Redifferentiation Therapies in Thyroid Oncology: Molecular and Clinical Aspects
Abstract
:1. Introduction
2. Redifferentiation Concepts
3. Clinical Studies
4. Second-Line TKI-Related Adverse Effects
5. Current Paradigms and Future Perspectives
- Re-establishing 131-I uptake: Targeted therapies can re-induce the expression of radioiodine uptake and retention. This “redifferentiation” effect could potentially convert RAI-R tumors back to a radioiodine-treatable state.
- Enhancing existing uptake: These agents may increase the uptake of 131-I in DTC lesions that still demonstrate some degree of iodine accumulation. Optimizing the cellular pathways responsible for iodine processing could significantly increase the amount of radioiodine concentrated within tumor tissues.
- Increased tumor radiation absorbed dose: Enhanced 131-I uptake translates to a higher absorbed radiation dose per unit of administered 131-I activity (Gy/GBq or rad/mCi.
- Improved treatment efficacy: The increased radiation dose to tumor tissues may lead to better clinical outcomes, including partial tumor regression or stabilization of disease.
- Potential for dose reduction: The enhanced uptake efficiency might allow the same therapeutic effect with a lower administered activity of 131-I. This strategy may be especially valuable for patients at higher risk of radioiodine-associated side effects.
- Minimization of side effects: By potentially reducing the total activity of 131-I needed for effective treatment, these agents may help reduce the risk of adverse effects associated with high 131-I activity. These side effects can include salivary gland dysfunction, bone marrow suppression, and a small but non-zero risk of secondary malignancies.
- Expanded treatment options: The redifferentiation therapies could reopen new treatment options for patients previously deemed unsuitable for further 131-I therapy.
- Validate uptake restoration and enhancement in different clinical and genomic scenarios: Larger, well-designed studies are needed to confirm the initial observations on the ability of these agents to modulate radioiodine uptake in diverse patient populations and different tumor types based on gene profiling.
- Evaluate long-term safety: As with any new therapeutic approach, it is important to thoroughly investigate these agents’ long-term safety profile, particularly considering their effects on iodine-concentrating organs.
- Optimize treatment protocols: Research should focus on determining the ideal timing, imaging, dosing, and duration of the therapy in relation to 131-I administration to maximize their beneficial effects while minimizing any potential risks.
- Identify predictive biomarkers: Developing reliable methods to predict which patients are most likely to benefit from redifferentiation therapies could help personalize treatment approaches and avoid unnecessary interventions in non-responders.
- Compare redifferentiation vs. tyrosine kinase inhibitors.
- Criteria of therapeutic outcomes for consideration of redifferentiation and 131-I retreatment (Tg response, RECIST response, etc.).
- Cost-effectiveness.
- Heterogeneity within and between primary and metastatic tumors
- Identify previously unrecognized targets for therapy
- Guide the selection of the most appropriate treatment strategy for each patient
