The Hypothesis of Trace Elements Involvement in the Coronary Arteries Atherosclerotic Plaques’ Location
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Hair Sample Analysis
2.3. Statistical Analysis
2.4. Bioethics Committee Approval
3. Results
3.1. Scalp Hair Analysis
3.2. Multivariable Models
3.2.1. Multivariable Analysis for Left Descending Artery Disease (LAD) Prediction
3.2.2. Multivariable Analysis for Circumflex Artery Disease (Cx) Prediction
3.2.3. Multivariable Analysis for Right Coronary Artery Disease (RCA) Prediction
4. Discussion
Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duggan, J.P.; Peters, A.S.; Trachiotis, G.D.; Antevil, J.L. Epidemiology of Coronary Artery Disease. Surg. Clin. N. Am. 2022, 102, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Talmor-Barkan, Y.; Bar, N.; Shaul, A.A.; Shahaf, N.; Godneva, A.; Bussi, Y.; Lotan-Pompan, M.; Weinberger, A.; Shechter, A.; Chezar-Azerrad, C.; et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat. Med. 2022, 28, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Zarkasi, K.A.; Abdul Murad, N.A.; Ahmad, N.; Jamal, R.; Abdullah, N. Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations. Int. J. Environ. Res. Public Health 2022, 19, 647. [Google Scholar] [CrossRef] [PubMed]
- Björnson, E.; Adiels, M.; Taskinen, M.R.; Burgess, S.; Rawshani, A.; Borén, J.; Packard, C.J. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: A UK Biobank study. Eur. Heart J. 2023, 44, 4186–4195. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; Redberg, R.F.; Meier, P. Saturated fat does not clog the arteries: Coronary heart disease is a chronic inflammatory condition, the risk of which can be effectively reduced from healthy lifestyle interventions. Br. J. Sports Med. 2017, 51, 1111–1112. [Google Scholar] [CrossRef]
- Marnell, C.S.; Bick, A.; Natarajan, P. Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J. Mol. Cell. Cardiol. 2021, 161, 98–105. [Google Scholar] [CrossRef]
- Sakkers, T.R.; Mokry, M.; Civelek, M.; Erdmann, J.; Pasterkamp, G.; Diez, B.E.; den Ruijter, H.M. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023, 384, 117279. [Google Scholar] [CrossRef]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. Peer Review Committee Members. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, e9–e119. [Google Scholar] [CrossRef]
- Prasad, K. Current Status of Primary, Secondary, and Tertiary Prevention of Coronary Artery Disease. Int. J. Angiol. 2021, 30, 177–186. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Hanć, A.; Frąckowiak, J.; Białasik-Misiorny, M.; Olasińska-Wiśniewska, A.; Krasińska, B.; Krasińska-Płachta, A.; Tomczak, J.; Kowalewski, M.; Krasiński, Z.; et al. Are Hair Scalp Trace Elements Correlated with Atherosclerosis Location in Coronary Artery Disease? Biol. Trace Elem. Res. 2024; epub ahead of print. [Google Scholar] [CrossRef]
