Surgical Management of Adult Spinal Deformity Patients with Osteoporosis
Abstract
:1. Introduction
2. Methods
3. Osteoporosis and Its Surgical Challenges
4. Post-Surgical Outcomes
5. Medical Management of Osteoporosis in ASD Patients
5.1. Antiresorptive Medications
5.1.1. Bisphosphonates (e.g., Alendronate, Pamidronate, Zoledronic Acid)
5.1.2. Selective Estrogen Receptor Modulators (SERMs)
5.1.3. Denosumab (Prolia™, Xgeva™)
5.2. Anabolic Medications
5.2.1. Teriparatide (Forteo™) and Abaloparatide (Tymlos™)
5.2.2. Romosozumab (Evinity™)
6. Surgical Adaptations for the Osteoporotic Spine
6.1. Age-Adjusted Alignment
6.2. Fusion Levels
6.3. Screws, Hooks, and Tethers
6.4. Expandable Screws
6.5. Cement Augmentation
6.6. Minimally Invasive Surgery
6.7. Optimal Surgical Approach: Instrumentation vs. Conservative Management
7. Clinical Cases
7.1. Case #1
7.1.1. History
7.1.2. Follow-Up
7.2. Case #2
7.2.1. History
7.2.2. Follow-Up
7.3. Case #3
7.3.1. History
7.3.2. Follow-Up
8. Conclusions
9. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.J.; Yang, J.H.; Chang, D.-G.; Suk, S.-I.; Suh, S.W.; Song, K.-S.; Park, J.-B.; Cho, W. Adult Spinal Deformity: Current Concepts and Decision-Making Strategies for Management. Asian Spine J. 2020, 14, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Dubey, A.; Gamez, L.; El Fegoun, A.B.; Hwang, K.; Pagala, M.; Farcy, J.-P. Adult Scoliosis: Prevalence, SF-36, and Nutritional Parameters in an Elderly Volunteer Population. Spine 2005, 30, 1082–1085. [Google Scholar] [CrossRef] [PubMed]
- Youssef, J.A.; Orndorff, D.O.; Patty, C.A.; Scott, M.A.; Price, H.L.; Hamlin, L.F.; Williams, T.L.; Uribe, J.S.; Deviren, V. Current Status of Adult Spinal Deformity. Glob. Spine J. 2013, 3, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Ames, C.P.; Scheer, J.K.; Lafage, V.; Smith, J.S.; Bess, S.; Berven, S.H.; Mundis, G.M.; Sethi, R.K.; Deinlein, D.A.; Coe, J.D.; et al. Adult Spinal Deformity: Epidemiology, Health Impact, Evaluation, and Management. Spine Deform. 2016, 4, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Lafage, V.; Shaffrey, C.I.; Schwab, F.; Lafage, R.; Hostin, R.; O’Brien, M.; Boachie-Adjei, O.; Akbarnia, B.A.; Mundis, G.M.; et al. Outcomes of Operative and Nonoperative Treatment for Adult Spinal Deformity. Neurosurgery 2016, 78, 851–861. [Google Scholar] [CrossRef]
- Jia, Y.; Peng, Z.; Qin, Y.; Wang, G. Surgical versus Nonsurgical Treatment for Adult Spinal Deformity: A Systematic Review and Meta-Analysis. World Neurosurg. 2022, 159, 1–11. [Google Scholar] [CrossRef]
- Kanis, J.A.; Kanis, J.A. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Synopsis of a WHO Report. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef]
- Office of the Surgeon General (US). Bone Health and Osteoporosis: A Report of the Surgeon General; Office of the Surgeon General (US): Rockville, MA, USA, 2004.
- Looker, A.C.; Sarafrazi Isfahani, N.; Fan, B.; Shepherd, J.A. Trends in Osteoporosis and Low Bone Mass in Older US Adults, 2005–2006 through 2013–2014. Osteoporos. Int. 2017, 28, 1979–1988. [Google Scholar] [CrossRef]
- Gupta, A.; Cha, T.; Schwab, J.; Fogel, H.; Tobert, D.G.; Razi, A.E.; Paulino, C.; Hecht, A.C.; Bono, C.M.; Hershman, S. Osteoporosis Is Underrecognized and Undertreated in Adult Spinal Deformity Patients. J. Spine Surg. 2021, 7, 1–7. [Google Scholar] [CrossRef]
- Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Kubik, M.; et al. Screening for Osteoporosis to Prevent Fractures. JAMA 2018, 319, 2521. [Google Scholar] [CrossRef]
- Anam, A.K.; Insogna, K. Update on Osteoporosis Screening and Management. Med. Clin. N. Am. 2021, 105, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Li, W.; Xu, F.; Du, G. Use of Hounsfield Units of S1 Body to Diagnose Osteoporosis in Patients with Lumbar Degenerative Diseases. Neurosurg. Focus 2019, 46, E6. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.-C.; Elysee, J.; Lafage, R.; McCarthy, M.; Louie, P.K.; Alshabab, B.S.; Weissmann, K.; Lafage, V.; Schwab, F.; Kim, H.J. Preoperative Hounsfield Units at the Planned Upper Instrumented Vertebrae May Predict Proximal Junctional Kyphosis in Adult Spinal Deformity. Spine 2021, 46, E174–E180. [Google Scholar] [CrossRef] [PubMed]
- Yoshie, N.; Maruo, K.; Arizumi, F.; Kishima, K.; Kusukawa, T.; Tachibana, T. The Relationship between the Hounsfield Units Value of the Upper Instrumented Vertebra and the Severity of Proximal Junctional Fracture after Adult Spinal Deformity Surgery. Medicina 2023, 59, 1086. [Google Scholar] [CrossRef]
- Duan, P.-G.; Mummaneni, P.V.; Rivera, J.; Guinn, J.M.V.; Wang, M.; Xi, Z.; Li, B.; Wu, H.-H.; Ames, C.P.; Burch, S.; et al. The Association between Lower Hounsfield Units of the Upper Instrumented Vertebra and Proximal Junctional Kyphosis in Adult Spinal Deformity Surgery with a Minimum 2-Year Follow-Up. Neurosurg. Focus 2020, 49, E7. [Google Scholar] [CrossRef]