- Monitor treatment response at a molecular level.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlumberger, M.; Brose, M.; Elisei, R.; Leboulleux, S.; Luster, M.; Pitoia, F.; Pacini, F. Definition and Management of Radioactive Iodine-Refractory Differentiated Thyroid Cancer. Lancet Diabetes Endocrinol. 2014, 2, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Sacks, W.; Braunstein, G.D. Evolving Approaches in Managing Radioactive Iodine-Refractory Differentiated Thyroid Cancer. Endocr. Pract. 2014, 20, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Van Nostrand, D. Advanced Differentiated Thyroid Cancer: When to Stop Radioiodine? Q. J. Nucl. Med. Mol. Imaging 2019, 63, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Cheng, L.; Jin, Y.; Ruan, M.; Sheng, S.; Chen, L. Predicting 131I-Avidity of Metastases from Differentiated Thyroid Cancer Using 18F-FDG PET/CT in Postoperative Patients with Elevated Thyroglobulin. Sci. Rep. 2018, 8, 4352. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Fugazzola, L.; Elisei, R.; Fuhrer, D.; Jarzab, B.; Leboulleux, S.; Newbold, K.; Smit, J. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur. Thyroid. J. 2019, 8, 227–245. [Google Scholar] [CrossRef]
- Deandreis, D.; Ovčariček, P.P.; Campenni, A.; Vrachimis, A.; Giovanella, L. A Spotlight on Redifferentiation Strategies and Target Modulation in Differentiated Thyroid Cancer. Clin. Transl. Imaging 2021, 9, 405–408. [Google Scholar] [CrossRef]
- Van Nostrand, D. Radioiodine Refractory Differentiated Thyroid Cancer: Time to Update the Classifications. Thyroid 2018, 28, 1083–1093. [Google Scholar] [CrossRef]
- Michael Tuttle, R.; Ahuja, S.; Avram, A.M.; Bernet, V.J.; Bourguet, P.; Daniels, G.H.; Dillehay, G.; Draganescu, C.; Flux, G.; Führer, D.; et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019, 29, 461–470. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.M.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A. ESMO Clinical Practice Guideline Update on the Use of Systemic Therapy in Advanced Thyroid Cancer. Ann. Oncol. 2022, 33, 674–684. [Google Scholar] [CrossRef]
- Aashiq, M.; Silverman, D.A.; Na’ara, S.; Takahashi, H.; Amit, M. Radioiodine-Refractory Thyroid Cancer: Molecular Basis of Redifferentiation Therapies, Management, and Novel Therapies. Cancers 2019, 11, 1382. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Pozdeyev, N.; Korch, C.; Marlow, L.A.; Smallridge, R.C.; Copland, J.A.; Henderson, Y.C.; Lai, S.Y.; Clayman, G.L.; Onoda, N.; et al. Comprehensive Genetic Characterization of Human Thyroid Cancer Cell Lines: A Validated Panel for Preclinical Studies. Clin. Cancer Res. 2019, 25, 3141–3151. [Google Scholar] [CrossRef] [PubMed]
- Kebebew, E.; Weng, J.; Bauer, J.; Ranvier, G.; Clark, O.H.; Duh, Q.Y.; Shibru, D.; Bastian, B.; Griffin, A. The Prevalence and Prognostic Value of BRAF Mutation in Thyroid Cancer. Ann. Surg. 2007, 246, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Fagin, J.A.; Wells, S.A. Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 2016, 375, 1054–1067. [Google Scholar] [CrossRef] [PubMed]
- Gild, M.L.; Bullock, M.; Tsang, V.; Clifton-Bligh, R.J.; Robinson, B.G.; Wirth, L.J. Challenges and Strategies to Combat Resistance Mechanisms in Thyroid Cancer Therapeutics. Thyroid 2023, 33, 682–690. [Google Scholar] [CrossRef]
- Nagarajah, J.; Le, M.; Knauf, J.A.; Ferrandino, G.; Montero-Conde, C.; Pillarsetty, N.; Bolaender, A.; Irwin, C.; Krishnamoorthy, G.P.; Saqcena, M.; et al. Sustained ERK Inhibition Maximizes Responses of BrafV600E Thyroid Cancers to Radioiodine. J. Clin. Investig. 2016, 126, 4119–4124. [Google Scholar] [CrossRef]
