; Drouot, X.; et al. Telomere Shortening in Middle-Aged Men with Sleep-disordered Breathing. Ann. Am. Thorac. Soc. 2016, 13, 1136–1143. [Google Scholar] [CrossRef]
- Ota, H.; Eto, M.; Ogawa, S.; Iijima, K.; Akishita, M.; Ouchi, Y. SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J. Atheroscler. Thromb. 2010, 17, 431–435. [Google Scholar] [CrossRef]
- Lin, C.C.; Wang, H.Y.; Liaw, S.F.; Chiu, C.H.; Lin, M.W. Effect of oral appliance on circulating leukocyte telomere length and SIRT1 in obstructive sleep apnea. Clin. Oral Investig. 2019, 23, 1397–1405. [Google Scholar] [CrossRef]
- Minuguchi, K.; Yokoe, T.; Tazaki, T.; Minoguchi, H.; Tanaka, A.; Oda, N.; Okada, S.; Ohta, S.; Naito, H.; Adachi, M. Increased carotid intima-media thickness and serum inflammatory markers of obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2005, 172, 625–630. [Google Scholar] [CrossRef]
- Ip, M.S.M.; Tse, H.F.; Lam, B.; Tsang, K.W.T.; Lam, W.-K. Endothelial function in obstructive sleep apnea and response to treatment. Am. J. Respir. Crit. Care Med. 2004, 169, 348–353. [Google Scholar] [CrossRef]
- Kalaydzhiev, P.; Borizanova, A.; Georgieva, N.; Voynova, G.; Yakov, S.; Kocev, T.; Tomova-Lyutakova, G.; Krastev, B.; Spasova, N.; Ilieva, R.; et al. CPAP Treatment at Home after Acute Decompensated Heart Failure in Patients with Obstructive Sleep Apnea. J. Clin. Med. 2024, 13, 5676. [Google Scholar] [CrossRef]
- Dodds, S.; Williams, L.J.; Roguski, A.; Vennelle, M.; Douglas, N.J.; Kotoulas, S.-C.; Riha, R.L. Mortality and morbidity in obstructive sleep apnoea-hypopnoea syndrome: Results from a 30-year prospective cohort study. ERJ Open Res. 2020, 6, 6. [Google Scholar] [CrossRef]
Author, Year | N | Sex | Age, Years | AHI (Pre) | AHI (Post) | Biomarker (Pre) | Biomarker (Post) |
---|---|---|---|---|---|---|---|
Itzhaki et al., 2007 [14] | 16 | 11 M/ 5 F | 54.0 ± 8.3 | 29.7 ± 18.5 * | 17.7 ± 11.1 * (3 mo); 19.6 ± 11.5 * (1 y) | TBARS: 18.8 ± 6.2 | TBARS: 15.8 ± 3.9 (3 mo) **; 15.5 ± 3.2 (1 y) *** |
Lin et al., 2014 [15] | C: 15 | 12 M/3 F | 48 ± 7 | 3.2 ± 0.9 | N/D | NOx: N/D | NOx: N/D |
S: 19MADs | 24 M/6 F | 50 ± 8 | 31.5 ± 11.4 | 8.6 ± 5.7 ^ | 11.8 ± 5.8 *** | 22.7 ± 4.9 *** | |
S: 11MADf | 51 ± 7 | 31.8 ± 11.6 | 24.7 ± 5.9 | N/D | N/D | ||
Liu et al., 2020 [16] | control group: 10 | 10 rM | 36-month-old | N/D | N/D | ET-1: N/D Ang II: N/D ET-1 mRNA: N/D | ET-1: N/D Ang II: N/D ET-1 mRNA: N/D |