- Chanbour, H.; Steinle, A.M.; Chen, J.W.; Waddell, W.H.; Vickery, J.; Labarge, M.E.; Longo, M.; Gardocki, R.J.; Abtahi, A.M.; Stephens, B.F.; et al. The Importance of Hounsfield Units in Adult Spinal Deformity Surgery: Finding an Optimal Threshold to Minimize the Risk of Mechanical Complications. J. Spine Surg. 2023, 9, 149–158. [Google Scholar] [CrossRef]
- Bonucci, E.; Ballanti, P. Osteoporosis—Bone Remodeling and Animal Models. Toxicol. Pathol. 2014, 42, 957–969. [Google Scholar] [CrossRef]
- Lems, W.F.; Raterman, H.G. Critical Issues and Current Challenges in Osteoporosis and Fracture Prevention. An Overview of Unmet Needs. Ther. Adv. Musculoskelet. Dis. 2017, 9, 299–316. [Google Scholar] [CrossRef]
- Chaddha, R.; Agrawal, G.; Koirala, S.; Ruparel, S. Osteoporosis and Vertebral Column. Indian J. Orthop. 2023, 57, 163–175. [Google Scholar] [CrossRef]
- Sinaki, M. Musculoskeletal Challenges of Osteoporosis. Aging Clin. Exp. Res. 1998, 10, 249–262. [Google Scholar] [CrossRef]
- Mattei, T.A.; Rehman, A.A.; Issawi, A.; Fassett, D.R. Surgical Challenges in the Management of Cervical Kyphotic Deformity in Patients with Severe Osteoporosis: An Illustrative Case of a Patient with Hajdu–Cheney Syndrome. Eur. Spine J. 2015, 24, 2746–2753. [Google Scholar] [CrossRef] [PubMed]
- Fiani, B.; Newhouse, A.; Sarhadi, K.J.; Arshad, M.; Soula, M.; Cathel, A. Special Considerations to Improve Clinical Outcomes in Patients with Osteoporosis Undergoing Spine Surgery. Int. J. Spine Surg. 2021, 15, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Scheyerer, M.J.; Spiegl, U.J.A.; Grueninger, S.; Hartmann, F.; Katscher, S.; Osterhoff, G.; Perl, M.; Pumberger, M.; Schmeiser, G.; Ullrich, B.W.; et al. Risk Factors for Failure in Conservatively Treated Osteoporotic Vertebral Fractures: A Systematic Review. Glob. Spine J. 2022, 12, 289–297. [Google Scholar] [CrossRef]
- Pesce, V.; Speciale, D.; Sammarco, G.; Patella, S.; Spinarelli, A.; Patella, V. Surgical Approach to Bone Healing in Osteoporosis. Clin. Cases Miner. Bone Metab. 2009, 6, 131–135. [Google Scholar]
- Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The Epidemiology of Osteoporosis. Br. Med. Bull. 2020, 133, 105–117. [Google Scholar] [CrossRef]
- Lerner, U.H. Bone Remodeling in Post-Menopausal Osteoporosis. J. Dent. Res. 2006, 85, 584–595. [Google Scholar] [CrossRef]
- Jain, A.; Hassanzadeh, H.; Puvanesarajah, V.; Klineberg, E.O.; Sciubba, D.M.; Kelly, M.P.; Hamilton, D.K.; Lafage, V.; Buckland, A.J.; Passias, P.G.; et al. Incidence of Perioperative Medical Complications and Mortality among Elderly Patients Undergoing Surgery for Spinal Deformity: Analysis of 3519 Patients. J. Neurosurg. Spine 2017, 27, 534–539. [Google Scholar] [CrossRef]
- Lafage, R.; Bass, R.D.; Klineberg, E.; Smith, J.S.; Bess, S.; Shaffrey, C.; Burton, D.C.; Kim, H.J.; Eastlack, R.; Mundis, G.; et al. Complication Rates Following Adult Spinal Deformity Surgery. Spine 2024, 49, 829–839. [Google Scholar] [CrossRef]
- Kammien, A.J.; Galivanche, A.R.; Joo, P.Y.; Elaydi, A.; Whang, P.; Saifi, C.; Grauer, J.N.; Varthi, A. Comparison of Postoperative Outcomes in Patients with and without Osteoporosis Undergoing Single-Level Anterior Cervical Discectomy and Fusion. N. Am. Spine Soc. J. 2022, 12, 100174. [Google Scholar] [CrossRef]
- Mugge, L.; DeBacker Dang, D.; Caras, A.; Dang, J.V.; Diekemper, N.; Green, B.A.; Gjolaj, J.P.; Fanous, A.A. Osteoporosis as a Risk Factor for Intraoperative Complications and Long-Term Instrumentation Failure in Patients with Scoliotic Spinal Deformity. Spine 2022, 47, 1435–1442. [Google Scholar] [CrossRef]
- Varshneya, K.; Jokhai, R.T.; Fatemi, P.; Stienen, M.N.; Medress, Z.A.; Ho, A.L.; Ratliff, J.K.; Veeravagu, A. Predictors of 2-Year Reoperation in Medicare Patients Undergoing Primary Thoracolumbar Deformity Surgery. J. Neurosurg. Spine 2020, 33, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Puvanesarajah, V.; Shen, F.H.; Cancienne, J.M.; Novicoff, W.M.; Jain, A.; Shimer, A.L.; Hassanzadeh, H. Risk Factors for Revision Surgery Following Primary Adult Spinal Deformity Surgery in Patients 65 Years and Older. J. Neurosurg. Spine 2016, 25, 486–493. [Google Scholar] [CrossRef]
- Varshneya, K.; Stienen, M.N.; Medress, Z.A.; Fatemi, P.; Pendharkar, A.V.; Ratliff, J.K.; Veeravagu, A. Risk Factors for Revision Surgery After Primary Adult Thoracolumbar Deformity Surgery. Clin. Spine Surg. A Spine Publ. 2022, 35, E94–E98. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.I.; Nunna, R.S.; Smith, J.S.; Shanker, R.M.; Cherney, A.A.; Thomson, K.B.; Chilakapati, S.; Mehta, A.I.; Adogwa, O. The Role of Bone Mineral Density in Adult Spinal Deformity Patients Undergoing Corrective Surgery: A Matched Analysis. Acta Neurochir. 2022, 164, 2327–2335. [Google Scholar] [CrossRef]