- Chakravarty, D.; Santos, E.; Ryder, M.; Knauf, J.A.; Liao, X.H.; West, B.L.; Bollag, G.; Kolesnick, R.; Thin, T.H.; Rosen, N.; et al. Small-Molecule MAPK Inhibitors Restore Radioiodine Incorporation in Mouse Thyroid Cancers with Conditional BRAF Activation. J. Clin. Investig. 2011, 121, 4700–4711. [Google Scholar] [CrossRef]
- Hadad, B.; Askari, E.; Zakavi, S.R.; Aryana, K.; Erfani, S.; Sahafi, P.; Nabavi, N.; Aghaee, A. Case Report: Regaining Radioiodine Uptake Following PRRT in Radioiodine-Refractory Thyroid Cancer: A New Re-Differentiation Strategy? Front. Nucl. Med. 2022, 2, 1071022. [Google Scholar] [CrossRef]
- Ho, A.L.; Grewal, R.K.; Leboeuf, R.; Sherman, E.J.; Pfister, D.G.; Deandreis, D.; Pentlow, K.S.; Zanzonico, P.B.; Haque, S.; Gavane, S.; et al. Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer. N. Engl. J. Med. 2013, 368, 623–632. [Google Scholar] [CrossRef]
- Rothenberg, S.M.; McFadden, D.G.; Palmer, E.L.; Daniels, G.H.; Wirth, L.J. Redifferentiation of Iodine-Refractory BRAF V600E-Mutant Metastatic Papillary Thyroid Cancer with Dabrafenib. Clin. Cancer Res. 2015, 21, 1028–1035. [Google Scholar] [CrossRef]
- Jaber, T.; Waguespack, S.G.; Cabanillas, M.E.; Elbanan, M.; Vu, T.; Dadu, R.; Sherman, S.I.; Amit, M.; Santos, E.B.; Zafereo, M.; et al. Targeted Therapy in Advanced Thyroid Cancer to Resensitize Tumors to Radioactive Iodine. J. Clin. Endocrinol. Metab. 2018, 103, 3698–3705. [Google Scholar] [CrossRef]
- Dunn, L.A.; Sherman, E.J.; Baxi, S.S.; Tchekmedyian, V.; Grewal, R.K.; Larson, S.M.; Pentlow, K.S.; Haque, S.; Tuttle, R.M.; Sabra, M.M.; et al. Vemurafenib Redifferentiation of BRAF Mutant, Rai-Refractory Thyroid Cancers. J. Clin. Endocrinol. Metab. 2019, 104, 1417–1428. [Google Scholar] [CrossRef]
- Weber, M.; Kersting, D.; Riemann, B.; Brandenburg, T.; Führer-Sakel, D.; Grünwald, F.; Kreissl, M.C.; Dralle, H.; Weber, F.; Schmid, K.W.; et al. Enhancing Radioiodine Incorporation into Radioiodine-Refractory Thyroid Cancer with MAPK Inhibition (ERRITI): A Single-Center Prospective Two-Arm Study. Clin. Cancer Res. 2022, 28, 4194–4202. [Google Scholar] [CrossRef]
- Leboulleux, S.; Do Cao, C.; Zerdoud, S.; Attard, M.; Bournaud, C.; Lacroix, L.; Benisvy, D.; Taïeb, D.; Bardet, S.; Terroir-Cassou-Mounat, M.; et al. A Phase II Redifferentiation Trial with Dabrafenib-Trametinib and 131I in Metastatic Radioactive Iodine Refractory BRAF p.V600E-Mutated Differentiated Thyroid Cancer. Clin. Cancer Res. 2023, 29, 2401–2409. [Google Scholar] [CrossRef]
- Leboulleux, S.; Benisvy, D.; Taieb, D.; Attard, M.; Bournaud, C.; Terroir-Cassou-Mounat, M.; Lacroix, L.; Anizan, N.; Schiazza, A.; Garcia, M.E.; et al. MERAIODE: A Phase II Redifferentiation Trial with Trametinib and 131I in Metastatic Radioactive Iodine Refractory RAS Mutated Differentiated Thyroid Cancer. Thyroid 2023, 33, 1124–1129. [Google Scholar] [CrossRef]
- Iravani, A.; Solomon, B.; Pattison, D.A.; Jackson, P.; Ravi Kumar, A.; Kong, G.; Hofman, M.S.; Akhurst, T.; Hicks, R.J. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: An Evolving Protocol. Thyroid 2019, 29, 1634–1645. [Google Scholar] [CrossRef]
- Burman, B.; Tuttle, R.M.; Grewal, R.K.; Sherman, E.J.; Baxi, S.S.; Boucai, L.; Sabra, M.; Fish, S.; Pentlow, K.S.; Haque, S.; et al. Phase 2 of Trametinib plus Radioiodine in RAS-Mutant and Wild-Type, Radioiodine-Refractory Thyroid Cancer (ETCTN9446). J. Clin. Oncol. 2022, 40, 6089. [Google Scholar] [CrossRef]
