Functional Measures in Non-COPD Chronic Respiratory Diseases: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol, Database Search, and Selection Criteria
2.2. Data Collection and Quality Appraisal
3. Results
4. Discussion
Implications for Practice: Selection of Instruments by Non-COPD CRD
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bousquet, J.; Dahl, R.; Khaltaev, N. Global alliance against chronic respiratory diseases. Allergy 2007, 62, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Global Initative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. 2024. Available online: http://goldcopd.org (accessed on 5 November 2024).
- Bousquet, J.; Kaltaev, N. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2024, 8, 585. [Google Scholar]
- O’Donnell, D.E.; Elbehairy, A.F.; Berton, D.C.; Domnik, N.J.; Neder, J.A. Advances in the Evaluation of Respiratory Pathophysiology during Exercise in Chronic Lung Diseases. Front. Physiol. 2017, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Leidy, N.K. Functional status and the foward progress of merry-go-rounds: Toward a coherent analytical framework. Nurs. Res. 1994, 43, 196–202. [Google Scholar] [CrossRef]
- Bui, K.-L.; Nyberg, A.; Maltais, F.; Saey, D. Functional Tests in Chronic Obstructive Pulmonary Disease, Part 1: Clinical Relevance and Links to the International Classification of Functioning, Disability, and Health. Ann. Am. Thorac. Soc. 2017, 14, 778–784. [Google Scholar] [CrossRef]
- Bisca, G.W.; Morita, A.A.; Hernandes, N.A.; Probst, V.S.; Pitta, F. Simple Lower Limb Functional Tests in Patients with Chronic Obstructive Pulmonary Disease: A Systematic Review. Arch. Phys. Med. Rehabil. 2015, 96, 2221–2230. [Google Scholar] [CrossRef]
- Johnston, K.N.; Potter, A.J.; Phillips, A. Measurement Properties of Short Lower Extremity Functional Exercise Tests in People with Chronic Obstructive Pulmonary Disease: Systematic Review. Phys. Ther. 2017, 97, 926–943. [Google Scholar] [CrossRef]
- Bui, K.L.; Nyberg, A.; Maltais, F.; Saey, D. Functional Tests in Chronic Obstructive Pulmonary Disease, Part 2: Measurement Properties. Ann. Am. Thorac. Soc. 2017, 14, 785–794. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Ding, N.; Wang, N.; Wen, D. Functional status assessment of patients with COPD: A systematic review of performance-based measures and patient-reported measures. Medicine 2016, 95, e3672. [Google Scholar] [CrossRef]
- Maddocks, M.; Nolan, C.M.; Man, W.D. Simple functional tests in COPD: Stand up and be counted! Eur. Respir. J. 2017, 49, 1700104. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Spositon, T.; Cerci Neto, A.; Soares, F.M.C.; Pitta, F.; Furlanetto, K.C. Functional tests for adults with asthma: Validity, reliability, minimal detectable change, and feasibility. J. Asthma 2020, 59, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Radtke, T.; Puhan, M.A.; Hebestreit, H.; Kriemler, S. The 1-min sit-to-stand test—A simple functional capacity test in cystic fibrosis? J. Cyst. Fibros. 2016, 15, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Zamboti, C.; Gonçalves, A.; Garcia, T.; Krinski, G.; Bertin, L.D.; Almeida, H.d.S.; Pimpão, H.A.; Fujisawa, D.S.; Ribeiro, M.; Pitta, F.; et al. Functional performance tests in interstitial lung disease: Impairment and measurement properties. Respir. Med. 2021, 184, 106413. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.; Santos, R.; Pinto, R.; Oliveira, A.; Marques, A. Functional status following pulmonary rehabilitation in people with interstitial lung disease: A systematic review and meta-analysis. Chronic Respir. Dis. 2024, 21, 14799731241255138. [Google Scholar] [CrossRef]
- Nolan, C.M.; Maddocks, M.; Maher, T.M.; Banya, W.; Patel, S.; Barker, R.E.; Jones, S.E.; George, P.M.; Cullinan, P.; Man, W.D.-C. Gait speed and prognosis in patients with idiopathic pulmonary fibrosis: A prospective cohort study. Eur. Respir. J. 2019, 53, 1801186. [Google Scholar] [CrossRef]
- Mokkink, L.; de Vet, H.; Prinsen, C.; Patrick, D.; Alonso, J.; Bouter, L.; Terwee, C.B. COSMIN Risk of Bias checklist for systematic reviews of Patient-Reported Outcome Measures. Qual. Life Res. 2018, 27, 1171–1179. [Google Scholar] [CrossRef]
- West, C.; Guemann, M.; Ilhan, E. You Ask #PEDroAnswers, a global social media campaign to help physiotherapists improve their searching skills to find high-quality evidence. Eur. Rehabil. J. 2022, 2, 1. [Google Scholar]
- Downs, S.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Freitas Canuto, F.; Silva, S.M.; Malosa Sampaio, L.M.; Stirbulov, R.; Ferrari Correa, J.C. Neurophysiological and functional assessment of patients with difficult-to-control asthma. Rev. Port. Pneumol. 2012, 18, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Gruet, M.; Peyre-Tartaruga, L.A.; Mely, L.; Vallier, J.M. The 1-Minute Sit-to-Stand Test in Adults with Cystic Fibrosis: Correlations with Cardiopulmonary Exercise Test, 6-Minute Walk Test, and Quadriceps Strength. Respir. Care 2016, 61, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Oishi, K.; Asami-Noyama, M.; Yamamoto, T.; Matsumori, K.; Yonezawa, K.; Watanabe, M.; Hisamoto, Y.; Fukatsu, A.; Matsuda, K.; Hamada, K.; et al. Detection of impaired gas exchange using the 1-minute sit-to-stand test in patients with interstitial lung disease. Respir. Investig. 2023, 61, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Paixao, C.; Almeida, S.; Ferreira, P.G.; Mendes, M.A.; Brooks, D.; Marques, A. Lifestyle integrated functional exercise for people with interstitial lung disease (iLiFE): A mixed-methods feasibility study. Heart Lung J. Crit. Care 2023, 60, 20–27. [Google Scholar] [CrossRef]
- Oishi, K.; Matsunaga, K.; Asami-Noyama, M.; Yamamoto, T.; Hisamoto, Y.; Fujii, T.; Harada, M.; Suizu, J.; Murakawa, K.; Chikumoto, A.; et al. Author Correction: The 1-minute sit-to-stand test to detect desaturation during 6-minute walk test in interstitial lung disease. NPJ Prim. Care Respir. Med. 2022, 32, 9. [Google Scholar] [CrossRef]
- Tremblay Labrecque, P.F.; Dion, G.; Saey, D. Functional clinical impairments and frailty in interstitial lung disease patients. ERJ Open Res. 2022, 8. [Google Scholar] [CrossRef]
- Fedi, A.; Keddache, S.; Quetant, S.; Guillien, A.; Antoniadis, A.; Soumagne, T.; Ritter, O.; Glérant, J.-C.; Cottin, V.; Degano, B.; et al. Concurrence of 1- and 3-Min Sit-to-Stand Tests with the 6-Min Walk Test in Idiopathic Pulmonary Fibrosis. Respir. Int. Rev. Thorac. Dis. 2021, 100, 571–579. [Google Scholar] [CrossRef]
- Tremblay Labrecque, P.F.; Harvey, J.; Nadreau, E.; Maltais, F.; Dion, G.; Saey, D. Validation and Cardiorespiratory Response of the 1-Min Sit-to-Stand Test in Interstitial Lung Disease. Med. Sci. Sports Exerc. 2020, 52, 2508–2514. [Google Scholar] [CrossRef]
- Wallaert, B.; Briand, J.; Behal, H.; Perez, T.; Wemeau, L.; Chenivesse, C. The 1-minute sit-to-stand test to evaluate quadriceps muscle strength in patients with interstitial lung disease. Respir. Med. Res. 2020, 78, 100773. [Google Scholar] [CrossRef]
- Briand, J.; Behal, H.; Chenivesse, C.; Wemeau-Stervinou, L.; Wallaert, B. The 1-minute sit-to-stand test to detect exercise-induced oxygen desaturation in patients with interstitial lung disease. Ther. Adv. Respir. Dis. 2018, 12, 1753466618793028. [Google Scholar] [CrossRef]
- Keen, C.; Smith, I.; Hashmi-Greenwood, M.; Sage, K.; Kiely, D.G. Pulmonary Hypertension and Measurement of Exercise Capacity Remotely: Evaluation of the 1-min Sit-to-Stand Test (PERSPIRE)—A cohort study. ERJ Open Res. 2023, 9, 00295-2022. [Google Scholar] [CrossRef] [PubMed]
- Kronberger, C.; Mousavi, R.A.; Ozturk, B.; Willixhofer, R.; Dachs, T.M.; Rettl, R.; Camuz-Ligios, L.; Rassoulpour, N.; Krall, C.; Litschauer, B.; et al. Functional capacity testing in patients with pulmonary hypertension (PH) using the one-minute sit-to-stand test (1-min STST). PLoS ONE 2023, 18, e0282697. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.C.; Lima, L.N.G.; Moreira, M.M.; Mendes, F.A.R. One minute sit-to-stand test as an alternative to measure functional capacity in patients with pulmonary arterial hypertension. J. Bras. Pneumol. 2022, 48, e20210483. [Google Scholar] [CrossRef]
- Nakazato, L.; Mendes, F.; Paschoal, I.A.; Oliveira, D.C.; Moreira, M.M.; Pereira, M.C. Association of daily physical activity with psychosocial aspects and functional capacity in patients with pulmonary arterial hypertension: A cross-sectional study. Pulm. Circ. 2021, 11, 2045894021999955. [Google Scholar] [CrossRef]
- Zampogna, E.; Pignatti, P.; Ambrosino, N.; Cherubino, F.; Maria Fadda, A.; Zappa, M.; Spanevello, A.; Visca, D. The 5-Repetition Sit-to-Stand Test as an Outcome Measure for Pulmonary Rehabilitation in Subjects with Asthma. Respir. Care 2021, 66, 769–776. [Google Scholar] [CrossRef]
- Yılmaz, A.; Gürsoy, S.; Atalay, O.T.; Evyapan, F.B. Comparison of balance and coordination abilities between asthmatic patients and healthy subjects. Ann. Clin. Anal. Med. 2021, 12, 1337–1342. [Google Scholar] [CrossRef]
- Atalay, O.T.; Yilmaz, A.; Bahtiyar, B.C.; Altinisik, G. Whole-Body Vibration or Aerobic Exercise in Patients with Bronchiectasis? A Randomized Controlled Study. Medicina 2022, 58, 1790. [Google Scholar] [CrossRef]
- McKeough, Z.; Large, S.; Spencer, L.; Cheng, S.; McNamara, R. An observational study of self-reported sedentary behaviour in people with chronic obstructive pulmonary disease and bronchiectasis. Braz. J. Phys. Ther. 2020, 24, 399–406. [Google Scholar] [CrossRef]