- Gupta, A.; Cha, T.; Schwab, J.; Fogel, H.; Tobert, D.; Razi, A.E.; Hecht, A.; Bono, C.M.; Hershman, S. Osteoporosis Increases the Likelihood of Revision Surgery Following a Long Spinal Fusion for Adult Spinal Deformity. Spine J. 2021, 21, 134–140. [Google Scholar] [CrossRef]
- Ogiri, M.; Nishida, K.; Park, H.; Rossi, A. Systematic Literature Review and Meta-Analysis on the Clinical Outcomes of Spine Surgeries in Patients with Concurrent Osteoporosis. Spine Surg. Relat. Res. 2023, 7, 200–210. [Google Scholar] [CrossRef]
- Lechtholz-Zey, E.A.; Gettleman, B.S.; Ayad, M.; Mills, E.S.; Shelby, H.; Ton, A.; Shah, I.; Safaee, M.M.; Wang, J.C.; Alluri, R.K.; et al. The Effect of Osteoporosis on Complications and Reoperation Rates After Surgical Management of Adult Thoracolumbar Spinal Deformity: A Systematic Review and Meta Analysis. Glob. Spine J. 2024, 8, 2420–2439. [Google Scholar] [CrossRef]
- Zhang, A.S.; Khatri, S.; Balmaceno-Criss, M.; Alsoof, D.; Daniels, A.H. Medical Optimization of Osteoporosis for Adult Spinal Deformity Surgery: A State-of-the-Art Evidence-Based Review of Current Pharmacotherapy. Spine Deform. 2023, 11, 579–596. [Google Scholar] [CrossRef]
- Fleisch, H.; Russell, R.G.G.; Straumann, F. Effect of Pyrophosphate on Hydroxyapatite and Its Implications in Calcium Homeostasis. Nature 1966, 212, 901–903. [Google Scholar] [CrossRef]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef]
- Guppy, K.H.; Chan, P.H.; Prentice, H.A.; Norheim, E.P.; Harris, J.E.; Brara, H.S. Does the Use of Preoperative Bisphosphonates in Patients with Osteopenia and Osteoporosis Affect Lumbar Fusion Rates? Analysis from a National Spine Registry. Neurosurg. Focus 2020, 49, E12. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Song, X.; Guan, X.; Wu, D.; Wang, J.; Liu, Q. Postoperative Bisphosphonate Do Not Significantly Alter the Fusion Rate after Lumbar Spinal Fusion: A Meta-Analysis. J. Orthop. Surg. Res. 2021, 16, 284. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Dai, Z.; Kang, Y.; Lv, G.; Keller, E.T.; Jiang, Y. Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporos Int. 2016, 27, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.J.; Hickish, T.; Kanis, J.A.; Tidy, A.; Ashley, S. Effect of Tamoxifen on Bone Mineral Density Measured by Dual-Energy x-Ray Absorptiometry in Healthy Premenopausal and Postmenopausal Women. J. Clin. Oncol. 1996, 14, 78–84. [Google Scholar] [CrossRef]
- Goldstein, S.R. Selective Estrogen Receptor Modulators and Bone Health. Climacteric 2022, 25, 56–59. [Google Scholar] [CrossRef]
- Hadji, P. The Evolution of Selective Estrogen Receptor Modulators in Osteoporosis Therapy. Climacteric 2012, 15, 513–523. [Google Scholar] [CrossRef]
- Gennari, L.; Merlotti, D.; Valleggi, F.; Martini, G.; Nuti, R. Selective Estrogen Receptor Modulators for Postmenopausal Osteoporosis. Drugs Aging 2007, 24, 361–379. [Google Scholar] [CrossRef]
- Ettinger, B. Reduction of Vertebral Fracture Risk in Postmenopausal Women with Osteoporosis Treated With Raloxifene Results From a 3-Year Randomized Clinical Trial. JAMA 1999, 282, 637. [Google Scholar] [CrossRef]
- Park, S.B.; Kim, C.H.; Hong, M.; Yang, H.-J.; Chung, C.K. Effect of a Selective Estrogen Receptor Modulator on Bone Formation in Osteoporotic Spine Fusion Using an Ovariectomized Rat Model. Spine J. 2016, 16, 72–81. [Google Scholar] [CrossRef]
- Sun, Q.; Nan, X.-Y.; Tian, F.-M.; Liu, F.; Ping, S.-H.; Zhou, Z.; Zhang, L. Raloxifene Retards the Progression of Adjacent Segmental Intervertebral Disc Degeneration by Inhibiting Apoptosis of Nucleus Pulposus in Ovariectomized Rats. J. Orthop. Surg. Res. 2021, 16, 368. [Google Scholar] [CrossRef]
- Diab, D.L.; Watts, N.B. Denosumab in Osteoporosis. Expert Opin. Drug Saf. 2014, 13, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Tani, S.; Ishikawa, K.; Kudo, Y.; Tsuchiya, K.; Matsuoka, A.; Maruyama, H.; Emori, H.; Yamamura, R.; Hayakawa, C.; Sekimizu, M.; et al. The Effect of Denosumab on Pedicle Screw Fixation: A Prospective 2-Year Longitudinal Study Using Finite Element Analysis. J. Orthop. Surg. Res. 2021, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.L. 184. Denosumab Protects against Bone Loss and Maintains Function in Osteopenic Patients with Lumbar Degenerative Diseases after Lumbar Fusion Surgery: A Randomized Controlled Trial. Spine J. 2023, 23, S94. [Google Scholar] [CrossRef]
- Canalis, E. MANAGEMENT OF ENDOCRINE DISEASE: Novel Anabolic Treatments for Osteoporosis. Eur. J. Endocrinol. 2018, 178, R33–R44. [Google Scholar] [CrossRef]