OSA group: 10 | 10 rM | 36-month-old | N/D | N/D | ET-1: N/D Ang II: N/D ET-1 mRNA: N/D | ET-1: N/D Ang II: N/D ET-1 mRNA: N/D | |
MAD group: 10 | 10 rM | 36-month-old | N/D | N/D | ET-1: N/D Ang II: N/D ET-1 mRNA: N/D | ET-1: N/D Ang II: N/D ET-1 mRNA: N/D | |
Dal-Fabbro et al., 2014 [17] | 29 | 24 M/5 F | 47.0 ± 8.9 | 42.3 ± 24.3 | 25.0 ± 12.4 ^ | TBARS: 1.1 ± 0.2 catalase: 57.9 ± 2.6 superoxide dismutase: 5.7 ± 0.7 vitamins:
homocysteine:N/D uric acid: N/D | TBARS: POA: 1.3 ± 0.2 MAD: 1.4 ± 0.2 CPAP: 1.4 ± 0.1 catalase: POA: 51.3 ± 2.2 MAD:47.6 ± 2.3 ^ CPAP: 53.6 ± 1.9 superoxide dismutase: POA: 5.2 ± 0.6 MAD: 5.2 ± 0.7 CPAP: 4.8 ± 0.6 vitamins:
MAD: 62.3 ± 2.6 CPAP: 64.3 ± 2.5 ^
MAD: 22.2 ± 1.3 ^ CPAP: 24.6 ± 0.9 ^
homocysteine: N/D uric acid: N/D |
Author, Year | N | Sex | Age, Years | AHI (Pre) | AHI (Post) | Biomarker (Pre) | Biomarker (Post) |
---|---|---|---|---|---|---|---|
Kang et al. 2024 [18] | 6 | 6 rM | 6 month-old | N/D | N/D | NF-κB: N/D | NF-κB: N/D |
6 | 6 rM | 6 month-old | N/D | N/D | NF-κB: N/D | NF-κB: N/D | |
6 | 6 rM | 6 month-old | N/D | N/D | NF-κB N/D | NF-κB: N/D | |
Niżankowska-Jędrzejczyk et al. 2014 [19] | C:16 | 16 rM | 54.06 ± 12.09 | 2.05 (1.13–3.55) | N/D | IL-1β: 0.24 (0.21–0.27) IL-10: 3.93 (3.13–4.86) | IL-1β: 0.2—(0.16–0.24) 6 mo IL-10: 3.91 (2.88–499) 6 mo |
MAD:22 | 22 rM | 52.5 ± 8.33 | 24 (15.7–31.25) | 13.1 (4.98–21.4) 3 mo 7.05 (4.3–11.65) 6 mo | IL-1β: 0.35 (0.21–0.39) * IL-10: 5.71 (2.83–7.88) | IL-1β:
|
Author, Year | N | Sex | Age, Years | AHI (Pre) | AHI (Post) | Endothelium Function | |
---|---|---|---|---|---|---|---|
(Pre) | (Post) | ||||||
Itzhaki et al., 2007 [14] | S: 16 | 11 M/ 5 F | 54.0 ± 8.3 | 29.7 ± 18.5 * | 17.7 ± 11.1 * (3 mo); 19.6 ± 11.5 * (1 y) | RH-PAT index: 1.77 ± 0.4 | RH-PAT index:
|
C: 6 | 4 M/2 F | 42.7 ± 11.2 | 31.0 ± 8.1 | 29.2 ± 8.9 (1 y) | 1.9 ± 0.4 | 1.7 ± 0.4 | |
Lin et al., 2014 [15] | C: 15 | 12 M/3 F | 48 ± 7 | 3.2 ± 0.9 | N/D | N/D | |
S: 19MADs | 24 M/6 F | 50 ± 8 | 31.5 ± 11.4 | 8.6 ± 5.7 *** | FMD: 5.9 ± 4.6 | FMD: 10.5 ± 4.8 *** | |
S: 11MADf | 51 ± 7 | 31.8 ± 11.6 | 24.7 ± 5.9 | no significant improvement | |||
Gagnadoux et al. 2017 [20] | S: 75 | 59 M/16 F | 54.8 ± 9.9 | 40 (34–50.5) | 18.5 ** (11.5–26) | RHI: 2.13 ± 0.6 | RHI: 2.1 ± 0.63 |
P: 75 | 70 M/5 F | 52.9 ± 10.5 | 47.0 (36.0–58.0) | 38 (23–51) ** | 2.17 ± 0.63 | 2.04 ± 0.59 | |
Trzepizur et al. 2009 [21] | CPAP: 6 | N/D | 56 (56–58) | 40 (31–49) | 2 (1–8) *** | Ach: 1.9 (1.7–2.7) | Ach: 2.6 (2.3–4.4) *** |
MAD: 6 | N/D | 14 (7–18) *** | 2.7 (1.9–4.3) *** |