- Olasińska-Wiśniewska, A.; Urbanowicz, T.; Hanć, A.; Tomczak, J.; Begier-Krasińska, B.; Tykarski, A.; Filipiak, K.J.; Rzesoś, P.; Jemielity, M.; Krasiński, Z. The Diagnostic Value of Trace Metal Concentrations in Hair in Carotid Artery Disease. J. Clin. Med. 2023, 12, 6794. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Hanć, A.; Olasińska-Wiśniewska, A.; Komosa, A.; Filipiak, K.J.; Radziemski, A.; Matejuk, M.; Uruski, P.; Tykarski, A.; Jemielity, M. Relation between Systemic Inflammatory Index (SII) and Hair Trace Elements, Metals and Metalloids Concentration in Epicardial Coronary Artery Disease—PreliminaryReport. Rev. Cardiovasc. Med. 2023, 24, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Conning-Rowland, M.; Cubbon, R.M. Molecular mechanisms of diabetic heart disease: Insights from transcriptomic technologies. Diab. Vasc. Dis. Res. 2023, 20, 14791641231205428. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yu, X.; Zhu, X.; Song, Y.; Gao, F.; Yu, B.; Qu, A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J. Cardiovasc. Transl. Res. 2024, 17, 133–152. [Google Scholar] [CrossRef]
- de Lima, E.P.; Moretti, R.C., Jr.; Pomini, K.T.; Laurindo, L.F.; Sloan, K.P.; Sloan, L.A.; Castro, M.V.M.; Baldi, E., Jr.; Ferraz, B.F.R.; de Souza Bastos Mazuqueli Pereira, E.; et al. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology 2024, 13, 519. [Google Scholar] [CrossRef]
- Chatzizisis, Y.S.; Giannoglou, G.D.; Parcharidis, G.E.; Louridas, G.E. Is left coronary system more susceptible to atherosclerosis than right? A pathophysiological insight. Int. J. Cardiol. 2007, 116, 7–13. [Google Scholar] [CrossRef]
- Wasilewski, J.; Niedziela, J.; Osadnik, T.; Duszańska, A.; Sraga, W.; Desperak, P.; Myga-Porosiło, J.; Jackowska, Z.; Nowakowski, A.; Głowacki, J. Predominant location of coronary artery atherosclerosis in the left anterior descending artery. The impact of septal perforators and the myocardial bridging effect. Kardiochir. Torakochirurgia Pol. 2015, 12, 379–385. [Google Scholar] [CrossRef]
- Ossoli, A.; Pavanello, C.; Giorgio, E.; Calabresi, L.; Gomaraschi, M. Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention. Curr. Med. Chem. 2019, 26, 1610–1630. [Google Scholar] [CrossRef]
- He, B.M.; Zhao, S.P.; Peng, Z.Y. Effects of cigarette smoking on HDL quantity and function: Implications for atherosclerosis. J. Cell. Biochem. 2013, 114, 2431–2436. [Google Scholar] [CrossRef]
- von Eckardstein, A.; Nordestgaard, B.G.; Remaley, A.T.; Catapano, A.L. High-density lipoprotein revisited: Biological functions and clinical relevance. Eur. Heart J. 2023, 44, 1394–1407. [Google Scholar] [CrossRef]
- An, P.; Wan, S.; Luo, Y.; Luo, J.; Zhang, X.; Zhou, S.; Xu, T.; He, J.; Mechanick, J.I.; Wu, W.C.; et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J. Am. Coll. Cardiol. 2022, 80, 2269–2285. [Google Scholar] [CrossRef] [PubMed]
- Evers, I.; Cruijsen, E.; Kornaat, I.; Winkels, R.M.; Busstra, M.C.; Geleijnse, J.M. Dietary magnesium and risk of cardiovascular and all-cause mortality after myocardial infarction: A prospective analysis in the Alpha Omega Cohort. Front. Cardiovasc. Med. 2022, 9, 936772. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Burgess, S.; Michaëlsson, K. Serum magnesium levels and risk of coronary artery disease: Mendelian randomization study. BMC Med. 2018, 16, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Pizzol, D.; Smith, L.; Dominguez, L.J.; Barbagallo, M. Effect of Magnesium Supplementation on Inflammatory Parameters: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 679. [Google Scholar] [CrossRef]
