Detection of Aortic Dissection and Intramural Hematoma in Non-Contrast Chest Computed Tomography Using a You Only Look Once-Based Deep Learning Model
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Selection of Participants
2.3. Model Development for CT Image-Based AD and an IMH Detection Algorithm
2.3.1. Aorta Labeling on Chest CT Images and Data Processing
2.3.2. Object Detection Model
2.3.3. Main Characteristics of the YOLOv4 Framework
2.3.4. Main Metrics for the Detection Algorithm of AD and IMH
2.4. Analysis
3. Results
3.1. Characteristics of the Study Subjects
3.2. Model Performance of the Algorithm of AD and IMH Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alter, S.M.; Eskin, B.; Allegra, J.R. Diagnosis of Aortic Dissection in Emergency Department Patients is Rare. West. J. Emerg. Med. 2015, 16, 629–631. [Google Scholar] [CrossRef]
- Stevens, L.M.; Madsen, J.C.; Isselbacher, E.M.; Khairy, P.; MacGillivray, T.E.; Hilgenberg, A.D.; Agnihotri, A.K. Surgical management and long-term outcomes for acute ascending aortic dissection. J. Thorac. Cardiovasc. Surg. 2009, 138, 1349–1357.e1341. [Google Scholar] [CrossRef]
- Writing Group Members; Hiratzka, L.F.; Bakris, G.L.; Beckman, J.A.; Bersin, R.M.; Carr, V.F.; Casey, D.E.; Eagle, K.A.; Hermann, L.K.; Isselbacher, E.M.; et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease. Circulation 2010, 121, e266–e369. [Google Scholar] [CrossRef]
- Shi, R.; Wooster, M. Hybrid and Endovascular Management of Aortic Arch Pathology. J. Clin. Med. 2024, 13, 6248. [Google Scholar] [CrossRef]
- Harris, K.M.; Nienaber, C.A.; Peterson, M.D.; Woznicki, E.M.; Braverman, A.C.; Trimarchi, S.; Myrmel, T.; Pyeritz, R.; Hutchison, S.; Strauss, C.; et al. Early Mortality in Type A Acute Aortic Dissection: Insights From the International Registry of Acute Aortic Dissection. JAMA Cardiol. 2022, 7, 1009–1015. [Google Scholar] [CrossRef]
- Rose, T.A., Jr.; Choi, J.W. Intravenous Imaging Contrast Media Complications: The Basics That Every Clinician Needs to Know. Am. J. Med. 2015, 128, 943–949. [Google Scholar] [CrossRef]
- Roditi, G.; Khan, N.; van der Molen, A.J.; Bellin, M.-F.; Bertolotto, M.; Brismar, T.; Correas, J.-M.; Dekkers, I.A.; Geenen, R.W.F.; Heinz-Peer, G.; et al. Intravenous contrast medium extravasation: Systematic review and updated ESUR Contrast Media Safety Committee Guidelines. Eur. Radiol. 2022, 32, 3056–3066. [Google Scholar] [CrossRef]
- Hata, A.; Yanagawa, M.; Yamagata, K.; Suzuki, Y.; Kido, S.; Kawata, A.; Doi, S.; Yoshida, Y.; Miyata, T.; Tsubamoto, M.; et al. Deep learning algorithm for detection of aortic dissection on non-contrast-enhanced CT. Eur. Radiol. 2021, 31, 1151–1159. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Trans. Cybern. 2022, 52, 8574–8586. [Google Scholar] [CrossRef]
- Padilla, R.; Netto, S.L.; Da Silva, E.A. A survey on performance metrics for object-detection algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar]