- Groussin, L.; Clerc, J.; Huillard, O. Larotrectinib-Enhanced Radioactive Iodine Uptake in Advanced Thyroid Cancer. N. Engl. J. Med. 2020, 383, 1686–1687. [Google Scholar] [CrossRef]
- Syed, A.R.; Gorana, A.; Nohr, E.; Yuan, X.K.; Masc, P.A.; Ghaznavi, S.; Lamb, D.; McIntyre, J.; Eszlinger, M.; Paschke, R. Predictors of Radioiodine (RAI)-Avidity Restoration for NTRK Fusion-Positive RAI-Resistant Metastatic Thyroid Cancers. Eur. Thyroid J. 2024, 13, e230227. [Google Scholar] [CrossRef]
- Chan, H.P.; Chen, I.F.; Tsai, F.R.; Kao, C.H.; Shen, D.H.Y. Reversing “Flip-Flop” Phenomenon of 131 I and Glucose Avidity in RET-Fusion Positive Radioiodine-Refractory Thyroid Cancer Lesions After Treatment of Pralsetinib. Clin. Nucl. Med. 2023, 48, E147–E148. [Google Scholar] [CrossRef]
- Lee, Y.A.; Lee, H.; Im, S.-W.; Song, Y.S.; Oh, D.-Y.; Kang, H.J.; Won, J.-K.; Jung, K.C.; Kwon, D.; Chung, E.-J.; et al. NTRK and RET Fusion–Directed Therapy in Pediatric Thyroid Cancer Yields a Tumor Response and Radioiodine Uptake. J. Clin. Investig. 2021, 131, e144847. [Google Scholar] [CrossRef]
- Werner, R.A.; Sayehli, C.; Hänscheid, H.; Higuchi, T.; Serfling, S.E.; Fassnacht, M.; Goebeler, M.E.; Buck, A.K.; Kroiss, M. Successful Combination of Selpercatinib and Radioiodine after Pretherapeutic Dose Estimation in RET-Altered Thyroid Carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1833–1834. [Google Scholar] [CrossRef] [PubMed]
- Toro-Tobon, D.; Morris, J.C.; Hilger, C.; Peskey, C.; Durski, J.M.; Ryder, M. Clinical Outcomes of Radioactive Iodine Redifferentiation Therapy in Previously Iodine Refractory Differentiated Thyroid Cancers. Thyroid 2024, 34, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Verburg, F.A.; Amthauer, H.; Binse, I.; Brink, I.; Buck, A.; Darr, A.; Dierks, C.; Koch, C.; König, U.; Kreissl, M.C.; et al. Questions and Controversies in the Clinical Application of Tyrosine Kinase Inhibitors to Treat Patients with Radioiodine-Refractory Differentiated Thyroid Carcinoma: Expert Perspectives. Horm. Metab. Res. 2021, 53, 149–160. [Google Scholar] [CrossRef]
- Yu, S.T.; Ge, J.N.; Luo, J.Y.; Wei, Z.G.; Sun, B.H.; Lei, S.T. Treatment-Related Adverse Effects with TKIs in Patients with Advanced or Radioiodine Refractory Differentiated Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Cancer Manag. Res. 2019, 11, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Busaidy, N.L.; Konda, B.; Wei, L.; Wirth, L.J.; Devine, C.; Daniels, G.A.; Desouza, J.A.; Poi, M.; Seligson, N.D.; Cabanillas, M.E.; et al. Dabrafenib Versus Dabrafenib + Trametinib in BRAF-Mutated Radioactive Iodine Refractory Differentiated Thyroid Cancer: Results of a Randomized, Phase 2, Open-Label Multicenter Trial. Thyroid 2022, 32, 1184–1192. [Google Scholar] [CrossRef]
- Ho, A.L.; Dedecjus, M.; Wirth, L.J.; Tuttle, R.M.; Inabnet, W.B.; Tennvall, J.; Vaisman, F.; Bastholt, L.; Gianoukakis, A.G.; Rodien, P.; et al. Selumetinib Plus Adjuvant Radioactive Iodine in Patients With High-Risk Differentiated Thyroid Cancer: A Phase III, Randomized, Placebo-Controlled Trial (ASTRA). J. Clin. Oncol. 2022, 40, 1870–1878. [Google Scholar] [CrossRef]
- Van Nostrand, D.; Veytsman, I.; Kulkarni, K.; Heimlich, L.; Burman, K.D. Redifferentiation of Differentiated Thyroid Cancer: Clinical Insights from a Narrative Review of Literature. Thyroid 2023, 33, 674–681. [Google Scholar] [CrossRef]