- Jilka, R.L.; Weinstein, R.S.; Bellido, T.; Roberson, P.; Parfitt, A.M.; Manolagas, S.C. Increased Bone Formation by Prevention of Osteoblast Apoptosis with Parathyroid Hormone. J. Clin. Investig. 1999, 104, 439–446. [Google Scholar] [CrossRef]
- Jilka, R.L. Molecular and Cellular Mechanisms of the Anabolic Effect of Intermittent PTH. Bone 2007, 40, 1434–1446. [Google Scholar] [CrossRef]
- Cosman, F.; Nieves, J.; Zion, M.; Woelfert, L.; Luckey, M.; Lindsay, R. Daily and Cyclic Parathyroid Hormone in Women Receiving Alendronate. N. Engl. J. Med. 2005, 353, 566–575. [Google Scholar] [CrossRef]
- Cosman, F.; Eriksen, E.F.; Recknor, C.; Miller, P.D.; Guañabens, N.; Kasperk, C.; Papanastasiou, P.; Readie, A.; Rao, H.; Gasser, J.A.; et al. Effects of Intravenous Zoledronic Acid plus Subcutaneous Teriparatide [RhPTH(1–34)] in Postmenopausal Osteoporosis. J. Bone Miner. Res. 2011, 26, 503–511. [Google Scholar] [CrossRef]
- Leder, B.Z.; Tsai, J.N.; Uihlein, A.V.; Burnett-Bowie, S.-A.M.; Zhu, Y.; Foley, K.; Lee, H.; Neer, R.M. Two Years of Denosumab and Teriparatide Administration in Postmenopausal Women With Osteoporosis (The DATA Extension Study): A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2014, 99, 1694–1700. [Google Scholar] [CrossRef]
- Tsai, J.N.; Uihlein, A.V.; Lee, H.; Kumbhani, R.; Siwila-Sackman, E.; McKay, E.A.; Burnett-Bowie, S.-A.M.; Neer, R.M.; Leder, B.Z. Teriparatide and Denosumab, Alone or Combined, in Women with Postmenopausal Osteoporosis: The DATA Study Randomised Trial. Lancet 2013, 382, 50–56. [Google Scholar] [CrossRef]
- Black, D.M.; Bilezikian, J.P.; Ensrud, K.E.; Greenspan, S.L.; Palermo, L.; Hue, T.; Lang, T.F.; McGowan, J.A.; Rosen, C.J. One Year of Alendronate after One Year of Parathyroid Hormone (1–84) for Osteoporosis. N. Engl. J. Med. 2005, 353, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, B.; Martin, S.J.; Crans, G.; Pavo, I. Differential Effects of Teriparatide on BMD After Treatment With Raloxifene or Alendronate. J. Bone Miner. Res. 2004, 19, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Ide, M.; Yamada, K.; Kaneko, K.; Sekiya, T.; Kanai, K.; Higashi, T.; Saito, T. Combined Teriparatide and Denosumab Therapy Accelerates Spinal Fusion Following Posterior Lumbar Interbody Fusion. Orthop. Traumatol. Surg. Res. 2018, 104, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Raad, M.; Ortiz-Babilonia, C.; Hassanzadeh, H.; Puvanesarajah, V.; Kebaish, K.; Jain, A. Cost-Utility Analysis of Neoadjuvant Teriparatide Therapy in Osteopenic Patients Undergoing Adult Spinal Deformity Surgery. Spine 2022, 47, 1121–1127. [Google Scholar] [CrossRef]
- Yagi, M.; Ohne, H.; Konomi, T.; Fujiyoshi, K.; Kaneko, S.; Komiyama, T.; Takemitsu, M.; Yato, Y.; Machida, M.; Asazuma, T. Teriparatide Improves Volumetric Bone Mineral Density and Fine Bone Structure in the UIV+1 Vertebra, and Reduces Bone Failure Type PJK after Surgery for Adult Spinal Deformity. Osteoporos. Int. 2016, 27, 3495–3502. [Google Scholar] [CrossRef]
- Seki, S.; Hirano, N.; Kawaguchi, Y.; Nakano, M.; Yasuda, T.; Suzuki, K.; Watanabe, K.; Makino, H.; Kanamori, M.; Kimura, T. Teriparatide versus Low-Dose Bisphosphonates before and after Surgery for Adult Spinal Deformity in Female Japanese Patients with Osteoporosis. Eur. Spine J. 2017, 26, 2121–2127. [Google Scholar] [CrossRef]
- Oba, H.; Takahashi, J.; Yokomichi, H.; Hasegawa, T.; Ebata, S.; Mukaiyama, K.; Ohba, T.; Ushirozako, H.; Kuraishi, S.; Ikegami, S.; et al. Weekly Teriparatide Versus Bisphosphonate for Bone Union During 6 Months After Multi-Level Lumbar Interbody Fusion for Osteoporotic Patients. Spine 2020, 45, 863–871. [Google Scholar] [CrossRef]
- Maruo, K.; Arizumi, F.; Kishima, K.; Yoshie, N.; Kusukawa, T.; Tachibana, T. Effects of Perioperative Teriparatide Treatment on the Hounsfield Unit Values at the Upper Instrumented Vertebra in Adult Spinal Deformity Surgery. Clin. Spine Surg. 2023, 36, E234–E238. [Google Scholar] [CrossRef]
- Kim, H.-J. Comparative study between teriparatide and denosumab on the prevention of proximal junctional kyphosis: Prospective, randomized controlled trial. N. Am. Spine. Soc. J. 2024, 18, 100396. [Google Scholar] [CrossRef]
- He, X.-Y.; Chen, H.-X.; Zhao, Z.-R. Efficacy and safety of different anti-osteoporotic drugs for the spinal fusion surgery: A network meta-analysis. World J. Clin. Cases 2023, 11, 7350–7362. [Google Scholar] [CrossRef]
- Thompson, J.C.; Wanderman, N.; Anderson, P.A.; Freedman, B.A. Abaloparatide and the Spine: A Narrative Review. Clin. Interv. Aging 2020, 15, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.D.; Hattersley, G.; Riis, B.J.; Williams, G.C.; Lau, E.; Russo, L.A.; Alexandersen, P.; Zerbini, C.A.F.; Hu, M.Y.; Harris, A.G.; et al. Effect of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal Women With Osteoporosis. JAMA 2016, 316, 722. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Sone, T.; Soen, S.; Tanaka, S.; Yamashita, A.; Inoue, T. Abaloparatide Increases Lumbar Spine and Hip BMD in Japanese Patients With Osteoporosis: The Phase 3 ACTIVE-J Study. J. Clin. Endocrinol. Metab. 2022, 107, e4222–e4231. [Google Scholar] [CrossRef] [PubMed]