- Koczulla, A.R.; Boeselt, T.; Koelpin, J.; Kaufhold, F.; Veith, M.; Nell, C.; Jarosch, I.; Spielmanns, M.; Alter, P.; Kähler, C.; et al. Effects of Vibration Training in Interstitial Lung Diseases: A Randomized Controlled Trial. Respir. Int. Rev. Thorac. Dis. 2020, 99, 658–666. [Google Scholar] [CrossRef]
- Justice, J.N.; Nambiar, A.M.; Tchkonia, T.; LeBrasseur, N.K.; Pascual, R.; Hashmi, S.K.; Prata, L.; Masternak, M.M.; Kritchevsky, S.B.; Musi, N.; et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 2019, 40, 554–563. [Google Scholar] [CrossRef]
- Bloem, A.E.M.; Veltkamp, M.; Spruit, M.A.; Custers, J.W.H.; Bakker, E.W.P.; Dolk, H.M.; Grutters, J.C. Validation of 4-meter-gait-speed test and 5-repetitions-sit-to-stand test in patients with pulmonary fibrosis: A clinimetric validation study. Sarcoidossis Vascukitis Diffus. Lung Dis. 2018, 35, 317–326. [Google Scholar]
- Mendes, P.; Wickerson, L.; Helm, D.; Janaudis-Ferreira, T.; Brooks, D.; Singer, L.G.; Mathur, S. Skeletal muscle atrophy in advanced interstitial lung disease. Respirology 2015, 20, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Okamura, M.; Konishi, M.; Saigusa, Y.; Ando, S.; Nakayama, M.; Komura, N.; Sugano, T.; Tamura, K.; Nakamura, T. Impact of grip strength and gait speed on exercise tolerance in patients with pulmonary hypertension without left heart disease. Heart Vessel. 2022, 37, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Saiz, L.; Fiuza-Luces, C.; Sanchis-Gomar, F.; Santos-Lozano, A.; Quezada-Loaiza, C.A.; Flox-Camacho, A.; Munguía-Izquierdo, D.; Ara, I.; Santalla, A.; Morán, M.; et al. Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: The WHOLEi+12 trial. Int. J. Cardiol. 2017, 231, 277–283. [Google Scholar] [CrossRef]
- Majewski, M.; Dabrowska, G.; Pawik, M.; Rozek, K. Evaluation of a Home-Based Pulmonary Rehabilitation Program for Older Females Suffering from Bronchial Asthma. Adv. Clin. Exp. Med. 2015, 24, 1079–1083. [Google Scholar] [CrossRef]
- Sheppard, E.; Chang, K.; Cotton, J.; Gashgarian, S.; Slack, D.; Wu, K.; Michalski, A.; Fox, P.; Stephenson, A.L.; Mathur, S. Functional Tests of Leg Muscle Strength and Power in Adults with Cystic Fibrosis. Respir. Care 2019, 64, 40–47. [Google Scholar] [CrossRef]
- Chikina, S.Y.; Ataman, K.S.; Trushenko, N.V.; Avdeev, S.N. A comparison of informative between 6-minute walking test and sit-to-stand test in patients with fibrosing interstitial lung diseases. Pulmonologiya 2022, 32, 208–215. [Google Scholar] [CrossRef]
- Vainshelboim, B.; Kramer, M.R.; Myers, J.; Unterman, A.; Izhakian, S.; Oliveira, J. 8-Foot-Up-and-Go Test is Associated with Hospitalizations and Mortality in Idiopathic Pulmonary Fibrosis: A Prospective Pilot Study. Lung 2019, 197, 81–88. [Google Scholar] [CrossRef]
- Vainshelboim, B.; Oliveira, J.; Fox, B.D.; Soreck, Y.; Fruchter, O.; Kramer, M.R. Long-term effects of a 12-week exercise training program on clinical outcomes in idiopathic pulmonary fibrosis. Lung 2015, 193, 345–354. [Google Scholar] [CrossRef]
- Vainshelboim, B.; Oliveira, J.; Yehoshua, L.; Weiss, I.; Fox, B.D.; Fruchter, O.; Kramer, M.R. Exercise training-based pulmonary rehabilitation program is clinically beneficial for idiopathic pulmonary fibrosis. Respir. Int. Rev. Thorac. Dis. 2014, 88, 378–388. [Google Scholar] [CrossRef]
- Kahraman, B.; Savci, S.; Ozsoy, I.; Baran, A.; Acar, S.; Ozpelit, E.; Balci, A.; Sevinc, C.; Akdeniz, B. Effects of neuromuscular electrical stimulation in patients with pulmonary arterial hypertension: A randomized controlled pilot study. J. Cardiol. 2020, 75, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, B.; Ozsoy, I.; Akdeniz, B.; Ozpelit, E.; Sevinc, C.; Acar, S.; Savci, S. Test-retest reliability and validity of the timed up and go test and 30-second sit to stand test in patients with pulmonary hypertension. Int. J. Cardiol. 2020, 304, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Ozsoy, I.; Kodak, M.I.; Zerman, N.; Kararti, C.; Ozsoy, G.; Erturk, A. Gait speed predictors and gait-speed cut-off score to discriminate asthma control status and physical activity in patients with asthma. Adv. Respir. Med. 2022, 90, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, M.D.M.; Rodríguez-Juan, J.J.; Ruiz-Cárdenas, J.D. Influence of sex gap on muscle strength and functional mobility in patients with cystic fibrosis. Appl. Physiol. Nutr. Metab. 2020, 45, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Nolan, C.M.; Schofield, S.J.; Maddocks, M.; Patel, S.; Barker, R.E.; Walsh, J.A.; Polgar, O.; George, P.M.; Molyneaux, P.L.; Maher, T.M.; et al. Change in gait speed and adverse outcomes in patients with idiopathic pulmonary fibrosis: A prospective cohort study. Respirology 2023, 28, 649–658. [Google Scholar] [CrossRef]
- Hirabayashi, R.; Takahashi, Y.; Nagata, K.; Morimoto, T.; Wakata, K.; Nakagawa, A.; Tachikawa, R.; Otsuka, K.; Tomii, K. The validity and reliability of four-meter gait speed test for stable interstitial lung disease patients: The prospective study. J. Thorac. Dis. 2020, 12, 1296–1304. [Google Scholar] [CrossRef]
- Guler, S.A.; Hur, S.A.; Lear, S.A.; Camp, P.G.; Ryerson, C.J. Body composition, muscle function, and physical performance in fibrotic interstitial lung disease: A prospective cohort study. Respir. Res. 2019, 20, 56–65. [Google Scholar] [CrossRef]
- Nolan, C.M.; Maddocks, M.; Maher, T.M.; Canavan, J.L.; Jones, S.E.; Barker, R.E.; Patel, S.; Jacob, J.; Cullinan, P.; Man, W.D.-C. Phenotypic characteristics associated with slow gait speed in idiopathic pulmonary fibrosis. Respirology 2018, 23, 498–506. [Google Scholar] [CrossRef]
- Ryerson, C.J.; Cayou, C.; Topp, F.; Hilling, L.; Camp, P.G.; Wilcox, P.G.; Khalil, N.; Collard, H.R.; Garvey, C. Pulmonary rehabilitation improves long-term outcomes in interstitial lung disease: A prospective cohort study. Respir. Med. 2014, 108, 203–210. [Google Scholar] [CrossRef]
- Babar, H.A.; Anwer, N.; Azfar, H.; Tauseef, S.; Shahid, S.; Saleem, A. Determine the Functional Limitations in Activities of Daily Living Through Short Physical Performance Battery Test Among Asthmatic Adults. Pak. J. Med. Health Sci. 2022, 16, 470–471. [Google Scholar] [CrossRef]
- Hanada, M.; Sakamoto, N.; Ishimoto, H.; Kido, T.; Miyamura, T.; Oikawa, M.; Nagura, H.; Takeuchi, R.; Kawazoe, Y.; Sato, S.; et al. A comparative study of the sarcopenia screening in older patients with interstitial lung disease. BMC Pulm. Med. 2022, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.A.; Hays, S.R.; Soong, A.; Gao, Y.; Greenland, J.R.; Leard, L.E.; Shah, R.J.; Golden, J.; Kukreja, J.; Venado, A.; et al. Improvements in frailty contribute to substantial improvements in quality of life after lung transplantation in patients with cystic fibrosis. Pediatr. Pulmonol. 2020, 55, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Vardar-Yagli, N.; Saglam, M.; Firat, M.; Cakmak, A.; Inal-Ince, D.; Calik Kutukcu, E.; Coplu, L. Gait and functional balance in non-CF bronchiectasis. Physiother. Theory Pract. 2022, 39, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Hena, R.; Alaparthi, G.K.; Shyam Krishnan, K.; Anand, R.; Acharya, V.; Acharya, P. Cardiorespiratory Responses to Glittre ADL Test in Bronchiectasis: A Cross-Sectional Study. Can. Respir. J. 2018, 17, 7470387. [Google Scholar] [CrossRef]
- Reinaldo, G.P.; Araujo, C.L.P.; Schneider, B.; Florian, J.; Machado, S.C.; Hochhegger, B.; Lago, P.D. Validity and reliability of the Glittre-ADL test in individuals with idiopathic pulmonary fibrosis. Physiother. Theory Pract. 2022, 40, 1101–1109. [Google Scholar] [CrossRef]
- Alexandre, H.F.; Cani, K.C.; Araujo, J.; Mayer, A.F. Reliability and validity of the Glittre-ADL test to assess the functional status of patients with interstitial lung disease. Chronic Respir. Dis. 2021, 18, 14799731211012962. [Google Scholar] [CrossRef]
- Olson, A.L.; Swigris, J.J.; Belkin, A.; Hannen, L.; Yagihashi, K.; Schenkman, M.; Brown, K.K. Physical functional capacity in idiopathic pulmonary fibrosis: Performance characteristics of the continuous-scale physical function performance test. Expert Rev. Respir. Med. 2015, 9, 361–367. [Google Scholar] [CrossRef]
- Rusanov, V.; Shitrit, D.; Fox, B.; Amital, A.; Peled, N.; Kramer, M.R. Use of the 15-steps climbing exercise oximetry test in patients with idiopathic pulmonary fibrosis. Respir. Med. 2008, 102, 1080–1088. [Google Scholar] [CrossRef]
- Olivera, C.M.; Vianna, E.O.; Bonizio, R.C.; de Menezes, M.B.; Ferraz, E.; Cetlin, A.A.; Valdevite, L.M.; Almeida, G.A.; Araujo, A.S.; Simoneti, C.S.; et al. Asthma self-management model: Randomized controlled trial. Health Educ. Res. 2016, 31, 639–652. [Google Scholar] [CrossRef]
- Newhouse, N.; Martin, A.; Jawad, S.; Yu, L.M.; Davoudianfar, M.; Locock, L.; Ziebland, S.; Powell, J. Randomised feasibility study of a novel experience-based internet intervention to support self-management in chronic asthma. BMJ Open 2016, 6, e013401. [Google Scholar] [CrossRef]