- Nazari, M.; Ashtary-Larky, D.; Nikbaf-Shandiz, M.; Goudarzi, K.; Bagheri, R.; Dolatshahi, S.; Omran, H.S.; Amirani, N.; Ghanavati, M.; Asbaghi, O. Zinc supplementation and cardiovascular disease risk factors: A GRADE-assessed systematic review and dose-response meta-analysis. J. Trace Elem. Med. Biol. 2023, 79, 127244–127292. [Google Scholar] [CrossRef]
Parameters | Group 1 CAD Group n = 73 | Group 2 Normal Angiograms n = 63 | p |
---|---|---|---|
Demographical | |||
Age (years) (median (Q1–Q3)) | 71 (65–74) | 70 (64–75) | 0.386 |
Clinical: | |||
CCS (class) (mean (SD)) | 1.9 (0.4) | 2.0 (0.2) | 0.945 |
Co-morbidities | |||
Dyslipidemia (n (%)) | 69 (95) | 51 (81) | 0.067 |
Arterial hypertension (n (%)) | 66 (90) | 48 (37) | 0.09 |
Diabetes mellitus (n (%)) | 22 (30) | 24 (38) | 0.367 |
Nicotine: | |||
all (n (%)) | 38 (52) | 29 (46) | 0.672 |
active (n (%)) | 16 (22) | 11 (18) | 0.613 |
past (n (%)) | 22 (30) | 18 (29) | 0.79 |
Laboratory: | |||
WBC (10 × 9/dL) (median (Q1–Q3)) | 7.45 (6.35–9.07) | 6.73 (5.54–8.77) | 0.115 |
Hemoglobin (mmol/dL) (median (Q1–Q3)) | 8.8 (7.9–9.3) | 8.5 (8.0–9.0) | 0.446 |
Platelets (10 × 3/dL) (median (Q1–Q3)) | 220 (173–258) | 211 (184–242) | 0.741 |
ALT (I.U./dL) (median (Q1–Q3)) | 25 (17–35) | 24 (18–37) | 0.833 |
Creatinine (umol/dL) (median (Q1–Q3)) | 85 (77–101) | 82 (75–93) | 0.147 |
Serum glucose (mmol/L) (median (Q1–Q3)) | 6.1 (5.5–7.7) | 5.9 (5.4–5.8) | 0.418 |
Total cholesterol (mmol/L) (median (Q1–Q3)) | 3.7 (3.2–4.7) | 4.0 (3.4–5.0) | 0.291 |
LDL (mmol/L) (median (Q1–Q3)) | 1.93 (1.40–2.90) | 2.38 (1.70–2.73) | 0.337 |
HDL (mmol/L) (median (Q1–Q3)) | 1.21 (0.97–1.47) | 1.24 (1.09–1.56) | 0.139 |
Triglycerides (mmol/L) (median (Q1–Q3)) | 1.34 (1.07–1.76) | 1.30 (0.99–1.65) | 0.377 |
Parameters | Group 1 CAD Group n = 73 | Group 2 Normal Angiograms n = 63 | p (Group 1 vs. 2) |
---|---|---|---|
Cine-angiography | |||
LMCA | |||
normal (n (%))/significant stenosis (n (%)) | 70 (96)/3 (4) | 63 (100)/0 (0) | 0.249 |
LAD | |||
normal (n (%))/significant stenosis | 28 (38)/45 (62) | 63 (100)/0 (0) | <0.001 |
Cx | |||
normal (n (%))/significant stenosis(n (%)) | 46 (63)/27 (37) | 63 (100)/(0) | <0.001 |
RCA | |||
normal (n (%))/significant stenosis (n (%)) | 41 (56)/32 (44) | 63 (100)/(0) | <0.001 |
Echocardiography: | |||
LVEF (%) (median (Q1–Q3)) | 60 (55–63) | 58 (55-67) | 0.834 |
Trace Elements Concentration | Group 1 CAD Group n = 73 | Group 2 Normal Angiograms n = 63 | p |
---|---|---|---|
Mg concetration (mg/kg) (median (Q1–Q3)) | 31.747 (13.463–92.158) | 17.241 (11.202–28.684) | 0.003 |
Ca concetration (mg/kg) (median (Q1–Q3)) | 293 (111.263–1217.154) | 100.4 (54.772–322.712) | <0.001 |
Cr concetration (mg/kg) (median (Q1–Q3)) | 0.756 (0.537–1.255) | 0.999 (0.717–1.529) | 0.011 |
Fe concetration (mg/kg) (median (Q1–Q3)) | 10.254 (8.625–13.007) | 11.539 (8.746–15.443) | 0.129 |
Cu concetration (mg/kg) (median (Q1–Q3)) | 14.852 (11.405–24.012) | 12.360 (10.518–17.163) | 0.043 |
Zn concetration (mg/kg) (median (Q1–Q3)) | 157.029 (126.970–172.237) | 148.872 (116.407–168.705) | 0.394 |
Parameters | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Age | 1.04 | 1.00–1.09 | 0.057 | |||
Clinical: | ||||||
HA | 1.33 | 0.50–3.54 | 0.572 | |||
DM | 2.2 | 1.06–4.57 | 0.034 | 2.94 | 1.27–6.79 | 0.012 |
Dyslipidemia | 1.55 | 0.48–5.00 | 0.532 | |||
Nicotine (all) | 1.4 | 0.71–2.76 | 0.339 | |||
Laboratory: | ||||||
HDL | 0.94 | 0.39–2.27 | 0.892 | |||
LDL | 1.02 | 0.96–1.08 | 0.575 | |||