- Al-Najjar, Y.A.; Quraishi, D.A.; Kumar, N.; Hussain, I. Bone Health Optimization in Adult Spinal Deformity Patients: A Narrative Review. J. Clin. Med. 2024, 13, 4891. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Bolster, M. Profile of Romosozumab and Its Potential in the Management of Osteoporosis. Drug Des. Devel. Ther. 2017, 11, 1221–1231. [Google Scholar] [CrossRef]
- Miller, S.A.; St. Onge, E.L.; Whalen, K.L. Romosozumab: A Novel Agent in the Treatment for Postmenopausal Osteoporosis. J. Pharm. Technol. 2021, 37, 45–52. [Google Scholar] [CrossRef]
- McClung, M.R.; Grauer, A.; Boonen, S.; Bolognese, M.A.; Brown, J.P.; Diez-Perez, A.; Langdahl, B.L.; Reginster, J.-Y.; Zanchetta, J.R.; Wasserman, S.M.; et al. Romosozumab in Postmenopausal Women with Low Bone Mineral Density. N. Engl. J. Med. 2014, 370, 412–420. [Google Scholar] [CrossRef]
- Ishibashi, H.; Crittenden, D.B.; Miyauchi, A.; Libanati, C.; Maddox, J.; Fan, M.; Chen, L.; Grauer, A. Romosozumab Increases Bone Mineral Density in Postmenopausal Japanese Women with Osteoporosis: A Phase 2 Study. Bone 2017, 103, 209–215. [Google Scholar] [CrossRef]
- Langdahl, B.L.; Libanati, C.; Crittenden, D.B.; Bolognese, M.A.; Brown, J.P.; Daizadeh, N.S.; Dokoupilova, E.; Engelke, K.; Finkelstein, J.S.; Genant, H.K.; et al. Romosozumab (Sclerostin Monoclonal Antibody) versus Teriparatide in Postmenopausal Women with Osteoporosis Transitioning from Oral Bisphosphonate Therapy: A Randomised, Open-Label, Phase 3 Trial. Lancet 2017, 390, 1585–1594. [Google Scholar] [CrossRef]
- Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543. [Google Scholar] [CrossRef]
- Asahi, R.; Nakamura, Y.; Koike, Y.; Kanai, M.; Yuguchi, S.; Kamo, T.; Azami, M.; Ogihara, H.; Asano, S. Sagittal Alignment Cut-off Values for Predicting Future Fall-Related Fractures in Community-Dwelling Osteoporotic Women. Eur. Spine J. 2023, 32, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Asahi, R.; Nakamura, Y.; Kanai, M.; Watanabe, K.; Yuguchi, S.; Kamo, T.; Azami, M.; Ogihara, H.; Asano, S. Association with Sagittal Alignment and Osteoporosis-Related Fractures in Outpatient Women with Osteoporosis. Osteoporos. Int. 2022, 33, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Jalai, C.M.; Cruz, D.L.; Diebo, B.G.; Poorman, G.; Lafage, R.; Bess, S.; Ramchandran, S.; Day, L.M.; Vira, S.; Liabaud, B.; et al. Full-Body Analysis of Age-Adjusted Alignment in Adult Spinal Deformity Patients and Lower-Limb Compensation. Spine 2017, 42, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Quarto, E.; Zanirato, A.; Vitali, F.; Spatuzzi, M.; Bourret, S.; Le Huec, J.C.; Formica, M. Adult Spinal Deformity Correction Surgery Using Age-Adjusted Alignment Thresholds: Clinical Outcomes and Mechanical Complication Rates. A Systematic Review of the Literature. Eur. Spine J. 2024, 33, 553–562. [Google Scholar] [CrossRef]
- Lafage, R.; Smith, J.S.; Elysee, J.; Passias, P.; Bess, S.; Klineberg, E.; Kim, H.J.; Shaffrey, C.; Burton, D.; Hostin, R.; et al. Sagittal Age-Adjusted Score (SAAS) for Adult Spinal Deformity (ASD) More Effectively Predicts Surgical Outcomes and Proximal Junctional Kyphosis than Previous Classifications. Spine Deform. 2022, 10, 121–131. [Google Scholar] [CrossRef]
- Buell, T.J.; Shaffrey, C.I.; Kim, H.J.; Klineberg, E.O.; Lafage, V.; Lafage, R.; Protopsaltis, T.S.; Passias, P.G.; Mundis, G.M.; Eastlack, R.K.; et al. Global Coronal Decompensation and Adult Spinal Deformity Surgery: Comparison of Upper-Thoracic versus Lower-Thoracic Proximal Fixation for Long Fusions. J. Neurosurg. Spine 2021, 35, 761–773. [Google Scholar] [CrossRef]
- Daniels, A.H.; Reid, D.B.C.; Durand, W.M.; Hamilton, D.K.; Passias, P.G.; Kim, H.J.; Protopsaltis, T.S.; Lafage, V.; Smith, J.S.; Shaffrey, C.I.; et al. Upper-Thoracic versus Lower-Thoracic Upper Instrumented Vertebra in Adult Spinal Deformity Patients Undergoing Fusion to the Pelvis: Surgical Decision-Making and Patient Outcomes. J. Neurosurg. Spine 2020, 32, 600–606. [Google Scholar] [CrossRef]
- Kumar, R.P.; Adida, S.; Lavadi, R.S.; Mitha, R.; Legarreta, A.D.; Hudson, J.S.; Shah, M.; Diebo, B.; Fields, D.P.; Buell, T.J.; et al. A Guide to Selecting Upper Thoracic versus Lower Thoracic Uppermost Instrumented Vertebra in Adult Spinal Deformity Correction. Eur. Spine J. 2024, 33, 2742–2750. [Google Scholar] [CrossRef]