- Meyer, A.; Gunther, S.; Volmer, T.; Taube, K.; Baumann, H.J. A 12-month, moderate-intensity exercise training program improves fitness and quality of life in adults with asthma: A controlled trial. BMC Pulm. Med. 2015, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Pai, H.J.; Azevedo, R.S.; Braga, A.L.; Martins, L.C.; Saraiva-Romanholo, B.M.; Martins, M.A.; Lin, C.A. A randomized, controlled, crossover study in patients with mild and moderate asthma undergoing treatment with traditional Chinese acupuncture. Clinics 2015, 70, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Ochmann, U.; Kotschy-Lang, N.; Raab, W.; Kellberger, J.; Nowak, D.; Jorres, R.A. Long-term efficacy of pulmonary rehabilitation in patients with occupational respiratory diseases. Respir. Int. Rev. Thorac. Dis. 2012, 84, 396–405. [Google Scholar] [CrossRef]
- Smith, A.M.; Villareal, M.; Bernstein, D.I.; Swikert, D.J. Asthma in the elderly: Risk factors and impact on physical function. Ann. Allergy Asthma Immunol. 2012, 108, 305–310. [Google Scholar] [CrossRef]
- Turner, S.; Eastwood, P.; Cook, A.; Jenkins, S. Improvements in symptoms and quality of life following exercise training in older adults with moderate/severe persistent asthma. Respir. Int. Rev. Thorac. Dis. 2011, 81, 302–310. [Google Scholar] [CrossRef]
- Kligler, B.; Homel, P.; Blank, A.E.; Kenney, J.; Levenson, H.; Merrell, W. Randomized trial of the effect of an integrative medicine approach to the management of asthma in adults on disease-related quality of life and pulmonary function. Altern. Ther. Health Med. 2011, 17, 10–15. [Google Scholar]
- Siroux, V.; Boudier, A.; Anto, J.M.; Cazzoletti, L.; Accordini, S.; Alonso, J.; Cerveri, I.; Corsico, A.; Gulsvik, A.; Jarvis, D.; et al. Quality-of-life and asthma-severity in general population asthmatics: Results of the ECRHS II study. Allergy 2008, 63, 547–554. [Google Scholar] [CrossRef]
- Tohda, Y.; Tsuji, F.; Kubo, H.; Haraguchi, R.; Iwanaga, T. Usefulness of QVAR for the treatment of bronchial asthma--with and without use of an inhalation device. J. Asthma 2006, 43, 613–618. [Google Scholar] [CrossRef]
- McClish, D.K.; Penberthy, L.T.; Bovbjerg, V.E.; Roberts, J.D.; Aisiku, I.P.; Levenson, J.L.; Roseff, S.D.; Smith, W.R. Health related quality of life in sickle cell patients: The PiSCES project. Health Qual. Life Outcomes 2005, 3, 50–57. [Google Scholar] [CrossRef]
- De Oliveira, M.A.; Barbiere, A.; Santos, L.A.; Faresin, S.M.; Fernandes, A.L. Validation of a simplified quality-of-life questionnaire for socioeconomically deprived asthma patients. J. Asthma 2005, 42, 41–44. [Google Scholar] [CrossRef]
- Matheson, M.; Raven, J.; Wood, R.K.; Thien, F.; Walters, E.H.; Abramson, M. Wheeze not current asthma affects quality of life in young adults with asthma. Thorax 2012, 57, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Stavem, K.; Lossius, M.I.; Kvien, T.K.; Guldvog, B. The health-related quality of life of patients with epilepsy compared with angina pectoris, rheumatoid arthritis, asthma and chronic obstructive pulmonary disease. Qual. Life Res. 2000, 9, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Dyer, C.A.; Hill, S.L.; Stockley, R.A.; Sinclair, A.J. Quality of life in elderly subjects with a diagnostic label of asthma from general practice registers. Eur. Respir. J. 1999, 14, 39–45. [Google Scholar] [CrossRef]
- Ware, J.; Kemp, J.; Buchner, D.; Singer, A.; Nolop, K.; Goss, T. The Responsiveness of Disease-Specific and Generic Health Measures to Changes in the Severity of Asthma among Adults. Qual. Life Res. Int. J. Qual. Life Asp. Treat. Care Rehabil. 1998, 7, 235–244. [Google Scholar]
- Blanc, P.; Katz, P.; Henke, J.; Smith, S.; Yelin, E. Pulmonary and allergy subspecialty care in adults with asthma: Treatment, use of services, and health outcomes. Pulm. Allergy Asthma 1997, 167, 398–407. [Google Scholar]
- Van der Molen, T.; Postma, D.S.; Schreurs, A.J.M.; Bosveld, H.E.P.; Sears, M.R.; de Jong, M. Discriminative aspects of two generic and two asthma-specific instruments: Relation with symptoms, bronchodilator use and lung function in patients with mild asthma. Qual. Life Res. 1997, 6, 353–361. [Google Scholar] [CrossRef]
- Okamoto, L.J.; Noonan, M.; DeBoisblanc, B.P.; Kellerman, D.J. Fluticasone propionate improves quality of life in patients with asthma requiring oral corticosteroids. Ann. Allergy Asthma Immunol. 1996, 76, 455–461. [Google Scholar] [CrossRef]
- Bulcun, E.; Arslan, M.; Ekici, A.; Ekici, M. Quality of Life and Bronchial Hyper-Responsiveness in Subjects with Bronchiectasis: Validation of the Seattle Obstructive Lung Disease Questionnaire in Bronchiectasis. Respir. Care 2015, 60, 1616–1623. [Google Scholar] [CrossRef]
- Jacques, P.S.; Gazzana, M.B.; Palombini, D.V.; Barreto, S.S.M.; Dalcin, P.D.T.R. Distância percorrida no teste de caminhada de seis minutos não se relaciona com qualidade de vida em pacientes com bronquiectasias não fibrocísticas. J. Bras. Pneumol. 2012, 38, 346–355. [Google Scholar] [CrossRef]
- Lee, A.L.; Button, B.M.; Ellis, S.; Stirling, R.; Wilson, J.W.; Holland, A.E.; Denehy, L. Clinical determinants of the 6-Minute Walk Test in bronchiectasis. Respir. Med. 2009, 103, 780–785. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Alobid, I.; Angrill, J.; Ballesteros, F.; Bernal-Sprekelsen, M.; Picado, C.; Mullol, J. The impact of bronchiectasis associated to sinonasal disease on quality of life. Respir. Med. 2006, 100, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- Gee, L.; Abbott, J.; Conway, S.P.; Etherington, C.; Kwebb, A. Development of a disease specific health related quality of life measure for adults and adolescents with cystic fibrosis. Thorax 2000, 55, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Jastrzebski, D.; Pilzak, K.; Ziora, D.; Hall, B.; Zebrowska, A. Impact of physical functional capacity on quality of life in patients with interstitial lung diseases. Respir. Physiol. Neurobiol. 2023, 313, 104064. [Google Scholar] [CrossRef] [PubMed]
- Aboelmagd, M.F.; Moawd, S. Efficacy of inspiratory muscle training on inspiratory muscles strength, functional capacity, and quality of life in patients with interstitial lung disease. A single non-controlled clinical study. Physiother. Q. 2022, 30, 46–50. [Google Scholar] [CrossRef]
- Machado, F.V.C.; Bloem, A.E.M.; Schneeberger, T.; Jarosch, I.; Gloeckl, R.; Winterkamp, S.; Franssen, F.M.E.; Koczulla, A.R.; Pitta, F.; Spruit, M.A.; et al. Relationship between body composition, exercise capacity and health-related quality of life in idiopathic pulmonary fibrosis. BMJ Open Respir. Res. 2021, 8, e001039. [Google Scholar] [CrossRef]
- Aguiar, W.F.; Mantoani, L.C.; Silva, H.; Zamboti, C.L.; Garcia, T.; Cavalheri, V.; Ribeiro, M.; Yorke, J.; Pitta, F.; Camillo, C.A. Translation, cross-cultural adaptation, and measurement properties of the Brazilian-Portuguese version of the idiopathic pulmonary fibrosis-specific version of the Saint George’s Respiratory Questionnaire (SGRQ-I) for patients with interstitial lung disease. Braz. J. Phys. Ther. 2021, 25, 794–802. [Google Scholar]
- Zhao, R.; Wang, Y.; Zhou, W.; Guo, J.; He, M.; Li, P.; Gao, J.; Gu, Z.; Dong, C. Associated factors with interstitial lung disease and health-related quality of life in Chinese patients with primary Sjogren’s syndrome. Clin. Rheumatol. 2020, 39, 483–489. [Google Scholar] [CrossRef]
- Dalichau, S.; Moller, T. Sustainability in Outpatient Pulmonary Rehabilitation in Patients with Asbestosis—Results of an 8-Year Follow Up. Pneumologie 2020, 74, 201–209. [Google Scholar]
- Vis, R.; van de Garde, E.M.W.; Meek, B.; Korenromp, I.H.E.; Grutters, J.C. Randomised, placebo-controlled trial of dexamethasone for quality of life in pulmonary sarcoidosis. Respir. Med. 2020, 165, 105936. [Google Scholar] [CrossRef]
- Witt, S.; Krauss, E.; Barbero, M.A.N.; Muller, V.; Bonniaud, P.; Vancheri, C.; Wells, A.U.; Vasakova, M.; Pesci, A.; Klepetko, W.; et al. Psychometric properties and minimal important differences of SF-36 in Idiopathic Pulmonary Fibrosis. Respir. Res. 2019, 20, 47–58. [Google Scholar] [CrossRef]
- Yalniz, E.; Polat, G.; Demirci, F.; Deniz, S.; Karadeniz, G.; Aydinli, E.; Vayisoglu, G.; Ayrancı, A. Are idiopathic pulmonary fibrosis patients more anxious and depressive than patient’s with other interstitial lung disease? Sarcoidosis Vasc. Diffus. Lung Dis. 2019, 36, 294–301. [Google Scholar] [CrossRef]
- Pilzak, K.; Zebrowska, A.; Sikora, M.; Hall, B.; Lakomy, O.; Kostorz, S.; Ziora, D.; Jastrzębski, D. Physical Functioning and Symptoms of Chronic Fatigue in Sarcoidosis Patients. Adv. Exp. Med. Biol. 2018, 1040, 13–21. [Google Scholar] [PubMed]
- Naz, I.; Ozalevli, S.; Ozkan, S.; Sahin, H. Efficacy of a Structured Exercise Program for Improving Functional Capacity and Quality of Life in Patients with Stage 3 and 4 Sarcoidosis: A randomized controlled trial. J. Cardiopulm. Rehabil. Prev. 2018, 38, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.J.; Namas, R.; Seelman, D.; Jaafar, S.; Homer, K.; Wilhalme, H.; Young, A.; Nagaraja, V.; White, E.S.; Schiopu, E.; et al. Reliability, construct validity and responsiveness to change of the PROMIS-29 in systemic sclerosis-associated interstitial lung disease. Clin. Exp. Rheumatol. 2019, 37 (Suppl. 119), 49–56. [Google Scholar]
- Tomioka, H.; Mamesaya, N.; Yamashita, S.; Kida, Y.; Kaneko, M.; Sakai, H. Combined pulmonary fibrosis and emphysema: Effect of pulmonary rehabilitation in comparison with chronic obstructive pulmonary disease. BMJ Open Respir. Res. 2016, 3, e000099. [Google Scholar] [CrossRef]
- Dalichau, S.; Demedts, A.; im Sande, A.; Moller, T. Short- and long-term effects of the outpatient medical rehabilitation for patients with asbestosis. Pneumologie 2010, 64, 163–170. [Google Scholar] [CrossRef]