- Padilla, R.; Passos, W.L.; Dias, T.L.; Netto, S.L.; Da Silva, E.A. A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics 2021, 10, 279. [Google Scholar] [CrossRef]
- Kolchev, A.; Pasynkov, D.; Egoshin, I.; Kliouchkin, I.; Pasynkova, O.; Tumakov, D. YOLOv4-Based CNN Model versus Nested Contours Algorithm in the Suspicious Lesion Detection on the Mammography Image: A Direct Comparison in the Real Clinical Settings. J. Imaging 2022, 8, 88. [Google Scholar] [CrossRef]
- Isselbacher, E.M.; Preventza, O.; Hamilton Black, J.; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2022, 146, e334–e482. [Google Scholar] [CrossRef]
- Garg, I.; Grist, T.M.; Nagpal, P. MR Angiography for Aortic Diseases. Magn. Reson. Imaging Clin. N. Am. 2023, 31, 373–394. [Google Scholar] [CrossRef]
- Eissa, M.; Mir-Ghassemi, A.; Nagpal, S.; Talab, H.F. Detection of inadvertent passage of guide wire into the false lumen during thoracic endovascular aortic repair of Type B aortic dissection by transesophageal echocardiography. JA Clin. Rep. 2022, 8, 50. [Google Scholar] [CrossRef]
- Mussa, F.F.; Horton, J.D.; Moridzadeh, R.; Nicholson, J.; Trimarchi, S.; Eagle, K.A. Acute Aortic Dissection and Intramural Hematoma: A Systematic Review. JAMA 2016, 316, 754–763. [Google Scholar] [CrossRef]
- Sorber, R.; Hicks, C.W. Diagnosis and Management of Acute Aortic Syndromes: Dissection, Penetrating Aortic Ulcer, and Intramural Hematoma. Curr. Cardiol. Rep. 2022, 24, 209–216. [Google Scholar] [CrossRef]
- Richens, J.G.; Lee, C.M.; Johri, S. Improving the accuracy of medical diagnosis with causal machine learning. Nat. Commun. 2020, 11, 3923. [Google Scholar] [CrossRef]
- Mirbabaie, M.; Stieglitz, S.; Frick, N.R.J. Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Health Technol. 2021, 11, 693–731. [Google Scholar] [CrossRef]
- Henry, K.E.; Kornfield, R.; Sridharan, A.; Linton, R.C.; Groh, C.; Wang, T.; Wu, A.; Mutlu, B.; Saria, S. Human–machine teaming is key to AI adoption: Clinicians’ experiences with a deployed machine learning system. npj Digit. Med. 2022, 5, 97. [Google Scholar] [CrossRef]
- Guo, C.; Lv, X.-L.; Zhang, Y.; Zhang, M.-L. Improved YOLOv4-tiny network for real-time electronic component detection. Sci. Rep. 2021, 11, 22744. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jiang, Y.; Li, W.; Zhang, J.; Li, F.; Wu, Z. YOLOv4-dense: A smaller and faster YOLOv4 for real-time edge-device based object detection in traffic scene. IET Image Process. 2023, 17, 570–580. [Google Scholar] [CrossRef]
- Sayed, A.; Munir, M.; Bahbah, E.I. Aortic Dissection: A Review of the Pathophysiology, Management and Prospective Advances. Curr. Cardiol. Rev. 2021, 17, e230421186875. [Google Scholar] [CrossRef] [PubMed]
- Carrel, T.; Sundt, T.M., 3rd; von Kodolitsch, Y.; Czerny, M. Acute aortic dissection. Lancet 2023, 401, 773–788. [Google Scholar] [CrossRef]