Author, Year | N | Sex | Age, Years | AHI Pre | AHI Post | Biomarker Pre | Biomarker Post |
---|---|---|---|---|---|---|---|
Kim et al. 2020 [22] | 58 | 51M/7F | N/D | 41.0 ± 20.1 | 19.6 ± 17.1 * |
|
|
Glos et al. 2016 [23] | CPAP:21 MAD:19 | N/D | N/D | N/D | N/D | HRV:
MAD: 15.9 ± 22.7 BRS:
7.1 ± 4.0 MAD: 7.1 ± 4.0 | HRV:
MAD: 22.3 ± 30.3 BRS:
6.4 ± 2.8 MAD: 6.7 ± 3.8 |
Lee et al. 2020 [24] | CPAP: 30 MAD: 30 | 27M/3F 27M/3F | 42.5 ± 11.8 51.6 ± 9.2 | 44.7 ± 25.9 44.0 ± 20.3 | 21.9 ± 20.1 * 21.3 ± 19.5 * |
15,590 ± 7962 (m)
5743 ± 2755 (m)
3.0 ± 1.8 (m)
70.9 ± 10.7 (m)
29.1 ± 10.7 (m) |
13,599 ± 8906 (m)
2.4 ± 1.4 (m)
33.7 ± 12.5 (m) *** |
Dal-Fabbro et al. 2014 [17] | 29 | 24M/5F | 47.0 ± 8.9 | 42.3 ± 24.3 | 25.0 ± 12.4^ | Baseline HRV:
| POA HRV:
HRV:
HRV:
|
Ucak et al. 2024 [25] | 101 | 54M/47F | 56 | 27 (17) | 10 (11) * | average NN: 982 (173) SDNN: 44 (27) RMSSD: 34 (24) pNN50: 12 (24) TP: 2237 (2651) LF: 2607 (998) HF: 494 (698) LF/HF: 1.2 (1.3) LFnu: 51 (17) HFnu: 42 (15) | average NN: 1017 (181) SDNN: 42 (31) *** RMSSD: 31 (24) *** pNN50: 9 (22) TP: 1991 (2951) *** LF: 559 (1186) HF: 355 (635) *** LF/HF: 1.4 (1.4) *** LFnu: 54 (18) *** HFnu: 39 (16) *** |
Author, Year | N | Sex | Age, Years | AHI Pre | AHI Post | Echographic Parameters (Pre) | Echographic Parameters (Post) |
---|---|---|---|---|---|---|---|
Dieltjens et al. 2022 [26] | 63 | 45M/18F | 49 ± 11 | 11.7 [8.2; 24.9] | 5.6 [2.9; 13.1] * | LV geometry and LV mass:
LV systolic function
LV diastolic function
| LV geometry and LV mass
LV systolic function
LV diastolic function
|
Hoekema et al. 2008 [27] | CPAP: 13 MAD: 15 | 25M/3F | 49.7 ± 9.9 | CPAP: 54.8 [50.9–73.7] MAD: 31.7 [23.9–36.5] | CPAP: 2.0 [0.0–6.3] MAD: 2.4 [0.9–10.2] | MAD: LVPW (n = 8) 9.1 ± 1.6 LVIVS (n = 8) 9.8 ± 1.3 LVEDD (n = 9) 49.1 ± 3.2 LVESD (n = 9) 30.8 ± 4.7 LVMI (n = 8) 89.5 ± 22.0 LVEF n = 10 56.9 ± 3.8 CPAP: LVPW (n = 11) 10.5 ± 1.0 LVIVS (n = 11) 10.7 ± 1.6 LVEDD (n = 11) 48.3 ± 6.4 LVESD (n = 11) 28.2 ± 4.1 LVMI (n = 11) 96.5 ± 28.9 LVEF n = 9 58.8 ± 2.3 | MAD: LVPW (n = 8) 10.1 ± 0.8 LVIVS (n = 8) 9.9 ± 1.0 LVEDD (n = 9) 48.0 ± 4.9 LVESD (n = 9) 29.9 ± 4.7 LVMI (n = 8) 91.3 ± 18.7 LVEF n = 10 60.5 ± 5.3 CPAP: LVPW (n = 11) 10.5 ± 1.9 LVIVS (n = 11) 11.1 ± 2.0 LVEDD (n = 11) 47.5 ± 4.3 LVESD (n = 11) 28.7 ± 5.5 LVMI (n = 11) 98.1 ± 28.9 LVEF n = 10 59.7 ± 1.3 |
Liu et al. 2020 [16] | control group: 10 | 10rM | 36-month-old | N/D | N/D | N/D | N/D |
OSA:10 | 10rM | 36-month-old | N/D | N/D | N/D |