- Hinchcliff, M.E.; Beaumont, J.L.; Carns, M.A.; Podlusky, S.; Thavarajah, K.; Varga, J.; Cella, D.; Chang, R.W. Longitudinal evaluation of PROMIS-29 and FACIT-dyspnea short forms in systemic sclerosis. J. Rheumatol. 2015, 42, 64–72. [Google Scholar] [CrossRef]
- Alhamad, E.H. Pirfenidone treatment in idiopathic pulmonary fibrosis: A Saudi experience. Ann. Thorac. Med. 2015, 10, 38–43. [Google Scholar] [CrossRef]
- du Bois, R.M.; Weycker, D.; Albera, C.; Bradford, W.Z.; Costabel, U.; Kartashov, A.; King, T.E., Jr.; Lancaster, L.; Noble, P.W.; Sahn, S.A.; et al. Forced vital capacity in patients with idiopathic pulmonary fibrosis: Test properties and minimal clinically important difference. Am. J. Respir. Crit. Care Med. 2011, 184, 1382–1389. [Google Scholar] [CrossRef]
- Lumetti, F.; Barone, L.; Alfieri, C.; Silva, M.; Serra, W.; Delsante, G.; Sverzellati, N.; Ariani, A. Quality of life and functional disability in patients with interstitial lung disease related to Systemic Sclerosis. Acta Biomed. 2015, 86, 142–148. [Google Scholar]
- Theodore, A.C.; Tseng, C.H.; Li, N.; Elashoff, R.M.; Tashkin, D.P. Correlation of cough with disease activity and treatment with cyclophosphamide in scleroderma interstitial lung disease: Findings from the Scleroderma Lung Study. Chest 2012, 142, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Swigris, J.J.; Han, M.; Vij, R.; Noth, I.; Eisenstein, E.L.; Anstrom, K.J.; Brown, K.K.; Fairclough, D. The UCSD shortness of breath questionnaire has longitudinal construct validity in idiopathic pulmonary fibrosis. Respir. Med. 2012, 106, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Swigris, J.J.; Fairclough, D.L.; Morrison, M.; Make, B.; Kozora, E.; Brown, K.K.; Wamboldt, F.S. Benefits of pulmonary rehabilitation in idiopathic pulmonary fibrosis. Respir. Care 2011, 56, 783–789. [Google Scholar] [CrossRef]
- Krishnan, V.; McCormack, M.C.; Mathai, S.C.; Agarwal, S.; Richardson, B.; Horton, M.R.; Polito, A.J.; Collop, N.A.; Danoff, S.K. Sleep quality and health-related quality of life in idiopathic pulmonary fibrosis. Chest 2008, 134, 693–698. [Google Scholar] [CrossRef]
- Zimmermann, C.; Carvalho, C.; Silveira, K.; Yamaguti, W.; Moderno, E.; Salge, J.; Kairalla, R.A.; Carvalho, C.R.R. Comparison of two questionnaires which measure the health-related quality of life of idiopathic pulmonary fibrosis patients. Braz. J. Med. Biol. Res. 2007, 40, 179–187. [Google Scholar] [CrossRef]
- Ohno, S.; Nakazawa, S.; Kobayashi, A.; Bando, M.; Sugiyama, Y. Reassessment of the Classification of the Severity in Idiopathic Pulmonary Fibrosis Using SF-36 Questionnaire. Intern. Med. 2005, 44, 196–199. [Google Scholar] [CrossRef]
- Chang, J.A.; Curtis, J.R.; Patrick, D.L.; Raghu, G. Assessment of health-related quality of life in patients with interstitial lung disease. Chest 1999, 116, 1175–1182. [Google Scholar] [CrossRef]
- Masa, J.F.; Benitez, I.D.; Javaheri, S.; Mogollon, M.V.; Sanchez-Quiroga, M.A.; de Terreros, F.J.G.; Corral, J.; Gallego, R.; Romero, A.; Caballero-Eraso, C.; et al. Risk factors associated with pulmonary hypertension in obesity hypoventilation syndrome. J. Clin. Sleep Med. JCSM 2022, 18, 983–992. [Google Scholar] [CrossRef]
- Karapolat, H.; Cinar, M.E.; Tanigor, G.; Nalbantgil, S.; Kayikcioglu, M.; Mogulkoc, N.; Kültürsay, H. Effects of cardiopulmonary rehabilitation on pulmonary arterial hypertension: A prospective, randomized study. Turk. J. Phys. Med. Rehabil. 2019, 65, 278–286. [Google Scholar] [CrossRef]
- Babu, A.S.; Padmakumar, R.; Nayak, K.; Shetty, R.; Mohapatra, A.K.; Maiya, A.G. Effects of home-based exercise training on functional outcomes and quality of life in patients with pulmonary hypertension: A randomized clinical trial. Indian Heart J. 2019, 71, 161–165. [Google Scholar] [CrossRef]
- Kukkonen, M.; Puhakka, A.; Halme, M. Quality of life among pulmonary hypertension patients in Finland. Eur. Clin. Respir. J. 2016, 3, 26405. [Google Scholar] [CrossRef] [PubMed]
- Mathai, S.C.; Hassoun, P.M.; Puhan, M.A.; Zhou, Y.; Wise, R.A. Sex differences in response to tadalafil in pulmonary arterial hypertension. Chest 2015, 147, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Laoutaris, I.D.; Dritsas, A.; Kariofyllis, P.; Manginas, A. Benefits of inspiratory muscle training in patients with pulmonary hypertension: A pilot study. Hell. J. Cardiol. HJC Hell. Kardiol. Ep. 2016, 20, 30155. [Google Scholar] [CrossRef]
- Matura, L.A.; McDonough, A.; Carroll, D.L. Health-related quality of life and psychological states in patients with pulmonary arterial hypertension. J. Cardiovasc. Nurs. 2014, 29, 178–184. [Google Scholar] [CrossRef]
- Matura, L.A.; McDonough, A.; Carroll, D.L. Cluster analysis of symptoms in pulmonary arterial hypertension: A pilot study. Eur. J. Cardiovasc. Nurs. J. Work. Group Cardiovasc. Nurs. Eur. Soc. Cardiol. 2012, 11, 51–61. [Google Scholar] [CrossRef]
- Grunig, E.; Lichtblau, M.; Ehlken, N.; Ghofrani, H.A.; Reichenberger, F.; Staehler, G.; Halank, M.; Fischer, C.; Seyfarth, H.-J.; Klose, H.; et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur. Respir. J. 2012, 40, 84–92. [Google Scholar] [CrossRef]
- Gilbert, C.; Brown, M.C.J.; Cappelleri, J.C.; Carlsson, M.; McKenna, S.P. Estimating a minimally important difference in pulmonary arterial hypertension following treatment with sildenafil. Chest 2009, 135, 137–142. [Google Scholar] [CrossRef]
- Pepke-Zaba, J.; Beardsworth, A.; Chan, M.; Angalakuditi, M. Tadalafil therapy and health-related quality of life in pulmonary arterial hypertension. Curr. Med. Res. Opin. 2009, 25, 2479–2485. [Google Scholar] [CrossRef]
- Galie, N.; Olschewski, H.; Oudiz, R.J.; Torres, F.; Frost, A.; Ghofrani, H.A.; Badesch, D.B.; McGoon, M.D.; McLaughlin, V.V.; Roecker, E.B.; et al. Ambrisentan for the treatment of pulmonary arterial hypertension: Results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 2008, 117, 3010–3019. [Google Scholar] [CrossRef]
- Souza, R.; Martins, B.C.; Jardim, C.; Cortopassi, F.; Fernandes, C.J.; Pulido, T.; Sandoval, J. Effect of sitaxsentan treatment on quality of life in pulmonary arterial hypertension. Int. J. Clin. Pract. 2007, 61, 153–156. [Google Scholar] [CrossRef]
- Mereles, D.; Ehlken, N.; Kreuscher, S.; Ghofrani, S.; Hoeper, M.M.; Halank, M.; Meyer, F.J.; Karger, G.; Buss, J.; Juenger, J.; et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 2006, 114, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Hopkins, R.O.; Glissmeyer, E.W.; Kitterman, N.; Elliott, C.G. Cognitive, emotional, and quality of life outcomes in patients with pulmonary arterial hypertension. Respir. Res. 2006, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.; Jardim, C.; Martins, B.; Cortopassi, F.; Yaksic, M.; Rabelo, R.; Bogossian, H. Effect of bosentan treatment on surrogate markers in pulmonary arterial hypertension. Curr. Med. Res. Opin. 2005, 21, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Miozzo, A.P.; Watte, G.; Hetzel, G.M.; Altmayer, S.; Nascimento, D.Z.; Cadore, E.; Florian, J.; Machado, S.d.C.; Plentz, R.D.M. Ambulatory oxygen therapy in lung transplantation candidates with idiopathic pulmonary fibrosis referred for pulmonary rehabilitation. J. Bras. Pneumol. 2023, 49, e20220280. [Google Scholar]
- Langer, D.; Cebria i Iranzo, M.A.; Burtin, C.; Verleden, S.E.; Vanaudenaerde, B.M.; Troosters, T.; Decramer, M.; Verleden, G.; Gosselink, R. Determinants of physical activity in daily life in candidates for lung transplantation. Respir. Med. 2012, 106, 747–754. [Google Scholar] [CrossRef]
- Duruturk, N.; Acar, M.; Dogrul, M.I. Effect of Inspiratory Muscle Training in the Management of Patients with Asthma: A Randomized controlled trial. J. Cardiopulm. Rehabil. Prev. 2018, 38, 198–203. [Google Scholar] [CrossRef]
- Zadeh, M.; Ghanbarzadeh, M.; Habibi, A.; Nikbakht, M. Effects of exercise with lower and upper extremities on respiratory and exercise capacities of asthmatic patients. Koomesh 2013, 15, 89–101. [Google Scholar]
- De Camargo, C.O.; Jose, A.; Luppo, A.; de Camargo, A.A.; Athanazio, R.A.; Rached, S.Z.; Quittner, A.L.; Stelmach, R.; Corso, S.D. Quality of Life Questionnaire-Bronchiectasis: A study of the psychometric properties of the Brazilian Portuguese version. Clin. Rehabil. 2020, 34, 960–970. [Google Scholar] [CrossRef]
- Lavery, K.A.; O’Neill, B.; Parker, M.; Elborn, J.S.; Bradley, J.M. Expert patient self-management program versus usual care in bronchiectasis: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2011, 92, 1194–1201. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Perpina-Tordera, M.; Roman-Sanchez, P.; Soler-Cataluna, J.J. Inhaled steroids improve quality of life in patients with steady-state bronchiectasis. Respir. Med. 2006, 100, 1623–1632. [Google Scholar] [CrossRef]