TG | 1.16 | 0.79–1.72 | 0.446 | |||
creatinine | 1 | 0.98–1.01 | 0.722 | |||
serum uric acid | 1 | 1.00–1.01 | 0.225 | |||
serum glucose | 1.26 | 1.01–1.57 | 0.038 | |||
Trace elements: | ||||||
Mg | 1 | 0.99–1.00 | 0.12 | |||
Ca | 1 | 1.00–1.00 | 0.275 | |||
Cr | 1.04 | 0.83–1.29 | 0.756 | |||
Fe | 1 | 0.99–1.01 | 0.586 | |||
Cu | 0.99 | 0.98–1.01 | 0.31 | |||
Zn | 1 | 0.99–1.00 | 0.302 |
Parameters | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Age | 1.33 | 0.99–1.08 | 0.186 | |||
Clinical: | ||||||
HA | 1.66 | 0.51–5.37 | 0.396 | |||
DM | 1.09 | 0.50–2.37 | 0.838 | |||
Dyslipidemia | 5.56 | 0.70–44.33 | 0.105 | |||
Nicotine (all) | 0.68 | 0.32–1.44 | 0.314 | |||
Laboratory: | ||||||
HDL | 1.16 | 0.45–3.03 | 0.755 | |||
LDL | 1.02 | 0.96–1.09 | 0.531 | |||
TG | 0.67 | 0.36–1.26 | 0.213 | |||
creatinine | 1 | 0.98–1.01 | 0.551 | |||
serum uric acid | 1 | 1.00–1.00 | 0.825 | |||
serum glucose | 1.02 | 0.83–1.25 | 0.869 | |||
Trace elements: | ||||||
Mg | 0.98 | 0.96–1.00 | 0.016 | 0.98 | 0.96–1.00 | 0.024 |
Ca | 0.99 | 0.99–1.00 | 0.03 | |||
Cr | 1.07 | 0.85–1.34 | 0.575 | |||
Fe | 1 | 0.99–1.01 | 0.683 | |||
Cu | 0.98 | 0.95–1.01 | 0.18 | |||
Zn | 1 | 0.99–1.01 | 0.58 |
Parameters | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Age | 1.07 | 1.02–1.12 | 0.007 | |||
Clinical: | ||||||
HA | 1.08 | 0.39–2.95 | 0.884 | |||
DM | 0.79 | 0.38–1.67 | 0.539 | |||
Dyslipidemia | 2.22 | 0.58–8.49 | 0.243 | |||
Nicotine (all) | 0.62 | 0.31–1.26 | 0.189 | |||
Laboratory: | ||||||
HDL | 0.64 | 0.43–0.94 | 0.024 | 0.61 | 0.04–0.91 | 0.016 |
LDL | 1.07 | 0.34–2.63 | 0.884 | |||
TG | 0.66 | 0.37–1.18 | 0.159 | |||
creatinine | 1 | 0.98–1.01 | 0.919 | |||
serum uric acid | 1 | 0.99–1.00 | 0.309 | |||
serum glucose | 1.05 | 0.86–1.27 | 0.656 | |||
Trace elements: | ||||||
Mg | 0.99 | 0.99–1.00 | 0.084 | |||
Ca | 1 | 1.00–1.00 | 0.36 | |||
Cr | 0.83 | 0.59–1.17 | 0.295 | |||
Fe | 0.96 | 0.91–1.02 | 0.179 | |||
Cu | 0.98 | 0.96–1.01 | 0.148 | |||
Zn | 0.99 | 0.98–1.00 | 0.004 | 0.99 | 0.98–1.00 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Hanć, A.; Frąckowiak, J.; Piecek, J.; Spasenenko, I.; Olasińska-Wiśniewska, A.; Krasińska, B.; Tykarski, A. The Hypothesis of Trace Elements Involvement in the Coronary Arteries Atherosclerotic Plaques’ Location. J. Clin. Med. 2024, 13, 6933. https://doi.org/10.3390/jcm13226933
Urbanowicz T, Hanć A, Frąckowiak J, Piecek J, Spasenenko I, Olasińska-Wiśniewska A, Krasińska B, Tykarski A. The Hypothesis of Trace Elements Involvement in the Coronary Arteries Atherosclerotic Plaques’ Location. Journal of Clinical Medicine. 2024; 13(22):6933. https://doi.org/10.3390/jcm13226933
Chicago/Turabian StyleUrbanowicz, Tomasz, Anetta Hanć, Julia Frąckowiak, Jakub Piecek, Ievgen Spasenenko, Anna Olasińska-Wiśniewska, Beata Krasińska, and Andrzej Tykarski. 2024. "The Hypothesis of Trace Elements Involvement in the Coronary Arteries Atherosclerotic Plaques’ Location" Journal of Clinical Medicine 13, no. 22: 6933. https://doi.org/10.3390/jcm13226933
APA StyleUrbanowicz, T., Hanć, A., Frąckowiak, J., Piecek, J., Spasenenko, I., Olasińska-Wiśniewska, A., Krasińska, B., & Tykarski, A. (2024). The Hypothesis of Trace Elements Involvement in the Coronary Arteries Atherosclerotic Plaques’ Location. Journal of Clinical Medicine, 13(22), 6933. https://doi.org/10.3390/jcm13226933