| |
MAD: 10 | 10rM | 36-month-old | N/D | N/D | N/D |
|
Author, Year | N | Sex | Age, Years | AHI Pre | AHI Post | NT-proBNP (Pre) | NT-proBNP (Post) |
---|---|---|---|---|---|---|---|
Hoekema et al. 2008 [27] | 28 CPAP:13 MAD:15 | 25 M/ 3F | 49.7 ± 9.9 | CPAP: 54.8 (50.9–73.7) MAD: 31.7 (23.9–36.5) | CPAP: 2.0 (0.0–6.3) MAD: 2.4 (0.9–10.2) | CPAP: 31 (17–53) MAD: 52 (13–105) | CPAP: 37 (21–61) MAD: 22 (15–33) |
Uniken Venema et al. 2022 [28] | 85 MAD:43 CPAP:42 | 37 M/6 F 33 M/9 F | 50 ± 9.7 51 ± 9.8 | 20.9 ± 4.4 21.0 ± 4.7 | 10.8 ± 11.9 *#^ 1.5 ± 1.6 *#^ | 24.2 (12.3–57.8) 39.3 (17.3–61.3) | 26.0 (11.3–52.0) 31.4 (12.2–56.8) |
Author, Year | N | Sex | Age, Years | AHI Pre | AHI Post | Cardiovascular Events |
---|---|---|---|---|---|---|
Philips et al. 2013 [29] | 126 | 102 M/24 F | 49.5 (11.2) | 25.6 (12.3) | CPAP: 4.5 (6.6) # MAD: 11.1 (12.1) # | N/D |
Anandam et al. 2013 [30] | Non-apnoeic controls: 208 Severe OSA treated with CPAP: 177 Severe OSA treated with MAD: 72 Untreated severe OSA: 212 | 113 M/95 F 108 M/69 F 41 M/31 F 138 M/74 F | 46.8 ± 13.7 51.6 ± 12.3 50.8 ± 12.7 50.3 ± 13.2 | 2.6 ± 1.4 44.8 ± 9.4 * 44.5 ± 7.7 ** 43.4 ± 8.6 *** | N/D N/D N/D N/D | Cardiovascular death/events per 100 person-years: 4/0.28 6/0.56 † 3/0.61 ‡ 29/2.1 § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polecka, A.; Nawrocki, J.; Pulido, M.A.; Olszewska, E. Mandibular Advancement Devices in Obstructive Sleep Apnea and Its Effects on the Cardiovascular System: A Comprehensive Literature Review. J. Clin. Med. 2024, 13, 6757. https://doi.org/10.3390/jcm13226757
Polecka A, Nawrocki J, Pulido MA, Olszewska E. Mandibular Advancement Devices in Obstructive Sleep Apnea and Its Effects on the Cardiovascular System: A Comprehensive Literature Review. Journal of Clinical Medicine. 2024; 13(22):6757. https://doi.org/10.3390/jcm13226757
Chicago/Turabian StylePolecka, Agnieszka, Jakub Nawrocki, Maria Alejandra Pulido, and Ewa Olszewska. 2024. "Mandibular Advancement Devices in Obstructive Sleep Apnea and Its Effects on the Cardiovascular System: A Comprehensive Literature Review" Journal of Clinical Medicine 13, no. 22: 6757. https://doi.org/10.3390/jcm13226757
APA StylePolecka, A., Nawrocki, J., Pulido, M. A., & Olszewska, E. (2024). Mandibular Advancement Devices in Obstructive Sleep Apnea and Its Effects on the Cardiovascular System: A Comprehensive Literature Review. Journal of Clinical Medicine, 13(22), 6757. https://doi.org/10.3390/jcm13226757