- Wilson, C.; Jones, P.; O’Leary, C.; Cole, P.; Wilson, R. Validation of the St. George’s Respiratory Questionnaire in Bronchiectasis. Am. J. Respir. Crit. Care Med. 1997, 156, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Zaki, S.; Moiz, J.A.; Mujaddadi, A.; Ali, M.S.; Talwar, D. Does inspiratory muscle training provide additional benefits during pulmonary rehabilitation in people with interstitial lung disease? A randomized control trial. Physiother. Theory Pract. 2023, 39, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Essam, H.; Abdel Wahab, N.H.; Younis, G.; El-Sayed, E.; Shafiek, H. Effects of different exercise training programs on the functional performance in fibrosing interstitial lung diseases: A randomized trial. PLoS ONE 2022, 17, e0268589. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Ohkubo, H.; Nakano, A.; Mori, Y.; Fukumitsu, K.; Fukuda, S.; Kanemitsu, Y.; Uemura, T.; Tajiri, T.; Maeno, K.; et al. Frequency and impact on clinical outcomes of sarcopenia in patients with idiopathic pulmonary fibrosis. Chronic Respir. Dis. 2022, 19, 14799731221117298. [Google Scholar] [CrossRef]
- Ebihara, K.; Iwanami, Y.; Yamasaki, K.; Takemura, A.; Sato, N.; Usui, Y.; Nakamura, Y.; Kishi, K.; Homma, S.; Ebihara, S. Appendicular Skeletal Muscle Mass Correlates with Patient-Reported Outcomes and Physical Performance in Patients with Idiopathic Pulmonary Fibrosis. Tohoku J. Exp. Med. 2021, 253, 61–68. [Google Scholar] [CrossRef]
- Janssen, K.; Rosielle, D.; Wang, Q.; Kim, H.J. The impact of palliative care on quality of life, anxiety, and depression in idiopathic pulmonary fibrosis: A randomized controlled pilot study. Respir. Res. 2020, 21, 2–11. [Google Scholar] [CrossRef]
- Creamer, A.W.; Barratt, S.L. Does ambulatory oxygen improve quality of life in patients with fibrotic lung disease? Results from the AmbOx trial. Breathe 2019, 15, 140–143. [Google Scholar] [CrossRef]
- Santana, P.V.; Cardenas, L.Z.; de Albuquerque, A.L.P.; de Carvalho, C.R.R.; Caruso, P. Diaphragmatic ultrasound findings correlate with dyspnea, exercise tolerance, health-related quality of life and lung function in patients with fibrotic interstitial lung disease. BMC Pulm. Med. 2019, 19, 183. [Google Scholar] [CrossRef]
- Dowman, L.M.; McDonald, C.F.; Hill, C.J.; Lee, A.L.; Barker, K.; Boote, C.; Glaspole, I.; Goh, N.S.L.; Southcott, A.M.; Burge, A.T.; et al. The evidence of benefits of exercise training in interstitial lung disease: A randomised controlled trial. Thorax 2017, 72, 610–619. [Google Scholar] [CrossRef]
- Braz, N.F.; Carneiro, A.P.; Avelar, N.C.; Miranda, A.S.; Lacerda, A.C.; Teixeira, M.M.; Teixeira, A.L.; Mendonça, V.A. Influence of Cytokines and Soluble Receptors in the Quality of Life and Functional Capacity of Workers Exposed to Silica. J. Occup. Environ. Med. 2016, 58, 272–276. [Google Scholar] [CrossRef]
- Karadalli, M.N.; Bosnak-Guclu, M.; Camcioglu, B.; Kokturk, N.; Turktas, H. Effects of Inspiratory Muscle Training in Subjects with Sarcoidosis: A Randomized Controlled Clinical Trial. Respir. Care 2016, 61, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Drake, W.P.; Richmond, B.W.; Oswald-Richter Yu, C.; Isom, J.M.; Worrell, J.A.; Shipley, G.R. Effects of broad-spectrum antimycobacterial therapy on chronic pulmonary sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2014, 30, 201–211. [Google Scholar]
- Sozener, Z.; Karabiyikoglu, G.; Duzgun, N. Evaluation of the functional parameters in scleroderma cases with pulmonary involvement. Tüberküloz Toraks Derg. 2010, 58, 235–241. [Google Scholar]
- Alotaibi, M.; Shao, J.; Pauciulo, M.W.; Nichols, W.C.; Hemnes, A.R.; Malhotra, A.; Kim, N.H.; Yuan, J.X.-J.; Fernandes, T.; Kerr, K.M.; et al. Metabolomic Profiles Differentiate Scleroderma-PAH From Idiopathic PAH and Correspond with Worsened Functional Capacity. Chest 2023, 163, 204–215. [Google Scholar] [CrossRef]
- Matura, L.A.; Fargo, J.D.; Boyle, K.; Fritz, J.S.; Smith, K.A.; Mazurek, J.A.; Pinder, D.; Archer-Chicko, C.L.; Palevsky, H.I.; Pack, A.I.; et al. Symptom phenotypes in pulmonary arterial hypertension: The PAH “symptome”. Pulm. Circ. 2022, 12, e12135. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Mouratoglou, S.A.; Evangeliou, A.; Grosomanidis, V.; Hadjimiltiades, S.; Skoura, L.; Feloukidis, C.; Farmakis, D.; Karvounis, H.; Giannakoulas, G. Quality of Life is Related to Haemodynamics in Precapillary Pulmonary Hypertension. Heart Lung Circ. 2020, 29, 142–148. [Google Scholar] [CrossRef]
- Karauzum, K.; Karauzum, I.; Kilic, T.; Sahin, T.; Baydemir, C.; Argun, S.B.; Celikyurt, U.; Bildirici, U.; Agir, A. Bendopnea and Its Clinical Importance in Outpatient Patients with Pulmonary Arterial Hypertension. Acta Cardiol. Sin. 2018, 34, 518–525. [Google Scholar]
- Aldemir, M.; Emren, S.V.; Balcik, C.; Onrat, E.; Gursoy, M. Primary pulmonary arterial hypertension with preserved right ventricular function leads to lower extremity venous insufficiency. Vascular 2018, 26, 183–188. [Google Scholar] [CrossRef]
- Mihai, C.; Antic, M.; Dobrota, R.; Bonderman, D.; Chadha-Boreham, H.; Coghlan, J.G.; Denton, C.P.; Doelberg, M.; Grünig, E.; Khanna, D.; et al. Factors associated with disease progression in early-diagnosed pulmonary arterial hypertension associated with systemic sclerosis: Longitudinal data from the DETECT cohort. Ann. Rheum. Dis. 2018, 77, 128–132. [Google Scholar] [CrossRef]
- Waligora, M.; Kopec, G.; Jonas, K.; Tyrka, A.; Sarnecka, A.; Miszalski-Jamka, T.; Urbańczyk-Zawadzka, M.; Podolec, P. Mechanism and prognostic role of qR in V1 in patients with pulmonary arterial hypertension. J. Electrocardiol. 2017, 50, 476–483. [Google Scholar] [CrossRef]
- Segrera, S.A.; Lawler, L.; Opotowsky, A.R.; Systrom, D.; Waxman, A.B. Open label study of ambrisentan in patients with exercise pulmonary hypertension. Pulm. Circ. 2017, 7, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, N.; Ikeda, S.; Tahara, N.; Fukuda, K.; Hatano, M.; Ito, H.; Nakayama, T.; Anzai, T.; Hashimoto, A.; Inoue, T.; et al. Efficacy and Safety of an Orally Administered Selective Prostacyclin Receptor Agonist, Selexipag, in Japanese Patients with Pulmonary Arterial Hypertension. Circ. J. 2017, 81, 1360–1367. [Google Scholar] [CrossRef]
- Saha, S.K.; Soderberg, S.; Lindqvist, P. Association of Right Atrial Mechanics with Hemodynamics and Physical Capacity in Patients with Idiopathic Pulmonary Arterial Hypertension: Insight from a Single-Center Cohort in Northern Sweden. Echocardiography 2016, 33, 46–56. [Google Scholar] [CrossRef]
- Godinas, L.; Amar, D.; Montani, D.; Lau, E.M.; Jais, X.; Savale, L.; Jevnikar, M.; Sitbon, O.; Simonneau, G.; Humbert, M.; et al. Lung capillary blood volume and membrane diffusion in precapillary pulmonary hypertension. J. Heart Lung Transplant. 2016, 35, 647–656. [Google Scholar] [CrossRef]
- Rubin, L.J.; Galiè, N.; Grimminger, F.; Grünig, E.; Humbert, M.; Jing, Z.-C.; Keogh, A.; Langleben, D.; Fritsch, A.; Menezes, F.; et al. Riociguat for the treatment of pulmonary arterial hypertension: A long-term extension study (PATENT-2). Eur. Respir. J. 2015, 45, 1211–1213. [Google Scholar] [CrossRef]
- Frost, A.E.; Barst, R.J.; Hoeper, M.M.; Chang, H.J.; Frantz, R.P.; Fukumoto, Y.; Galié, N.; Hassoun, P.M.; Klose, H.; Matsubara, H.; et al. Long-term safety and efficacy of imatinib in pulmonary arterial hypertension. J. Heart Lung Transplant. 2015, 34, 1366–1375. [Google Scholar] [CrossRef]
- Webb, D.J.; Vachiery, J.L.; Hwang, L.J.; Maurey, J.O. Sildenafil improves renal function in patients with pulmonary arterial hypertension. Br. J. Clin. Pharmacol. 2015, 80, 235–241. [Google Scholar] [CrossRef]
- Zhuang, Y.; Jiang, B.; Gao, H.; Zhao, W. Randomized study of adding tadalafil to existing ambrisentan in pulmonary arterial hypertension. Hypertens. Res. 2014, 37, 507–512. [Google Scholar] [CrossRef]
- Mouratoglou, S.A.; Kallifatidis, A.; Pitsiou, G.; Grosomanidis, V.; Kamperidis, V.; Chalikias, G.; Kristo, D.; Tziakas, D.; Konstantinides, S.; Hadjimiltiades, S.; et al. Duration of interventricular septal shift toward the left ventricle is associated with poor clinical outcome in precapillary pulmonary hypertension: A cardiac magnetic resonance study. Hell. J. Cardiol. HJC Hell. Kardiol. Ep. 2014, 61, 112–117. [Google Scholar] [CrossRef]
- Ghofrani, H.A.; Galie, N.; Grimminger, F.; Grunig, E.; Humbert, M.; Jing, Z.C.; Keogh, A.M.; Langleben, D.; Kilama, M.O.; Fritsch, A.; et al. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2013, 369, 330–340. [Google Scholar] [CrossRef]
- Oudiz, R.J.; Brundage, B.H.; Galie, N.; Ghofrani, H.A.; Simonneau, G.; Botros, F.T.; Chan, M.; Beardsworth, A.; Barst, R.J.; PHIRST Study Group. Tadalafil for the treatment of pulmonary arterial hypertension: A double-blind 52-week uncontrolled extension study. J. Am. Coll. Cardiol. 2012, 60, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Condliffe, R.; Kiely, D.G.; Peacock, A.J.; Corris, P.A.; Gibbs, J.S.; Vrapi, F.; Das, C.; Elliot, C.A.; Johnson, M.; DeSoyza, J.; et al. Connective tissue disease-associated pulmonary arterial hypertension in the modern treatment era. Am. J. Respir. Crit. Care Med. 2009, 179, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Galie, N.; Brundage, B.H.; Ghofrani, H.A.; Oudiz, R.J.; Simonneau, G.; Safdar, Z.; Shapiro, S.; White, R.J.; Chan, M.; Beardsworth, A.; et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation 2009, 119, 2894–2903. [Google Scholar] [CrossRef] [PubMed]
- Galie, N.; Badesch, D.; Oudiz, R.; Simonneau, G.; McGoon, M.D.; Keogh, A.M.; Frost, A.E.; Zwicke, D.; Naeije, R.; Shapiro, S.; et al. Ambrisentan therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2005, 46, 529–535. [Google Scholar] [CrossRef]
- Galiè, N.; Ghofrani, H.A.; Torbicki, A.; Barst, R.J.; Rubin, L.J.; Badesch, D.; Fleming, T.; Parpia, T.; Burgess, G.; Branzi, A.; et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 2005, 356, 2148–2157. [Google Scholar] [CrossRef]