- Bouchareb, Y.; Tag, N.; Sulaiman, H.; Al-Riyami, K.; Jawa, Z.; Al-Dhuhli, H. Optimization of BMI-Based Images for Overweight and Obese Patients—Implications on Image Quality, Quantification, and Radiation Dose in Whole Body (18)F-FDG PET/CT Imaging. Nucl. Med. Mol. Imaging 2023, 57, 180–193. [Google Scholar] [CrossRef]
Variables | Total | NA | AD | IMH | p |
---|---|---|---|---|---|
(N = 121) | (N = 47) | (N = 49) | (N = 25) | ||
Age, years | 63.0 [50.0–73.0] | 60.0 [49.5–77.0] | 63.0 [56.0–69.0] | 69.0 [42.0–77.0] | 0.566 |
Sex | 0.164 | ||||
Male | 72 (59.5%) | 23 (48.9%) | 32 (65.3%) | 17 (68.0%) | |
Female | 49 (40.5%) | 24 (51.1%) | 17 (34.7%) | 8 (32.0%) | |
Stanford type | - | ||||
Type A | 16 (13.2%) | - | 10 (20.4%) | 6 (24.0%) | |
Type B | 58 (47.9%) | - | 39 (79.6%) | 19 (76.0%) | |
HTN | <0.001 | ||||
No | 44 (36.4%) | 28 (59.6%) | 12 (24.5%) | 4 (16.0%) | |
Yes | 77 (63.6%) | 19 (40.4%) | 37 (75.5%) | 21 (84.0%) | |
DM | 0.072 | ||||
No | 93 (76.9%) | 32 (68.1%) | 38 (77.6%) | 23 (92.0%) | |
Yes | 28 (23.1%) | 15 (31.9%) | 11 (22.4%) | 2 (8.0%) | |
CKD | 0.164 | ||||
No | 118 (97.5%) | 44 (93.6%) | 49 (100.0%) | 25 (100.0%) | |
Yes | 3 (2.5%) | 3 (6.4%) | 0 (0.0%) | 0 (0.0%) | |
Operation | 0.050 | ||||
No | 114 (94.2%) | 46 (97.9%) | 43 (87.8%) | 25 (100.0%) | |
Yes | 5 (4.1%) | 0 (0.0%) | 5 (10.2%) | 0 (0.0%) | |
Unknown | 2 (1.7%) | 1 (2.1%) | 1 (2.0%) | 0 (0.0%) | |
BMI (kg/m2) | 0.001 | ||||
Underweight (BMI < 18.5) | 2 (1.7%) | 1 (2.1%) | 1 (2.0%) | 0 (0.0%) | |
Normal weight (BMI ≥ 18.5 to 24.9) | 17 (14.0%) | 9 (19.1%) | 4 (8.2%) | 4 (16.0%) | |
Overweight (BMI ≥ 25 to 29.9) | 47 (38.8%) | 9 (19.1%) | 30 (61.2%) | 8 (32.0%) | |
Obesity (BMI ≥ 30) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
Unknown | 55 (45.5%) | 28 (59.6%) | 14 (28.6%) | 13 (52.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-S.; Kim, J.G.; Choi, H.Y.; Lee, D.; Kong, J.-W.; Kang, G.H.; Jang, Y.S.; Kim, W.; Lee, Y.; Kim, J.; et al. Detection of Aortic Dissection and Intramural Hematoma in Non-Contrast Chest Computed Tomography Using a You Only Look Once-Based Deep Learning Model. J. Clin. Med. 2024, 13, 6868. https://doi.org/10.3390/jcm13226868
Kim Y-S, Kim JG, Choi HY, Lee D, Kong J-W, Kang GH, Jang YS, Kim W, Lee Y, Kim J, et al. Detection of Aortic Dissection and Intramural Hematoma in Non-Contrast Chest Computed Tomography Using a You Only Look Once-Based Deep Learning Model. Journal of Clinical Medicine. 2024; 13(22):6868. https://doi.org/10.3390/jcm13226868
Chicago/Turabian StyleKim, Yu-Seop, Jae Guk Kim, Hyun Young Choi, Dain Lee, Jin-Woo Kong, Gu Hyun Kang, Yong Soo Jang, Wonhee Kim, Yoonje Lee, Jihoon Kim, and et al. 2024. "Detection of Aortic Dissection and Intramural Hematoma in Non-Contrast Chest Computed Tomography Using a You Only Look Once-Based Deep Learning Model" Journal of Clinical Medicine 13, no. 22: 6868. https://doi.org/10.3390/jcm13226868