The Association Between Time in Range %, Measured by Continuous Glucose Monitoring (CGM) and Physical Health Agility Status Indices Amongst Older People with T2D: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Socio-Demographic Measures
2.4. Glycemic Control (GC) Status
2.5. Physical Capacity (PC) Assessment Battery
2.5.1. Muscle Strength Assessment
- The Hand Grip Strength Test was employed to evaluate upper body muscular strength. Maximum grip strength (in kilograms) was measured using the Jammer dynamometer manufactured by AliMed company, Dedham, Massachusetts, CA, USA. The test is performed with the hand in a neutral position and repeated three times. The final score represents the average strength in kilograms and is compared to normative values for the general population based on age and gender [19]. Excellent (r > 0.80) test–retest reproducibility [20] and excellent (r = 0.98) inter-rater reliability [21] have been reported for grip strength measured with the Jamar dynamometer. Longitudinal studies show that grip strength decreases after midlife, with the rate of decline accelerating as individuals age into their older years [22]. The grip strength assessment has demonstrated predictive validity, with lower values being associated with a higher risk of falls [23], disability, impaired health-related quality of life [24], and prolonged length of stay in hospital [25] as well as increased mortality [26].
- The 30 s chair stand (STS) was used to assess lower limb muscle strength. The instructions were to get up from a sitting to standing position as many times as possible within 30 s without the use of hands or assistance. The score is given based on the number of times that the participant fails to reach full compliance. The strength of the lower limb muscles has a crucial impact on daily function; for example, when moving from a sitting position to a standing position, climbing up stairs, and walking [27].
2.5.2. Aerobic Capacity Assessment
2.5.3. Gait Speed Evaluation
2.5.4. Balance Assessment
- Less than 14 s: Independent mobility.
- 20–30 s: Dependent mobility; assistance needed for walking (50% use a cane, 40% use a walker, 10% need supervision). Many in this category may require help with transfers, using the toilet, and might not go outside the home alone.
- Scores below 36 indicate balance impairment and an increased risk of falls.
- Scores between 37 and 45 suggest the need for a walking aid to ensure safe mobility.
- Scores above 45 reflect independent walking ability without a heightened risk of falls.
2.5.5. Frailty Assessment
- Weight Loss: unintentional weight loss of more than 4.5 kg or 5% of body weight over the past year.
- Poor Endurance and Energy: self-reported fatigue or low energy levels.
- Low Physical Activity Level: assessed through a physical activity questionnaire.
- Walk Time: taking more than 7 s to walk 3 m.
- Low Grip Strength: measured relative to gender and body weight.
2.5.6. Sample Size
2.5.7. Statistical Analysis
3. Results
3.1. Dataset Description
3.2. The Association Between TIR (70–180 Mg\dL)/HbA1C and Several Physical Indices
4. Discussion
5. Conclusions
Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zitkus, B.S. Update on the american diabetes association standards of medical care. Nurse Pract. 2014, 39, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kirkman, M.S.; Briscoe, V.J.; Clark, N.; Florez, H.; Haas, L.B.; Halter, J.B.; Huang, E.S.; Korytkowski, M.T.; Munshi, M.N.; Odegard, P.S.; et al. Diabetes in older adults. Diabetes Care 2012, 35, 2650. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Backholer, K.; Gearon, E.; Harding, J.; Freak-Poli, R.; Stevenson, C.; Peeters, A. Diabetes and risk of physical disability in adults: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2013, 1, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; Kuller, L.H.; Broudeau, R.; Kammerer, C.; Huang, E.S.; Korytkowski, M.T.; Munshi, M.N.; Odegard, P.S.; et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes Care 2007, 30, 1507–1512. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 2010, 26, 152–155. [Google Scholar] [CrossRef]