- Nanda, A.; Manghwani, J.; Kluger, P.J. Sacropelvic Fixation Techniques-Current Update. J. Clin. Orthop. Trauma 2020, 11, 853–862. [Google Scholar] [CrossRef]
- DeWald, C.J.; Stanley, T. Instrumentation-Related Complications of Multilevel Fusions for Adult Spinal Deformity Patients Over Age 65. Spine 2006, 31, S144–S151. [Google Scholar] [CrossRef]
- Lee, N.J.; Marciano, G.; Puvanesarajah, V.; Park, P.J.; Clifton, W.E.; Kwan, K.; Morrissette, C.R.; Williams, J.L.; Fields, M.; Hassan, F.M.; et al. Incidence, Mechanism, and Protective Strategies for 2-Year Pelvic Fixation Failure after Adult Spinal Deformity Surgery with a Minimum Six-Level Fusion. J. Neurosurg. Spine 2023, 38, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Hasegawa, T.; Yamato, Y.; Kobayashi, S.; Togawa, D.; Banno, T.; Arima, H.; Oe, S.; Matsuyama, Y. Lumbosacral Junctional Failures After Long Spinal Fusion for Adult Spinal Deformity—Which Vertebra Is the Preferred Distal Instrumented Vertebra? Spine Deform. 2016, 4, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.C.; Kim, H.J.; Bannwarth, M.; Smith, J.; Bess, S.; Klineberg, E.; Ames, C.P.; Shaffrey, C.I.; Burton, D.; Gupta, M.; et al. Lowest Instrumented Vertebra Selection to S1 or Ilium Versus L4 or L5 in Adult Spinal Deformity: Factors for Consideration in 349 Patients With a Mean 46-Month Follow-Up. Glob. Spine J. 2023, 13, 932–939. [Google Scholar] [CrossRef]
- Taneichi, H.; Inami, S.; Moridaira, H.; Takeuchi, D.; Sorimachi, T.; Ueda, H.; Aoki, H.; Iimura, T. Can we stop the long fusion at L5 for selected adult spinal deformity patients with less severe disability and less complex deformity? Clin. Neurol. Neurosurg. 2020, 194, 105917. [Google Scholar] [CrossRef]
- Hasegawa, K.; Takahashi, H.E.; Uchiyama, S.; Hirano, T.; Hara, T.; Washio, T.; Sugiura, T.; Youkaichiya, M.; Ikeda, M. An Experimental Study of a Combination Method Using a Pedicle Screw and Laminar Hook for the Osteoporotic Spine. Spine 1997, 22, 958–962. [Google Scholar] [CrossRef]
- Buell, T.J.; Buchholz, A.L.; Quinn, J.C.; Bess, S.; Line, B.G.; Ames, C.P.; Schwab, F.J.; Lafage, V.; Shaffrey, C.I.; Smith, J.S. A Pilot Study on Posterior Polyethylene Tethers to Prevent Proximal Junctional Kyphosis After Multilevel Spinal Instrumentation for Adult Spinal Deformity. Oper. Neurosurg. 2019, 16, 256–266. [Google Scholar] [CrossRef]
- Sursal, T.; Kim, H.J.; Sardi, J.P.; Yen, C.-P.; Smith, J.S. Use of Tethers for Proximal Junctional Kyphosis Prophylaxis in Adult Spinal Deformity Surgery: A Review of Current Clinical Evidence. Int. J. Spine Surg. 2023, 17, S26–S37. [Google Scholar] [CrossRef]
- Rodriguez-Fontan, F.; Reeves, B.J.; Noshchenko, A.; Ou-Yang, D.; Kleck, C.J.; Cain, C.; Burger-Van der Walt, E.; Patel, V.V. Strap Stabilization for Proximal Junctional Kyphosis Prevention in Instrumented Posterior Spinal Fusion. Eur. Spine J. 2020, 29, 1287–1296. [Google Scholar] [CrossRef]
- Viswanathan, V.K.; Kukreja, S.; Minnema, A.J.; Farhadi, H.F. Prospective Assessment of the Safety and Early Outcomes of Sublaminar Band Placement for the Prevention of Proximal Junctional Kyphosis. J. Neurosurg. Spine 2018, 28, 520–531. [Google Scholar] [CrossRef]
- Vishnubhotla, S.; McGarry, W.B.; Mahar, A.T.; Gelb, D.E. A Titanium Expandable Pedicle Screw Improves Initial Pullout Strength as Compared with Standard Pedicle Screws. Spine J. 2011, 11, 777–781. [Google Scholar] [CrossRef]
- Kiyak, G.; Balikci, T.; Heydar, A.M.; Bezer, M. Comparison of the Pullout Strength of Different Pedicle Screw Designs and Augmentation Techniques in an Osteoporotic Bone Model. Asian Spine J. 2018, 12, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, D.; Bhardwaj, J.S.; Kumar, N.; Chanda, S. Expandable Pedicle Screw May Have Better Fixation than Normal Pedicle Screw: Preclinical Investigation on Instrumented L4-L5 Vertebrae Based on Various Physiological Movements. Med. Biol. Eng. Comput. 2022, 60, 2501–2519. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Gong, F.; Liu, L.; Ma, Z.; Zhang, Y.; Zhao, X.; Yang, M.; Lei, W.; Sang, H. A Comparative Study on Screw Loosening in Osteoporotic Lumbar Spine Fusion between Expandable and Conventional Pedicle Screws. Arch. Orthop. Trauma Surg. 2012, 132, 471–476. [Google Scholar] [CrossRef]
- Gazzeri, R.; Roperto, R.; Fiore, C. Litanium Expandable Pedicle Screw for the Treatment of Degenerative and Traumatic Spinal Diseases in Osteoporotic Patients: Preliminary Experience. Surg. Technol. Int. 2012, 22, 320–325. [Google Scholar]
- Costăchescu, B.; Niculescu, A.-G.; Grumezescu, A.M.; Teleanu, D.M. Screw Osteointegration—Increasing Biomechanical Resistance to Pull-Out Effect. Materials 2023, 16, 5582. [Google Scholar] [CrossRef]
- Becker, S.; Chavanne, A.; Spitaler, R.; Kropik, K.; Aigner, N.; Ogon, M.; Redl, H. Assessment of Different Screw Augmentation Techniques and Screw Designs in Osteoporotic Spines. Eur. Spine J. 2008, 17, 1462–1469. [Google Scholar] [CrossRef]