- Kaptan Ozen, D.; Mutlu, B.; Kocakaya, D.; Turan, B.; Sert Sekerci, S.; Ceyhan, B.; Kepez, A.; Erdogan, O. The effect of global longitudinal strain on impaired six-minute walk test performance in patients with sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2020, 37, 66–73. [Google Scholar]
- Unlu, S.; Bezy, S.; Cvijic, M.; Duchenne, J.; Delcroix, M.; Voigt, J.U. Right ventricular strain related to pulmonary artery pressure predicts clinical outcome in patients with pulmonary arterial hypertension. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 635–642. [Google Scholar] [CrossRef]
- Bunclark, K.; Doughty, N.; Michael, A.; Abraham, N.; Ali, S.; Cannon, J.E.; Sheares, K.; Speed, N.; Taboada, D.; Toshner, M.; et al. A minimal clinically important difference measured by the Cambridge Pulmonary Hypertension Outcome Review for patients with idiopathic pulmonary arterial hypertension. Pulm. Circ. 2021, 11, 2045894021995055. [Google Scholar] [CrossRef]
- Karelkina, E.V.; Goncharova, N.S.; Simakova, M.A.; Moiseeva, O.M. Experience with Selexipag to Treat Pulmonary Arterial Hypertension. Kardiologiia 2020, 60, 36–42. [Google Scholar] [CrossRef]
- Naal, T.; Abuhalimeh, B.; Khirfan, G.; Dweik, R.A.; Tang, W.H.W.; Tonelli, A.R. Serum Chloride Levels Track with Survival in Patients with Pulmonary Arterial Hypertension. Chest 2018, 154, 541–549. [Google Scholar] [CrossRef]
- Ozpelit, E.; Akdeniz, B.; Ozpelit, M.E.; Tas, S.; Bozkurt, S.; Tertemiz, K.C.; Sevinç, C.; Badak, Ö. Prognostic value of neutrophil-to-lymphocyte ratio in pulmonary arterial hypertension. J. Int. Med. Res. 2015, 43, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Chueamuangphan, N.; Patumanond, J.; Wongtheptien, W.; Nawarawong, W.; Sukonthasarn, A.; Chuncharunee, S.; Tawichasri, C. Benefits of chronic blood transfusion in hemoglobin E/beta thalassemia with pulmonary arterial hypertension. Int. J. Gen. Med. 2014, 7, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; McCarthy, K.; Minai, O.A. Prevalence and significance of decreased bone density in pulmonary arterial hypertension. South. Med. J. 2012, 105, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Benza, R.L.; Seeger, W.; McLaughlin, V.V.; Channick, R.N.; Voswinckel, R.; Tapson, V.F.; Robbins, I.M.; Olschewski, H.; Rubin, L.J. Long-term effects of inhaled treprostinil in patients with pulmonary arterial hypertension: The Treprostinil Sodium Inhalation Used in the Management of Pulmonary Arterial Hypertension (TRIUMPH) study open-label extension. J. Heart Lung Transplant. 2011, 30, 1327–1333. [Google Scholar] [CrossRef]
- Tokgozoglu, L.; Akdogan, A.; Okutucu, S.; Kaya, E.B.; Aytemir, K.; Ozkutlu, H. Two years of multidisciplinary diagnostic and therapeutic experience in patients with pulmonary arterial hypertension. Arch. Turk. Soc. Cardiol. 2009, 37, 378–383. [Google Scholar]
- Minai, O.A.; Pandya, C.M.; Golish, J.A.; Avecillas, J.F.; McCarthy, K.; Marlow, S.; Arroliga, A.C. Predictors of nocturnal oxygen desaturation in pulmonary arterial hypertension. Chest 2007, 131, 109–117. [Google Scholar] [CrossRef]
- Chau, E.M.; Fan, K.Y.; Chow, W.H. Effects of chronic sildenafil in patients with Eisenmenger syndrome versus idiopathic pulmonary arterial hypertension. Int. J. Cardiol. 2007, 120, 301–305. [Google Scholar] [CrossRef]
- Zafrir, N.; Zingerman, B.; Solodky, A.; Ben-Dayan, D.; Sagie, A.; Sulkes, J.; Mats, I.; Kramer, M.R. Use of noninvasive tools in primary pulmonary hypertension to assess the correlation of right ventricular function with functional capacity and to predict outcome. Int. J. Cardiovasc. Imaging 2007, 23, 209–215. [Google Scholar] [CrossRef]
- Souza, R.; Jardim, C.; Julio Cesar Fernandes, C.; Silveira Lapa, M.; Rabelo, R.; Humbert, M. NT-proBNP as a tool to stratify disease severity in pulmonary arterial hypertension. Respir. Med. 2007, 101, 69–75. [Google Scholar] [CrossRef]
- McLaughlin, V.V.; Oudiz, R.J.; Frost, A.; Tapson, V.F.; Murali, S.; Channick, R.N.; Badesch, D.B.; Barst, R.J.; Hsu, H.H.; Rubin, L.J. Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2006, 174, 1257–1263. [Google Scholar] [CrossRef]
- Cenedese, E.; Speich, R.; Dorschner, L.; Ulrich, S.; Maggiorini, M.; Jenni, R.; Fischler, M. Measurement of quality of life in pulmonary hypertension and its significance. Eur. Respir. J. 2006, 28, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; He, B.; Wang, B. Effects of lipo-prostaglandin E1 on pulmonary hemodynamics and clinical outcomes in patients with pulmonary arterial hypertension. Chest 2005, 128, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Badesch, D.B.; Tapson, V.F.; McGoon, M.D.; Brundage, B.H.; Rubin, L.J.; Wigley, F.M.; Rich, S.; Barst, R.J.; Barrett, P.S.; Kral, K.M.; et al. Continuous intravenous epoprostenol for pulmonary hypertension due to the scleroderma spectrum of disease. Ann. Intern. Med. 2000, 132, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Yigla, M.; Kramer, M.; Bendayan, D.; Reisner, S.; Solomonov, A. Unexplained severe pulmonary hypertension in the elderly: Report on 14 patients. Isr. Med. Assoc. J. 1997, 6, 78–81. [Google Scholar]
- Calik-Kutukcu, E.; Tekerlek, H.; Bozdemir-Ozel, C.; Karaduz, B.N.; Cakmak, A.; Inal-Ince, D.; Saglam, M.; Vardar-Yagli, N.; Sonbahar-Ulu, H.; Firat, M.; et al. Validity and reliability of 6-minute pegboard and ring test in patients with asthma. J. Asthma 2022, 59, 1387–1395. [Google Scholar] [CrossRef]
- Freeman, A.; Cellura, D.; Minnion, M.; Fernandez, B.; Spalluto, C.M.; Levett, D.; Bates, A.; Wallis, T.; Watson, A.; Jack, S.; et al. Exercise Training Induces a Shift in Extracellular Redox Status with Alterations in the Pulmonary and Systemic Redox Landscape in Asthma. Antioxidants 2021, 10, 1926. [Google Scholar] [CrossRef]
- Lage, S.M.; Pereira, D.A.G.; Corradi Magalhaes Nepomuceno, A.L.; Castro, A.C.; Araujo, A.G.; Hoffman, M.; Silveira, B.M.F.; Parreira, V.F. Efficacy of inspiratory muscle training on inspiratory muscle function, functional capacity, and quality of life in patients with asthma: A randomized controlled trial. Clin. Rehabil. 2021, 35, 870–881. [Google Scholar] [CrossRef]
- Evaristo, K.B.; Mendes, F.A.R.; Saccomani, M.G.; Cukier, A.; Carvalho-Pinto, R.M.; Rodrigues, M.R.; Santaella, D.F.; Saraiva-Romanholo, B.M.; Martins, M.A.; Carvalho, C.R. Effects of Aerobic Training Versus Breathing Exercises on Asthma Control: A Randomized Trial. J. Allergy Clin. Immunol. Pract. 2020, 8, 2989–2996.e4. [Google Scholar] [CrossRef]
- Majd, S.; Apps, L.; Chantrell, S.; Hudson, N.; Eglington, E.; Hargadon, B.; Murphy, A.; Singh, S.J.; Bradding, P.; Green, R.H.; et al. A Feasibility Study of a Randomized Controlled Trial of Asthma-Tailored Pulmonary Rehabilitation Compared with Usual Care in Adults with Severe Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3418–3427. [Google Scholar] [CrossRef]
- Freitas, P.D.; Ferreira, P.G.; Silva, A.G.; Stelmach, R.; Carvalho-Pinto, R.M.; Fernandes, F.L.; Mancini, M.C.; Sato, M.N.; Martins, M.A.; Carvalho, C.R.F. The Role of Exercise in a Weight-Loss Program on Clinical Control in Obese Adults with Asthma. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2017, 195, 32–42. [Google Scholar] [CrossRef]
- Refaat, A.; Gawish, M. Effect of physical training on health-related quality of life in patients with moderate and severe asthma. Egypt. J. Chest Dis. Tuberc. 2015, 64, 761–766. [Google Scholar] [CrossRef]
- Pakhale, S.; Baron, J.; Dent, R.; Vandemheen, K.; Aaron, S.D. Effects of weight loss on airway responsiveness in obese adults with asthma: Does weight loss lead to reversibility of asthma? Chest 2015, 147, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Rondinel, T.Z.; Correa, I.F.; Hoscheidt, L.M.; Bueno, M.H.; Da Silva, L.M.; Reppold, C.T.; Lago, P.D. Incentive spirometry combined with expiratory positive airway pressure improves asthma control and quality of life in asthma: A randomised controlled trial. J. Asthma 2015, 52, 220–226. [Google Scholar] [CrossRef]
- Vempati, R.; Bijlani, R.L.; Deepak, K.K. The efficacy of a comprehensive lifestyle modification programme based on yoga in the management of bronchial asthma: A randomized controlled trial. BMC Pulm. Med. 2009, 9, 37. [Google Scholar] [CrossRef]
- Choi, J.-S.; Jang, A.-S.; Lee, J.-H.; Park, J.-S.; Park, S.W.; Kim, D.-J.; Park, C.-S. Effect of high dose inhaled glucocorticoids on quality of life in patients with moderate to severe asthma. J. Korean Med. Sci. 2005, 20, 586–590. [Google Scholar] [CrossRef]
- Riccioni, G.; Ballone, E.; D’Orazi, N.; Sensp, S.; Nicola, M.D.; Masci, R.D.; Santilli, F.; Guagnano, M.T.; Della Vecchia, R. Efectiveness of montelukast versus budesonide on quality of life and bronchial reactivity in subjects with mild-persistent asthma. Int. J. Immunopathol. Pharmacol. 2002, 15, 149–155. [Google Scholar] [CrossRef]
- Busse, W.; Casale, T.; Murray, J.; Petrocella, V.; Cox, F.; Rickard, K. Efficacy, safety, and impact on quality of life of salmeterol in patients with moderate persistent asthma. Am. J. Manag. Care 1988, 4, 1579–1587. [Google Scholar]
- Van der Molen, T.; Sears, M.R.; de Graaff, C.S.; Postma, D.S.; Meyboom-de Jong, B. Quality of life during formoterol treatment: Comparison between asthma-specific and generic questionnaires. Canadian and the Dutch Formoterol Investigators. Eur. Respir. J. 1998, 12, 30–34. [Google Scholar] [CrossRef]