- Ma, G.C.; Zou, L.L.; Dai, W.; Wang, Z.Z.; Cao, Y.H. The association between glucose fluctuation with sarcopenia in elderly patients with type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1912–1920. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Scott, D.; de Courten, B.; Ebeling, P.R. Sarcopenia: A potential cause and consequence of type 2 diabetes in Australia’s ageing population? Med. J. Aust. 2016, 205, 329–333. [Google Scholar] [CrossRef]
- Mesinovic, J.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1057–1072. [Google Scholar] [CrossRef]
- Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Beck, R.W.; Connor, C.G.; Mullen, D.M.; Wesley, D.M.; Bergenstal, R.M. The fallacy of average: How using HbA1c alone to assess glycemic control can be misleading. Diabetes Care 2017, 40, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Kim, J.H. Glycemic variability: How do we measure it and why is it important? Diabetes Metab. J. 2015, 39, 273–282. [Google Scholar] [CrossRef]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International consensus on use of continuous glucose monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, I.B.; Sherr, J.L.; Hood, K.K. Connecting the dots: Validation of time in range metrics with microvascular outcomes. Diabetes Care 2019, 42, 345–348. [Google Scholar] [CrossRef]
- Lu, J.; Ma, X.; Zhou, J.; Zhang, L.; Mo, Y.; Ying, L.; Lu, W.; Zhu, W.; Bao, Y.; Vigersky, R.A.; et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 2018, 41, 2370–2376. [Google Scholar] [CrossRef]
- Krinsley, J.S.; Preiser, J.-C. Time in blood glucose range 70 to 140 mg/dl >80% is strongly associated with increased survival in non-diabetic critically ill adults. Crit. Care 2015, 19, 179. [Google Scholar] [CrossRef]
- Omar, A.S.; Salama, A.; Allam, M.; Elgohary, Y.; Mohammed, S.; Tuli, A.K.; Singh, R. Association of time in blood glucose range with outcomes following cardiac surgery. BMC Anesthesiol. 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and validity of grip and pinch strength evaluations. J. Hand Surg. Am. 1984, 9, 222–226. [Google Scholar] [CrossRef]
- Peolsson, A.; Hedlund, R.; Oberg, B. Intra- and inter-tester reliability and reference values for hand strength. J. Rehabil. Med. 2001, 33, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Hand-grip dynamometry predicts future outcomes in aging adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sayer, A.A.; Syddall, H.E.; Martin, H.J.; Dennison, E.M.; Anderson, F.H.; Cooper, C. Falls, sarcopenia, and growth in early life: Findings from the hertfordshire cohort study. Am. J. Epidemiol. 2006, 164, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Syddall, H.E.; Martin, H.J.; Harwood, R.H.; Cooper, C.; Sayer, A.A. The SF-36: A simple, effective measure of mobility-disability for epidemiological studies. J. Nutr. Health Aging 2009, 13, 57–62. [Google Scholar] [CrossRef]
- Gale, C.R.; Martyn, C.N.; Cooper, C.; Sayer, A.A. Grip strength, body composition, and mortality. Int. J. Epidemiol. 2007, 36, 228–235. [Google Scholar] [CrossRef]
- Cooper, R.; Kuh, D.; Hardy, R.; Mortality Review Group; on behalf of the FALCon and HALCyon Study Teams. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport. 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Hamilton, D.M.; Haennel, R.G. Validity and reliability of the 6-minute walk test in a cardiac rehabilitation population. J. Cardiopulm. Rehabil. 2000, 20, 156–164. [Google Scholar] [CrossRef]
- Donovan, K.; E Lord, S.; McNaughton, H.K.; Weatherall, M. Mobility beyond the clinic: The effect of environment on gait and its measurement in community-ambulant stroke survivors. Clin. Rehabil. 2008, 22, 556–563. [Google Scholar] [CrossRef]
- Wolfson, L.; Whipple, R.; Amerman, P.; Tobin, J.N. Gait assessment in the elderly: A gait abnormality rating scale and its relation to falls. J. Gerontol. 1990, 45, M12–M19. [Google Scholar] [CrossRef]