- Petranović Ovčariček, P.; Campenni, A.; de Keizer, B.; Deandreis, D.; Kreissl, M.C.; Vrachimis, A.; Tuncel, M.; Giovanella, L. Molecular Theranostics in Radioiodine-Refractory Differentiated Thyroid Cancer. Cancers 2023, 15, 4290. [Google Scholar] [CrossRef]
Study | Type of the Study | Number of Patients | Redifferentiation Agent | Mechanism of Action | Protocol |
---|---|---|---|---|---|
Ho et al. [19] | Clinical trial | 20 | Selumetinib | MEK inhibitor | Selumetinib 75 mg p.o. bid for 4 weeks. If the 124-I PET scan indicated increased iodine uptake and delivered a projected absorbed dose of 2000 cGy or more to the lesion, then selumetinib continued to perform dosimetry and was subsequently discontinued 2 days after 131-I therapy with rhTSH stimulation. |
Rothenberg et al. [20] | Clinical trial | 10 | Dabrafenib | BRAF inhibitor | Dabrafenib 150 mg p.o. q.d. for 25 days before the 131-I scan. If positive, dabrafenib was continued for 17 days, therapy with 150 mCi of 131-I was applied, and dabrafenib was continued for five more days. |
Jaber et al. [21] | Retrospective | 13 | Selective trametinib, dabrafenib, and/or vemurafenib | MEK inhibitor, BRAF inhibitor | Patients with BRAF mutation were treated with BRAF inhibitors (7 with dabrafenib, 1 with vemurafenib, and 1 with a combination of dabrafenib/trametinib). Three patients with RAS mutation were treated with MEK inhibitors (two with trametinib and one with an investigational MEK inhibitor). The patient without identified somatic mutations was treated with trametinib |
Dunn et al. [22] | Clinical trial | 10 | Vemurafenib | BRAF inhibitor | 124-I PET scan performed before and after Vemurafenib 960 mg p.o. bid for approximately 4 weeks. Those with increased 131-I concentration exceeding a predefined lesional dosimetry threshold were treated with I-131. Vemurafenib was discontinued 2 days after 131-I therapy. |
Weber et al. [23] | Prospective study | 20 | Dabrafenib and Trametinib | BRAF inhibitor and MEK inhibitor | Trametinib 2 mg daily in BRAF-WT for 21 ± 3 days. Trametinib 2 mg trametinib daily + dabrafenib 75 mg twice daily in BRAF-MUT for 21 ± 3 days. Patients in whom the posttreatment 123-I SPECT/CT demonstrated a regional target/background ratio of more than 4 and a 2-fold higher iodine uptake than the mean uptake in liver parenchyma (in at least one tumor lesion) by visual assessment were considered responders, and 131-I therapy was performed |
Leboulleux et al. [24] | Clinical trial | 21 | Dabrafenib trametinib | BRAF inhibitor and MEK inhibitor | Dabrafenib 150 mg p.o. bid and trametinib 2 mg po q.d. for 42 days. On day 28, a radioiodine scan was performed. After 35 days, a therapy of 131-I was administered. |
Leboulleux et al. [25] | Clinical trial | 10 | Trametinib | MEK inhibitor | Trametinib 2 mg po q.d. for 42 days. On day 28, a radioiodine scan was performed. After 35 days, a therapy of 131-I was administered. |
Iravani et al. [26] | Retrospective | 6 | Dabrafenib and Trametinib | BRAF inhibitor and MEK inhibitor | For NRAS: trametinib 2 mg p.o. q.d. 4 weeks For BRAF V600E: combination of dabrafenib 150 mg p.o. q.d. and trametinib 2 mg p.o. q.d. 4 weeks. |
Groussin et al. [28] | Case report | 1 | Larotrectinib | Tropomyosin receptor kinase (TRK) inhibitor | Larotrectinib 100 mg p.o. bid (6 months). |
Lee et al. [31] | Two cases | 2 | Larotrectinib; Selpercatinib | Tropomyosin receptor kinase (TRK) inhibitor; RET inhibitor | Larotrectinib 100 mg p.o. bid; Selpercatinib 80 mg bid. |
Werner et al. [32] | Case report | 1 | Selpercatinib | RET inhibitor | Selpercatinib 160 mg p.o. bid for 3 weeks |