- Hasegawa, T.; Inufusa, A.; Imai, Y.; Mikawa, Y.; Lim, T.-H.; An, H.S. Hydroxyapatite-Coating of Pedicle Screws Improves Resistance against Pull-out Force in the Osteoporotic Canine Lumbar Spine Model: A Pilot Study. Spine J. 2005, 5, 239–243. [Google Scholar] [CrossRef]
- Pfeifer, B.A.; Krag, M.H.; Johnson, C. Repair of Failed Transpedicle Screw Fixation. Spine 1994, 19, 350–353. [Google Scholar] [CrossRef]
- Bai, B.; Jazrawi, L.M.; Kummer, F.J.; Spivak, J.M. The Use of an Injectable, Biodegradable Calcium Phosphate Bone Substitute for the Prophylactic Augmentation of Osteoporotic Vertebrae and the Management of Vertebral Compression Fractures. Spine 1999, 24, 1521. [Google Scholar] [CrossRef]
- Sawakami, K.; Yamazaki, A.; Ishikawa, S.; Ito, T.; Watanabe, K.; Endo, N. Polymethylmethacrylate Augmentation of Pedicle Screws Increases the Initial Fixation in Osteoporotic Spine Patients. J. Spinal Disord. Tech. 2012, 25, E28–E35. [Google Scholar] [CrossRef]
- Chen, L.-H.; Tai, C.-L.; Lee, D.-M.; Lai, P.-L.; Lee, Y.-C.; Niu, C.-C.; Chen, W.-J. Pullout Strength of Pedicle Screws with Cement Augmentation in Severe Osteoporosis: A Comparative Study between Cannulated Screws with Cement Injection and Solid Screws with Cement Pre-Filling. BMC Musculoskelet. Disord. 2011, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Choma, T.J.; Pfeiffer, F.M.; Swope, R.W.; Hirner, J.P. Pedicle Screw Design and Cement Augmentation in Osteoporotic Vertebrae. Spine 2012, 37, E1628–E1632. [Google Scholar] [CrossRef] [PubMed]
- Jha, R. Current Status of Percutaneous Vertebroplasty and Percutaneous Kyphoplasty—A Review. Med. Sci. Monit. 2013, 19, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Tolba, R.; Bolash, R.B.; Shroll, J.; Costandi, S.; Dalton, J.E.; Sanghvi, C.; Mekhail, N. Kyphoplasty Increases Vertebral Height, Decreases Both Pain Score and Opiate Requirements While Improving Functional Status. Pain Pract. 2014, 14, E91–E97. [Google Scholar] [CrossRef]
- McDonald, C.L.; Alsoof, D.; Daniels, A.H. Vertebral Compression Fractures. Rhode Isl. Med. J. 2022, 105, 40–45. [Google Scholar]
- Kebaish, K.M.; Martin, C.T.; O’Brien, J.R.; LaMotta, I.E.; Voros, G.D.; Belkoff, S.M. Use of Vertebroplasty to Prevent Proximal Junctional Fractures in Adult Deformity Surgery: A Biomechanical Cadaveric Study. Spine J. 2013, 13, 1897–1903. [Google Scholar] [CrossRef]
- Martin, C.T.; Skolasky, R.L.; Mohamed, A.S.; Kebaish, K.M. Preliminary Results of the Effect of Prophylactic Vertebroplasty on the Incidence of Proximal Junctional Complications After Posterior Spinal Fusion to the Low Thoracic Spine. Spine Deform. 2013, 1, 132–138. [Google Scholar] [CrossRef]
- Raman, T.; Miller, E.; Martin, C.T.; Kebaish, K.M. The Effect of Prophylactic Vertebroplasty on the Incidence of Proximal Junctional Kyphosis and Proximal Junctional Failure Following Posterior Spinal Fusion in Adult Spinal Deformity: A 5-Year Follow-up Study. Spine J. 2017, 17, 1489–1498. [Google Scholar] [CrossRef]
- Anderson, P.A.; Froyshteter, A.B.; Tontz, W.L. Meta-Analysis of Vertebral Augmentation Compared with Conservative Treatment for Osteoporotic Spinal Fractures. J. Bone Miner. Res. 2013, 28, 372–382. [Google Scholar] [CrossRef]
- Voggenreiter, G.; Brocker, K.; Röhrl, B.; Sadick, M.; Obertacke, U. Ergebnisse Der Ballonkyphoplastie in Der Behandlung von Osteoporotischen Wirbelkörperfrakturen. Unfallchirurg 2008, 111, 403–413. [Google Scholar] [CrossRef]
- Van Meirhaeghe, J.; Bastian, L.; Boonen, S.; Ranstam, J.; Tillman, J.B.; Wardlaw, D. A Randomized Trial of Balloon Kyphoplasty and Nonsurgical Management for Treating Acute Vertebral Compression Fractures. Spine 2013, 38, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Trout, A.T.; Kallmes, D.F.; Kaufmann, T.J. New Fractures after Vertebroplasty: Adjacent Fractures Occur Significantly Sooner. AJNR Am. J. Neuroradiol. 2006, 27, 217–223. [Google Scholar] [PubMed]
- Choi, S.S.; Kim, H.; Choung, Y.J.; Jeong, S.J.; Lee, C.H. Risk Factors for New Vertebral Compression Fracture after Kyphoplasty and Efficacy of Osteoporosis Treatment: A STROBE-Compliant Retrospective Study. Medicine 2022, 101, e32018. [Google Scholar] [CrossRef] [PubMed]
- Savage, J.W.; Schroeder, G.D.; Anderson, P.A. Vertebroplasty and Kyphoplasty for the Treatment of Osteoporotic Vertebral Compression Fractures. J. Am. Acad. Orthop. Surg. 2014, 22, 653–664. [Google Scholar] [CrossRef]
- Anand, N.; Alayan, A.; Kong, C.; Kahwaty, S.; Khandehroo, B.; Gendelberg, D.; Chung, A. Management of severe adult spinal deformity with circumferential minimally invasive surgical strategies without posterior column osteotomies: A 13-year experience. Spine Deform. 2022, 10, 1157–1168. [Google Scholar] [CrossRef]