- Rossier, P.; Wade, D.T. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch. Phys. Med. Rehabil. 2001, 82, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.; Lusardi, M. White paper: Walking speed: The sixth vital sign. J. Geriatr. Phys. Ther. 2009, 32, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Van Iersel, M.B.; Hoefsloot, W.; Munneke, M.; Bloem, B.R.; Rikkert, M.G.M.O. Systematic review of quantitative clinical gait analysis in patients with dementia. Z. Fur Gerontol. Und Geriatr. 2004, 37, 27–32. [Google Scholar] [CrossRef]
- Van Iersel, M.B.; Munneke, M.; Esselink, R.A.J.; Benraad, C.E.M.; Olde Rikkert, M.G.M. Gait velocity and the Timed-Up-and-Go test were sensitive to changes in mobility in frail elderly patients. J. Clin. Epidemiol. 2008, 61, 186–191. [Google Scholar] [CrossRef]
- Van Iersel, M.B.; Ribbers, H.; Munneke, M.; Borm, G.F.; Rikkert, M.G.O. The effect of cognitive dual tasks on balance during walking in physically fit elderly people. Arch. Phys. Med. Rehabil. 2007, 88, 187–191. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public. Health 1992, 83 (Suppl. S2), S7–S11. [Google Scholar]
- Dite, W.; Temple, V.A. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1566–1571. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Kalyani, R.R.; Tian, J.; Xue, Q.; Walston, J.; Cappola, A.R.; Fried, L.P.; Brancati, F.L.; Blaum, C.S. Hyperglycemia and incidence of frailty and lower extremity mobility limitations in older women. J. Am. Geriatr. Soc. 2012, 60, 1701–1707. [Google Scholar] [CrossRef]
- Yoon, J.W.; Ha, Y.-C.; Kim, K.M.; Moon, J.H.; Choi, S.H.; Lim, S.; Park, Y.J.; Lim, J.Y.; Kim, K.W.; Park, K.S.; et al. Hyperglycemia Is Associated with Impaired Muscle Quality in Older Men with Diabetes: The Korean Longitudinal Study on Health and Aging. Diabetes Metab. J. 2016, 40, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Metter, E.J.; Egan, J.; Golden, S.H.; Ferrucci, L. Hyperglycemia predicts persistently lower muscle strength with aging. Diabetes Care 2015, 38, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.J.; Rodriguez-Mañas, L. Diabetes and frailty: Two converging conditions? Can. J. Diabetes 2016, 40, 77–83. [Google Scholar] [CrossRef]
- Velázquez-Alva, M.C.; Irigoyen-Camacho, M.E.; Zepeda-Zepeda, M.A.; Lazarevich, I.; Arrieta-Cruz, I.; D’Hyver, C. Sarcopenia, nutritional status and type 2 diabetes mellitus: A cross-sectional study in a group of Mexican women residing in a nursing home. Nutr. Diet. 2020, 77, 515–522. [Google Scholar] [CrossRef]
- Fowler, M.J. Microvascular and macrovascular complications of diabetes. Clin. Diabetes 2008, 26, 77–82. [Google Scholar] [CrossRef]
- Nomura, T.; Ishiguro, T.; Ohira, M.; Ikeda, Y. Diabetic polyneuropathy is a risk factor for decline of lower extremity strength in patients with type 2 diabetes. J. Diabetes Investig. 2017, 9, 186–192. [Google Scholar] [CrossRef]
- Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T.; Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef]
- De Rekeneire, N.; Peila, R.; Ding, J.; Colbert, L.H.; Visser, M.; Shorr, R.I.; Kritchevsky, S.B.; Kuller, L.H.; Strotmeyer, E.S.; Schwartz, A.V.; et al. Diabetes, hyperglycemia, and inflammation in older individuals: The health, aging and body composition study. Diabetes Care 2006, 29, 1902–1908. [Google Scholar] [CrossRef]
- Vozarova, B.; Weyer, C.; Lindsay, R.S.; Pratley, R.E.; Bogardus, C.; Tataranni, P.A. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002, 51, 455–461. [Google Scholar] [CrossRef]
- Haddad, F.; Zaldivar, F.; Cooper, D.M.; Adams, G.R. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol. 2005, 98, 911–917. [Google Scholar] [CrossRef]
Total Mean | Total SD | >50 N = 9 | 50≤70 N = 27 | 70≥ N = 103 | p | |
---|---|---|---|---|---|---|
Male | 90 (64.7) | 7 (77.8) | 18 (66.7) | 61 (59.2) | 0.464 | |
Age | 71.29 | 7.35 | 76.44 ± 7.75 | 69.63 ± 7.25 | 71.23 ± 7.10 | 0.067 |