- Juniper, E.F.; Guyatt, G.H.; Willian, A.; Griffith, L.E. Determining a minimal important change in a disease-specific quality of life questionnaire. J. Clin. Epidemiol. 1994, 47, 81–87. [Google Scholar] [CrossRef]
- Juniper, E.; Guyatt, G.; Ferrie, P.; Griffith, L. Measuring quality of life in asthma. Am. Rev. Respir. Dis. 1993, 147, 832–838. [Google Scholar] [CrossRef]
- Knudsen, K.B.; Pressler, T.; Mortensen, L.H.; Jarden, M.; Boisen, K.A.; Skov, M.; Quittner, A.L.; Katzenstein, T.L. Coach to cope: Feasibility of a life coaching program for young adults with cystic fibrosis. Patient Prefer. Adherence 2017, 11, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, K.C.A.; Marson, F.A.L.; Gomez, C.C.S.; Pereira, M.C.; Paschoal, I.A.; Ribeiro, A.F.; Ribeiro, J. Physical performance, quality of life and sexual satisfaction evaluation in adults with cystic fibrosis: An unexplored correlation. Rev. Port. Pneumol. 2017, 23, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Moco, V.J.; Lopes, A.J.; Vigario Pdos, S.; de Almeida, V.P.; de Menezes, S.L.; Guimaraes, F.S. Pulmonary function, functional capacity and quality of life in adults with cystic fibrosis. Rev. Port. Pneumol. 2015, 21, 198–202. [Google Scholar] [PubMed]
- Penafortes, J.T.; Guimaraes, F.S.; Moco, V.J.; Almeida, V.P.; Dias, R.F.; Lopes, A.J. Association among posture, lung function and functional capacity in cystic fibrosis. Rev. Port. Pneumol. 2013, 19, 1–6. [Google Scholar]
- Dill, E.J.; Dawson, R.; Sellers, D.E.; Robinson, W.M.; Sawicki, G.S. Longitudinal trends in health-related quality of life in adults with cystic fibrosis. Chest 2013, 144, 981–989. [Google Scholar] [CrossRef]
- Kelemen, L.; Lee, A.L.; Button, B.M.; Presnell, S.; Wilson, J.W.; Holland, A.E. Pain impacts on quality of life and interferes with treatment in adults with cystic fibrosis. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2012, 17, 132–141. [Google Scholar]
- Sandsund, C.A.; Roughton, M.; Hodson, M.E.; Pryor, J.A. Musculoskeletal techniques for clinically stable adults with cystic fibrosis: A preliminary randomised controlled trial. Physiotherapy 2011, 97, 209–217. [Google Scholar] [CrossRef]
- Young, A.C.; Wilson, J.W.; Kotsimbos, T.C.; Naughton, M.T. Randomised placebo controlled trial of non-invasive ventilation for hypercapnia in cystic fibrosis. Thorax 2008, 63, 72–77. [Google Scholar]
- Liu, W.T.; Huang, C.D.; Wang, C.H.; Lee, K.Y.; Lin, S.M.; Kuo, H.P. A mobile telephone-based interactive self-care system improves asthma control. Eur. Respir. J. 2011, 37, 310–317. [Google Scholar] [CrossRef]
- Yount, S.E.; Beaumont, J.L.; Chen, S.Y.; Kaiser, K.; Wortman, K.; Van Brunt, D.L.; Swigris, J.; Cella, D. Health-Related Quality of Life in Patients with Idiopathic Pulmonary Fibrosis. Lung 2016, 194, 227–234. [Google Scholar] [CrossRef]
- Mendes, F.A.; Lunardi, A.C.; Silva, R.A.; Cukier, A.; Stelmach, R.; Martins, M.A.; Carvalho, C.R. Association between maximal aerobic capacity and psychosocial factors in adults with moderate-to-severe asthma. J. Asthma 2013, 50, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Koudstaal, T.; Wapenaar, M.; van Ranst, D.; Beesems, R.; van den Toorn, L.; van den Bosch, A.; Chandoesing, P.; Boomars, K. The Effects of a 10-wk Outpatient Pulmonary Rehabilitation Program on Exercise Performance, Muscle Strength, Soluble Biomarkers, and Quality of Life in Patients with Pulmonary Hypertension. J. Cardiopulm. Rehabil. Prev. 2019, 39, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.L.; Nicolson, C.H.H.; Bondarenko, J.; Button, B.M.; Ellis, S.; Stirling, R.G.; Hew, M. The clinical impact of self-reported symptoms of chronic rhinosinusitis in people with bronchiectasis. Immun. Inflamm. Dis. 2022, 10, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Jose, A.; Holland, A.E.; Selman, J.P.R.; de Camargo, C.O.; Fonseca, D.S.; Athanazio, R.A.; Rached, S.Z.; Cukier, A.; Stelmach, R.; Corso, S.D. Home-based pulmonary rehabilitation in people with bronchiectasis: A randomised controlled trial. ERJ Open Res. 2021, 7, 00021-2021. [Google Scholar] [CrossRef] [PubMed]
- Georga, G.; Chrousos, G.; Artemiadis, A.; Panagiotis, P.P.; Bakakos, P.; Darviri, C. The effect of stress management incorporating progressive muscle relaxation and biofeedback-assisted relaxation breathing on patients with asthma: A randomised controlled trial. Adv. Integr. Med. 2019, 6, 73–77. [Google Scholar] [CrossRef]
- Ma, J.; Strub, P.; Lv, N.; Xiao, L.; Camargo, C.A., Jr.; Buist, A.S.; Lavori, P.W.; Wilson, S.R.; Nadeau, K.C.; Rosas, L.G. Pilot randomised trial of a healthy eating behavioural intervention in uncontrolled asthma. Eur. Respir. J. 2016, 47, 122–132. [Google Scholar] [CrossRef]
- Aslan, G.K.; Akinci, B.; Yeldan, I.; Okumus, G. A randomized controlled trial on inspiratory muscle training in pulmonary hypertension: Effects on respiratory functions, functional exercise capacity, physical activity, and quality of life. Heart Lung J. Crit. Care 2020, 49, 381–387. [Google Scholar] [CrossRef]
- McCormack, F.X.; Inoue, Y.; Moss, J.; Singer, L.G.; Strange, C.; Nakata, K.; Barker, A.F.; Chapman, J.T.; Brantly, M.L.; Stocks, J.M.; et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N. Engl. J. Med. 2011, 364, 1595–1606. [Google Scholar] [CrossRef]
- Swigris, J.J.; Yorke, J.; Sprunger, D.B.; Swearingen, C.; Pincus, T.; du Bois, R.M.; Brown, K.K.; Fischer, A. Assessing dyspnea and its impact on patients with connective tissue disease-related interstitial lung disease. Respir. Med. 2010, 104, 1350–1355. [Google Scholar] [CrossRef]
- Mena-Vazquez, N.; Rojas-Gimenez, M.; Romero-Barco, C.M.; Gandia-Martinez, M.; Perez-Gomez, N.; Godoy-Navarrete, F.J.; Manrique-Arija, S.; Garcia-Studer, A.; Calvo-Gutiérrez, J.; Varela, C.F.; et al. Analysis of comorbidity in rheumatoid arthritis-associated interstitial lung disease: A nested case-cohort study. Biomed. Pharmacother. 2023, 157, 114049. [Google Scholar] [CrossRef]
- Feltrim, M.I.; Rozanski, A.; Borges, A.C.; Cardoso, C.A.; Caramori, M.L.; Pego-Fernandes, P. The quality of life of patients on the lung transplantation waiting list. Transpl. Proc. 2008, 40, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, L.M.; Vernon, M.; Ortega, H.; Cockle, S.M.; Yancey, S.W.; Brusselle, G.; Albers, F.C.; Jones, P.W. Evaluation of the psychometric properties of the St George’s Respiratory Questionnaire in patients with severe asthma. Respir. Med. 2017, 128, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Aronson, K.I.; Danoff, S.K.; Russell, A.M.; Ryerson, C.J.; Suzuki, A.; Wijsenbeek, M.S.; Bajwah, S.; Bianchi, P.; Corte, T.J.; Lee, J.S.; et al. Patient-centered Outcomes Research in Interstitial Lung Disease: An Official American Thoracic Society Research Statement. Am. J. Respir. Crit. Care Med. 2021, 204, e3–e23. [Google Scholar] [CrossRef] [PubMed]
- Ricotti, S.; Martinelli, V.; Caspani, P.; Monteleone, S.; Petrucci, L.; Dalla Toffola, E.; Klersy, C. Changes in quality of life and functional capacity after lung transplantation: A single-center experience. Monaldi Arch. Chest Dis. 2017, 87, 123–129. [Google Scholar] [CrossRef]
- Souto-Miranda, S.; Saraiva, I.; Spruit, M.; Marques, A. Core outcome set for pulmonary rehabilitation of patients with COPD: Results of a modified Delphi survey. Thorax 2023, 78, 1240–1247. [Google Scholar] [CrossRef]
Performance-Based Tests | Validity | Reliability | Interpretability | Associations with Events Related to the Course of Crd or Prognosis |
---|---|---|---|---|
1 min-STS | Asthma: 6MWD (r = 0.48; p < 0.0001); HGS (r = 0.41; p = 0.003); QS MIVC (r = 0.32; p = 0.028) [13] (Very Good) CF: Wattsmáx CPET (r = 0.93; p < 0.05); VO2 peak (0.62 < r < 0.91; p < 0.05) [14] (Very Good) ILD: 6MWD (0.33 < r < 0.82; p < 0.05); HGS (r = 0.35; p < 0.05); QS MIVC (r = 0.34; p < 0.05); FVC%pred (r = 0.48; p < 0.05); TCLO%pred (r = 0.47; p < 0.001) [15] (Very Good) PAH: 6MWD (r = 0.71; p < 0.001) [34] (Very Good) | Asthma: Intrarater [ICC:0.87 (95% CI: 0.73–0.93)] and inter-rater [ICC: 0.80 (95% CI: 0.62–0.89)] [13] (Very Good) CF: Intrarater [ICC:0.98 (95% CI: 0.96–0.99)] [14] (Adequate) ILD: Intrarater [0.88 < ICC < 0.92 (95% CI: 0.82–0.95)] [15,29] and inter-rater [ICC: 0.91 (95% CI: 0.85–0.95)] [15] (Very Good) | CF MCID of 5.4 rep [14] (Adequate) | |
5rep-STS | Asthma: 6MWD (r = −0.56; p < 0.0001); HGS (r = 0.49; p < 0.0001); QS MIVC (r = −0.34; p = 0.018) [13] (Very Good) ILD: 6MWD (−0.26 > r > −0.41; p > 0.05); HGS (r = −0.38; p < 0.05); QS MIVC (r = −0.50; p < 0.05); mMRC (r = 0.18; p > 0.05) [15,43] (Very Good) | Asthma: Intrarater [ICC:0.84 (95% CI: 0.72–0.90)] and inter-rater [ICC: 0.86 (95% CI: 0.75–0.92)] [13] (Very Good) ILD: Intrarater (0.85 < ICC < 0.87; 95% CI 0.66–0.94) and inter-rater [ICC: 0.90 (95% CI: 0.82–0.94)] [15,43] (Doubtful to Very Good) | ||
30 s-STS | Asthma: 6MWD (r = 0.45; p < 0.0001); QS MIVC (r = 0.43; p = 0.002); QS MIVC (r = 0.34; p = 0.02) [13] (Very Good) CF: QS peak torque (r = 0.55; p = 0.034) [48] (Very Good) ILD: 6MWD (r = 0.28; p > 0.05); HGS (r = 0.41; p < 0.05); QS MIVC (r = −0.41; p < 0.05) [15] (Very Good) PAH: QS MIVC (r = 0.54; p < 0.001); 6MWD (r = 0.66; p < 0.001) [54] (Very Good) | Asthma: Intrarater [ICC:0.91 (95% CI: 0.81–0.95)] and inter-rater [ICC: 0.86 (95% CI: 0.73–0.93)] [13] (Very Good) ILD: Intrarater [ICC: 0.90; (95% CI: 0.89–0.95)] and inter-rater [ICC: 0.85 (95% CI: 0.73–0.91)] [15] (Very Good) PAH: Intrarater [ICC:0.95 (95% CI: 0.90–0.97)] [54] (Doubtful) | ||