Toro-Tobon et al. [33] | Retrospective | 33 | Trametinib, Selpercatinib, Pralsetinib, Alectinib, Dabrafenib + Trametinib | MEK, RET, or ALK inhibitors alone, or combination BRAF-MEK inhibitors | Redifferentiation therapy for 4 weeks. At the end of week 3, all patients underwent rhTSH-stimulated 123-I WBS. At week 4, those who redifferentiated (any uptake of at least one lesion based on a qualitative assessment) received high-activity 131I therapy. |
Adverse Event | Dabrafenib Alone (n = 26) Any Grade (%) * | Dabrafenib + Trametinib (n = 27) Any Grade (%) * | Selumetinib + RAI (n = 154) Any Grade (%) ** | Dabrafenib + Trametinib (n = 24) Any Grade (%) *** |
---|---|---|---|---|
Skin/subcutaneous disorders | 17 (65) | 9 (33) | 69 (45) | - |
Fever | 13 (50) | 16 (59) | - | 5 (21) |
Hyperglycemia | 12 (46) | 5 (19) | - | - |
Anemia | 11 (42) | 8 (30) | - | - |
Palmar-plantar erythrodysesthesia syndrome | 11 (42) | 6 (22) | - | - |
Nausea | 11 (42) | 14 (52) | 44 (29) | 10 (42) |
Alopecia | 11 (42) | 0 (0) | - | - |
Chills | 11 (42) | 14 (52) | - | - |
Fatigue | 10 (38) | 14 (52) | 44 (29) | 2 (8) |
Hypophosphatemia | 9 (35) | 11 (41) | - | - |
Vomiting | 7 (27) | 6 (22) | - | 2 (8) |
Rash maculo-papular | 7 (27) | 4 (15) | 19 (12) | 5 (21) |
Weight loss | 7 (27) | 0 (0) | - | - |
Anorexia | 6 (23) | 9 (33) | - | 3 (13) |
Pruritus | 6 (23) | 3 (11) | 21 (14) | - |
Arthralgia | 6 (23) | 0 (0) | - | 1 (4) |
Myalgia | 5 (19) | 6 (22) | - | - |
Lymphocyte count decreased | 5 (19) | 0 (0) | - | 3 (13) |
Headache | 5 (19) | 0 (0) | 8 (5) | 2 (8) |
Diarrhea | 4 (15) | 7 (26) | 68 (44) | 5 (21) |
Edema limbs | 3 (12) | 5 (19) | 30 (19) | - |
Aspartate aminotransferase increased | 0 (0) | 10 (37) | - | 1 (4) |
Alanine aminotransferase increased | 0 (0) | 8 (30) | - | 1 (4) |
Alkaline phosphatase increased | 0 (0) | 5 (19) | - | - |
Generalized muscle weakness | 0 (0) | 5 (19) | - | 10 (42) |
Blood creatine phosphokinase increased | - | - | 31 (20) | - |
Hypertension | - | - | 20 (13) | 3 (13) |
Stomatitis | - | - | 17 (11) | 2 (8) |
Vision blurred | - | - | 16 (10) | - |
Constipation | - | - | - | 2 (8) |
Cough | - | - | - | 1 (4) |
Abdominal pain | - | - | - | 1 (4) |
Bronchitis | - | - | - | 0 (0) |
Hyposialia | - | - | - | 2 (8) |
Leukopenia | - | - | - | 1 (4) |
Neutropenia | - | - | - | 1 (4) |
Thrombopenia | - | - | - | 0 |
Vertigo | - | - | - | 1 (4) |
Urinary infection | - | - | - | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petranović Ovčariček, P.; Tuncel, M.; Aghaee, A.; Campennì, A.; Giovanella, L. Redifferentiation Therapies in Thyroid Oncology: Molecular and Clinical Aspects. J. Clin. Med. 2024, 13, 7021. https://doi.org/10.3390/jcm13237021
Petranović Ovčariček P, Tuncel M, Aghaee A, Campennì A, Giovanella L. Redifferentiation Therapies in Thyroid Oncology: Molecular and Clinical Aspects. Journal of Clinical Medicine. 2024; 13(23):7021. https://doi.org/10.3390/jcm13237021
Chicago/Turabian StylePetranović Ovčariček, Petra, Murat Tuncel, Atena Aghaee, Alfredo Campennì, and Luca Giovanella. 2024. "Redifferentiation Therapies in Thyroid Oncology: Molecular and Clinical Aspects" Journal of Clinical Medicine 13, no. 23: 7021. https://doi.org/10.3390/jcm13237021
APA StylePetranović Ovčariček, P., Tuncel, M., Aghaee, A., Campennì, A., & Giovanella, L. (2024). Redifferentiation Therapies in Thyroid Oncology: Molecular and Clinical Aspects. Journal of Clinical Medicine, 13(23), 7021. https://doi.org/10.3390/jcm13237021