Education (years) | 15.48 | 3.46 | 14.1 ± 2.80 | 15.15 ± 3.24 | 15.63 ± 3.59 | 0.447 |
Dominant hand (R) | 129 (92.8) | 7 (77.8) | 26 (96.3) | 91 (88.3) | 0.637 | |
Weight (Kg) | 80.57 | 14.53 | 71.66 ± 7.38 | 78.11 ± 11.44 | 81.52 ± 15.54 | 0.107 |
Hight (cm) | 167.07 | 8.71 | 167.22 ± 8.65 | 169.37 ± 9.00 | 169.06 ± 8.75 | 0.810 |
Waist circumduction (cm) | 106.67 | 14.12 | 98.91 ± 7.85 | 104.58 ± 10.26 | 106.32 ± 11.22 | 0.244 |
BMI | 28.13 | 4.28 | 25.75 ± 3.46 | 27.25 ± 3.59 | 28.44 ± 4.40 | 0.108 |
HTN | 90 (64.7) | 5 (55.6) | 22 (81.5) | 65 (63.1) | 0.156 | |
Dyslipidemia | 111 (79.8) | 8 (88.9) | 18 (66.7) | 80 (77.7) | 0.320 | |
Diabetes duration (years) | 17.09 | 10.32 | 20.33 ± 14.13 | 22.55 ± 9.45 | 15.60 ± 9.94 | 0.012 |
HbA1C | 7.06 | 1.10 | 9.05 ± 1.81 | 7.77 ± 0.81 | 6.70 ± 0.79 | 0.000 |
Diabetes complication | 134 (96.4) | 9 (100) | 23 (85.2) | 96 (93.2) | 0.257 | |
Severe hypo | 23 (16.5) | 3 (33.3) | 8 (29.6) | 12 (11.7) | 0.030 | |
Insulin | 41 (29.4) | 5 (55.5) | 19 (70.3) | 17 (16.5) | 0.000 | |
Oral diabetes medications | 118 (84.8) | 5 (55.6) | 23 (85.2) | 85 (82.5) | 0.117 | |
Smoking | 9 (6.4) | 0 (0) | 2 (7.4) | 7 (6.8) | 0.701 | |
Former smoker | 56 (40.2) | 3 (33.3) | 12 (44.4) | 40 (38.8) | 0.787 | |
History of falls | 28 (20.1) | 2 (22.2) | 4 (14.8) | 21 (20.4) | 0.813 |
Total Mean | Total SD | >50 N = 9 | 50≥70 N = 27 | p | |
---|---|---|---|---|---|
GRIP strength dominant hand (KG) | 25.27 | 9.51 | 24.44 ± 10.77 | 25.63 ± 9.19 | 0.803 |
BERG total score | 52.87 | 9.00 | 53.30 ± 5.99 | 52.84 ± 10.10 | 0.791 |
FSST time (s) | 10.40 | 3.30 | 10.53 ± 3.97 | 10.28 ± 3.02 | 0.738 |
6 MWT (meter) | 509.33 | 117.22 | 498.80 ± 135.07 | 518.73 ± 111.48 | 0.149 |
30 s sit to stand | 16.32 | 5.77 | 15.21 ± 4.34 | 16.80 ± 6.09 | 0.235 |
TUG (s) | 8.91 | 2.93 | 9.70 ± 4.17 | 8.56 ± 2.30 | 0.043 |
10 MWT (s) | 8.01 | 2.18 | 8.24 ± 2.36 | 7.79 ± 1.80 | 0.208 |
One-leg stance (s) | 17.61 | 10.43 | 15.22 ± 10.65 | 18.55 ± 9.99 | 0.236 |
360 turn test (s) | 5.97 | 2.00 | 6.11 ± 1.91 | 5.78 ± 1.76 | 0.031 |
Physical activity questionnaire Total score | 5.43 | 1.75 | 5.66 ± 1.85 | 5.49 ± 1.76 | 0.282 |
Prefrail | 14 (10) | 3 (11.11) | 9 (8.1) | 0.588 | |
Frail | 6 (4.3) | 2 (7.4) | 1 (1) | 0.002 | |
GRIP strength dominant hand (KG) | 25.27 | 9.51 | 24.44 ± 10.77 | 25.63 ± 9.19 | 0.803 |
BERG total score | 52.87 | 9.00 | 53.30 ± 5.99 | 52.84 ± 10.10 | 0.791 |
FSST time (s) | 10.40 | 3.30 | 10.53 ± 3.97 | 10.28 ± 3.02 | 0.738 |
6MWT (meter) | 509.33 | 0.4 ± 0.6 * | 498.80 ± 135.07 | 518.73 ± 111.48 | 0.149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basson-Shleymovich, Y.; Yahalom-Peri, T.; Azmon, M.; Cukierman-Yaffe, T. The Association Between Time in Range %, Measured by Continuous Glucose Monitoring (CGM) and Physical Health Agility Status Indices Amongst Older People with T2D: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 7089. https://doi.org/10.3390/jcm13237089
Basson-Shleymovich Y, Yahalom-Peri T, Azmon M, Cukierman-Yaffe T. The Association Between Time in Range %, Measured by Continuous Glucose Monitoring (CGM) and Physical Health Agility Status Indices Amongst Older People with T2D: A Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(23):7089. https://doi.org/10.3390/jcm13237089
Chicago/Turabian StyleBasson-Shleymovich, Yamit, Tal Yahalom-Peri, Michal Azmon, and Tali Cukierman-Yaffe. 2024. "The Association Between Time in Range %, Measured by Continuous Glucose Monitoring (CGM) and Physical Health Agility Status Indices Amongst Older People with T2D: A Cross-Sectional Study" Journal of Clinical Medicine 13, no. 23: 7089. https://doi.org/10.3390/jcm13237089
APA StyleBasson-Shleymovich, Y., Yahalom-Peri, T., Azmon, M., & Cukierman-Yaffe, T. (2024). The Association Between Time in Range %, Measured by Continuous Glucose Monitoring (CGM) and Physical Health Agility Status Indices Amongst Older People with T2D: A Cross-Sectional Study. Journal of Clinical Medicine, 13(23), 7089. https://doi.org/10.3390/jcm13237089