3 min-STS | ILD: FVC%pred (r = 0.43; p < 0.05); TCLO%pred (r = 0.55; p < 0.001) [29] (Very Good) | ILD: Test–retest [ICC:0.96 (95% CI: 0.92–0.98)] [29] (Very Good) | ||
4MGS | Asthma: 6MWD (r = −0.64; p < 0.0001); HGS (r = −0.52; p < 0.0001); QS (r = −0.30; p = 0.040) [13] (Very Good) ILD: 6MWD (0.55 < r<0.77; p > 0.05); KBILD total (r = 0.44; p < 0.001); mMRC (−0.56 < r>0.40; p > 0.05); GAP index (r = −0.41; p = 0.002); HGS (0.37 < r > 0.57; p > 0.05) [15,43,58,60] (Very Good) | Asthma: Intrarater [ICC: 0.86 (95% CI: 0.73–0.92)] and inter-rater [ICC: 0.58 (95% CI: 0.26–0.76)] [13] (Very Good) ILD: Intrarater (0.92 > ICC > 0.95; 95% CI: 0.73–0.99) and inter-rater (0.56 > ICC > 0.98; 95% CI: 0.32–0.99) [15,43,60] (Doubtful to Very Good) | ILD: 4MGS < 0.08 m/s was an independent predictor of hospitalisation [HR: 2.63 (1.0–6.8); p = 0.04] and all-cause mortality [HR: 2.76 (1.1–6.5); p = 0.02] [17] (Fair) 4MGS independent predict disease severity (FVC% and DLCO%) (0.07 < r2 < 0.16; p < 0.05) [59] (Poor) Decline in 4MGS ≥ 0.07 m/s is associated with death in 6 months (Kaplan–Meier curves comparing decline ≥ 0.07 m/s versus decline ≤ 0.07 m/s; p = 0.007) [57] (Good) | |
SPPB | Asthma: 6MWD (r = 0.61; p < 0.0001); HGS (r = 0.50; p < 0.0001); QS MIVC (r = 0.39; p = 0.006) [13] (Very Good) ILD: 6MWD (r = 0.35; p < 0.05) [15] (Very Good) | Asthma: Intrarater [ICC:0.75 (95% CI: 0.56–0.86)] and inter-rater [ICC: 0.75 (95% CI: 0.56–0.86)] [13] (Very Good) ILD: Intrarater [ICC:0.83 (95% CI: 0.71–0.91)] and inter-rater [ICC: 0.75 (95% CI: 0.59–0.86)] [15] (Very Good) | ||
TUG | Asthma: 6MWD (r = −0.62; p < 0.0001); HGS (r = −0.49; p < 0.0001); QS MIVC (r = −0.43; p = 0.002) [13] (Very Good) ILD: 6MWD (r = −0.69; p < 0.05); QS MIVC (r = −0.48; p < 0.05); HGS (r = 0.56; p < 0.05) [15] (Very Good) PAH: QS MIVC (r = −0.38; p = 0.017); 6MWD (r = −0.77; p < 0.001) [54] (Very Good) | Asthma: Intrarater [ICC: 0.90 (95% CI: 0.82–0.94)] and inter-rater [ICC: 0.76 (95% CI: 0.56–0.87)] [13] (Very Good) ILD: Intrarater [ICC:0.88 (95% CI: 0.79–0.93)] and inter-rater [ICC: 0.89 (95% CI: 0.81–0.94)] [15] (Very Good) PAH: Intrarater [ICC:0.96 (95% CI: 0.93–0.98)] [54] (Doubtful) | ||
8-FUGT | Performance in 8-FUGT > 6.9 s was associated with hospitalisation [HR: 14.1 (3.5–56); p < 0.001] and mortality [HR: 55.4 (5–592); p = 0.001] [50] (Fair) | |||
Glittre ADL | ILD: 6MWD (−0.90 < r <−0.70; p < 0.005); total EE (r = −0.52; p = 0.02) [67] (Very Good) | ILD: Test–retest (0.90 < ICC < 0.98; 95% CI: 0.74–0.99) [67] (Very Good) | ||
CS-PFP | ILD: SGRQ–activities (r = −0.80; p = 0.0002); 6MWD (r = 0.66; p = 0.008); SF-36–PFd (r = 0.64; p = 0.007); DLCO %predicted (r = 0.67; p = 0.006); FVC %predicted (r = 0.63; p = 0.009) [69] (Very Good) | ILD: Intrarater (ICC:0.83) [69] (Adequate) A | ||
15-steps C | ||||
PPT |
Patient-Report Tool | Validity | Reliability | Interpretability | Associations with Events Related to the Course of CRD or Prognosis |
---|---|---|---|---|
SF-36 (PFd or PCS) | Asthma: Symptoms score (r = 0.50; p < 0.001) (94) (Very Good) ILD: BDI (r = 0.25; p < 0.05); 6MWD (r = 0.44; p < 0.0001); mMRC (r = −0.48; p < 0.0001); DLCO %predicted (r = 0.36; p < 0.001); FVC %predicted (r = 0.35; p < 0.05); NYHA (r = −0.33; p < 0.0001) [102] (Very Good) | ILD: No difference in test–retest (p > 0.05) [102] (Doubtful) | ILD: MCID of 4 points in PCS [102] (Very Good) PAH: MCID of 13 points in PFd and 5 points in PCS [129] (Good) | Asthma: Comorbidity (r2 = 0.52; p = 0.14); Depression (r2 = 0.41; p = 0.01) [85] (Fair) |
SGRQ (activities) | Bronchiectasis: SF36–PCS (r = −0.70; p > 0.0001); Shuttle distance (r = −0.65; p < 0.0001) [143] (Very Good) ILD: (SGRQ-I)–MRC (r = 0.71; p < 0.0001); SF36–PFd (r = −0.71; p < 0.05); SF36–PCS (r = −0.32; p > 0.05) [98] (Very Good) | ILD: Intrarater [ICC:0.93 (95% CI: 0.85–0.97)] and inter-rater [ICC: 0.88 (95% CI: 0.77–0.94)] [98] (Very Good) | ||
WHOfc | PAH: WHOfc ≥ 3 points increase the risk of death [HR: 10.0 (2.9–34.1); p < 0.001] and clinical failure [HR: 0.04 (0.004–0.34); p = 0.004] [171] (Poor) | |||
NYHA | PAH: 26% of patients in NYHA ≥ 3 died, but no statistical comparison was performed [187] (Poor) | |||
AQLQ (activities) | Asthma: Asthma Control Questionnaire (r = 0.57; p < 0.05); Health Survey (Physical; r = 0.51; p < 0.05) [212] (Very Good) | Asthma: Test–retest (ICC:0.93) [212] (Very Good)A | Asthma: MCID: 0.51 points [211] (Poor) | |
CFQoL | CF: SF36–PFd (r = 0.73; p < 0.001) [94] (Very Good) | CF: Intrarater (0.90 < α < 0.93; r = 0.93; p < 0.05) [94] (Very Good) A | ||
SF-12 (PFd or PCS) | ||||
PROMIS-29 (PFd) | ILD: SF-36–PCS (r = 0.52; p < 0.001); SF-36–PFd (r = 0.89; p < 0.05); SGRQ–activity (r = −0.84; p < 0.05); mMRC (r = −070; p < 0.05); HAQ-DI (r = 0.52; p < 0.001) [106,109] (Very Good) | ILD: Intrarater [ICC: 0.65; α = 0.92) [106,222] (Doubtful) A | ||
LWAQ (PHC) | Asthma: SF−36–PCS (r = 0.41; Ɨ) Symptoms score (r = 0.50; Ɨ) [88] (Very Good) | |||
QoL-EPM (PL) | Asthma: SF-36 domains (−0.34 < r < 0.46; p < 0.05) [82] (Doubtful) | Asthma: Test–retest (ICC:0.87) [82] (Doubtful)A | ||
CAMPHOR (AL) | PAH: MCID of 4 points [180] (Good) | |||
London ADL (PAS) | ||||
QoL-B (PFd) | Bronchiectasis: SGRQ–activities (r = −0.70; p < 0.01); mMRC (r = −0.57; p > 0.05); ISWT (r = 0.59; p > 0.05) [140] (Very Good) | Bronchiectasis: Intrarater [ICC:0.91 (95% CI: 0.86–0.93) [140] (Very Good) | ||
M-AQLQ (AL) | ||||
MLHFQ (PSS) | PAH: 6MWD (r = 0.42; p = 0.003); NYHA (r = 0.57; p < 0.001) [193] (Very Good) | PAH: Test–retest (r = 0.93; p < 0.001; α = 0.88) [193] (Inadequate) | PAH: MLHFQ ≥ 40 points had worse prognosis (Kaplan–Meier curves comparing MLHFQ ≥ 40 points versus MLHFQ ≤ 40 points; p = 0.001) [193] (Very Good) | |
FPI | ||||
SOLQ (PFS) | Bronchiectasis: SF-36–PCS (r = 0.53; p < 0.001) [90] (Doubtful) | Bronchiectasis: Test–retest (ICC:0.83; α = 0.72) [90] (Doubtful) A | Bronchiectasis: PFS of SOLQ is associated with exacerbation frequency (r2 = −0.20; p = 0.01) [90] (Doubtful) | |
ECOPS | ||||
PROMIS-PF | ||||
MDHAQ | ||||
HAQ-DI |
CRD. | Type | Tools Investigated | Validity | Reliability | MCID | Association with Events Related to the Course of CRD |
---|---|---|---|---|---|---|
Asthma | PB test | 1 min-STS | D | D | NR | NR |
PB test | 5rep-STS | Y | Y | NR | NR | |
PB test | 30 sSTS | D | D | NR | NRmin | |
PB test | 4MGS | Y | D | NR | NR | |
PB test | TUG | Y | Y | NR | NR | |
PB test | SPPB | Y | D | NR | NR | |
PR tool | PFd of SF-36 | Y | NR | NR | Y, depression and number of comorbidities | |
PR tool | activities of AQLQ | Y | Y | Y | NR | |
PR tool | PL of QoL-EPM | Y | Y | NR | NR | |
PR tool | PHC of LWAQ | Y | NR | NR | NR | |
Bronchiectasis | PR tool | activities of SGRQ | Y | NR | NR | NR |
PR tool | PFS of SOLQ | Y | Y | NR | Y, exacerbation frequency | |
PR tool | PFd of QoL-B | Y | Y | NR | NR | |
Cystic Fibrosis | PB test | 1 min-STS | Y | Y | Y | NR |
PB test | 30 s-STS | Y | NR | NR | NR | |
PR tool | CFQoL | Y | Y | NR | NR | |
ILD | PB test | 5 rep-STS | Y | Y | NR | NR |
PB test | 1 min-STS | Y | Y | NR | NR | |
PB test | 30 s-STS | Y | Y | NR | NR | |
PB test | 4MGS | Y | Y | NR | Y, hospitalisation, mortality, and disease severity | |
PB test | SPPB | D | D | NR | NR | |
PB test | TUG | Y | Y | NR | NR | |
PB test | Glittre ADL | Y | Y | NR | NR | |
PB test | CS-PFP | Y | Y | NR | NR | |
PR tool | PFd of SF-36 | Y | Y | Y | NR | |
PR tool | activities of SGRQ-I | Y | Y | NR | NR | |
PR tool | PFd of PROMIS-29 | Y | Y | NR | NR | |
PAH | PB test | 1 min-STS | Y | NR | NR | NR |
PB test | 30 s-STS | Y | Y | NR | NR | |
PB test | TUG | Y | Y | NR | NR | |
PR tool | PFd of SF-36 | NR | NR | Y | NR | |
PR tool | PSS of MLHFQ | Y | Y | NR | Y, mortality, LTx, and pulmonary endarterectomy | |
PR tool | WHOfc | NR | NR | NR | Y, mortality and clinical failure | |
PR tool | NYHA | NR | NR | NR | Y, mortality | |
PR tool | AL of CAMPHOR | NR | NR | Y | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamboti, C.L.; Pimpão, H.A.; Bertin, L.D.; Krinski, G.G.; Garcia, T.; dos Santos Filho, S.L.S.; Cavalheri, V.; Pitta, F.; Camillo, C.A. Functional Measures in Non-COPD Chronic Respiratory Diseases: A Systematic Review. J. Clin. Med. 2024, 13, 6887. https://doi.org/10.3390/jcm13226887
Zamboti CL, Pimpão HA, Bertin LD, Krinski GG, Garcia T, dos Santos Filho SLS, Cavalheri V, Pitta F, Camillo CA. Functional Measures in Non-COPD Chronic Respiratory Diseases: A Systematic Review. Journal of Clinical Medicine. 2024; 13(22):6887. https://doi.org/10.3390/jcm13226887
Chicago/Turabian StyleZamboti, Camile Ludovico, Heloise Angélico Pimpão, Larissa Dragonetti Bertin, Gabriela Garcia Krinski, Tathielle Garcia, Sandro Laerth Souza dos Santos Filho, Vinicius Cavalheri, Fabio Pitta, and Carlos Augusto Camillo. 2024. "Functional Measures in Non-COPD Chronic Respiratory Diseases: A Systematic Review" Journal of Clinical Medicine 13, no. 22: 6887. https://doi.org/10.3390/jcm13226887
APA StyleZamboti, C. L., Pimpão, H. A., Bertin, L. D., Krinski, G. G., Garcia, T., dos Santos Filho, S. L. S., Cavalheri, V., Pitta, F., & Camillo, C. A. (2024). Functional Measures in Non-COPD Chronic Respiratory Diseases: A Systematic Review. Journal of Clinical Medicine, 13(22), 6887. https://doi.org/10.3390/jcm13226887