- Diaz, D.; Brown, N.J.; Nguyen, A.; Pennington, Z.; Stone, L.; Hernandez, N.; Ehresman, J.; Pollina, J.; Amaral, R.A.; Abd-El-Barr, M.M.; et al. 1073 Prone Transpsoas (PTP)-LLIF Approach Versus Standard LLIF in Patients Undergoing Surgical Revision Following Adult Spinal Deformity Correction Surgery. Neurosurgery 2024, 70, 182. [Google Scholar] [CrossRef]
- Zanirato, A.; Damilano, M.; Formica, M.; Piazzolla, A.; Lovi, A.; Villafañe, J.H.; Berjano, P. Complications in adult spine deformity surgery: A systematic review of the recent literature with reporting of aggregated incidences. Eur. Spine J. 2018, 27, 2272–2284. [Google Scholar] [CrossRef]
- Tian, F.; Tu, L.-Y.; Gu, W.-F.; Zhang, E.-F.; Wang, Z.-B.; Chu, G.K.H.; Zhao, J. Percutaneous versus open pedicle screw instrumentation in treatment of thoracic and lumbar spine fractures. Medicine 2018, 97, e12535. [Google Scholar] [CrossRef]
- Zhan, Y.; Yang, H.; Wang, J.; Yang, J.; Li, L.; Hao, D.; Wang, B. Targeted Percutaneous Vertebroplasty” Versus Traditional Percutaneous Vertebroplasty for Osteoporotic Vertebral Compression Fracture. Surg. Innov. 2019, 26, 551–559. [Google Scholar] [CrossRef]
- McCoy, S.; Tundo, F.; Chidambaram, S.; Baaj, A.A. Clinical considerations for spinal surgery in the osteoporotic patient: A comprehensive review. Clin. Neurol. Neurosurg. 2019, 180, 40–47. [Google Scholar] [CrossRef]
- Rometsch, E.; Spruit, M.; Zigler, J.E.; Menon, V.K.; Ouellet, J.A.; Mazel, C.; Härtl, R.; Espinoza, K.; Kandziora, F. Screw-Related Complications After Instrumentation of the Osteoporotic Spine: A Systematic Literature Review With Meta-Analysis. Glob. Spine J. 2020, 10, 69–88. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, S.; Keel, M.J.B. Pedicle screw augmentation in osteoporotic spine: Indications, limitations and technical aspects. Eur. J. Trauma Emerg. Surg. 2017, 43, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Schömig, F.; Becker, L.; Schönnagel, L.; Völker, A.; Disch, A.C.; Schnake, K.J.; Pumberger, M. Avoiding Spinal Implant Failures in Osteoporotic Patients: A Narrative Review. Glob. Spine J. 2023, 13, 52S–58S. [Google Scholar] [CrossRef]
- Carlson, B.C.; Robinson, W.A.; Wanderman, N.R.; Sebastian, A.S.; Nassr, A.; Freedman, B.A.; Anderson, P.A. A Review and Clinical Perspective of the Impact of Osteoporosis on the Spine. Geriatr. Orthop. Surg. Rehabil. 2019, 10, 2151459319861591. [Google Scholar] [CrossRef]
- Smith, J.S.; Shaffrey, E.; Klineberg, E.; Shaffrey, C.I.; Lafage, V.; Schwab, F.J.; Protopsaltis, T.; Scheer, J.K.; Mundis, G.M.; Fu, K.M.; et al. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J. Neurosurg. Spine 2014, 21, 994–1003. [Google Scholar] [CrossRef]
- Gazzeri, R.; Panagiotopoulos, K.; Galarza, M.; Bolognini, A.; Callovini, G. Minimally invasive spinal fixation in an aging population with osteoporosis: Clinical and radiological outcomes and safety of expandable screws versus fenestrated screws augmented with polymethylmethacrylate. Neurosurg. Focus 2020, 49, E14. [Google Scholar] [CrossRef]
- Little, A.S.; Kshettry, V.R.; Rosen, M.R.; Rehl, R.M.; Haegen, T.W.; Rabinowitz, M.R.; Nyquist, G.G.; Recinos, P.F.; Sindwani, R.; Woodard, T.D.; et al. Postoperative Oral Antibiotics and Sinonasal Outcomes Following Endoscopic Transsphenoidal Surgery for Pituitary Tumors Study: A Multicenter, Prospective, Randomized, Double-Blinded, Placebo-Controlled Study. Neurosurgery 2021, 89, 769–776. [Google Scholar] [CrossRef]
Medication | Mechanism of Action | Advantages | Disadvantages | Critical Appraisal of Evidence |
---|---|---|---|---|
Teriparatide (Forteo™, Eli Lilly and Company, Indianapolis, IN, USA) | Stimulates osteoblasts to increase BMD | Improved fusion rates and reduced PJK in ASD surgery. Better fusion rates when combined with denosumab. | Rapid decline in BMD following cessation. | Available studies suggest its use combined with other therapies. Larger long-term trials are required. |
Abaloparatide (Tymlos™, Radius Health, Inc., Waltham, MA, USA) | Similar to teriparatide | Reduces vertebral fractures and improves BMD in osteoporotic patients. | Limited evidence is available on ASD patients. | Focused research is needed. Available evidence addresses osteoporosis patients in general, rather than ASD patients. |
Romosozumab (Evinity™, Amgen Inc., Thousand Oaks, CA, USA) | Increases BMD via promoting bone formation and inhibiting resorption | It seems to be more effective than teriparatide and bisphosphonates. Reduces vertebral fractures. | Cardiovascular side effects. | RCTs demonstrate superior efficacy in increasing BMD in post-menopausal women. However, specific research on its use on ASD patients is needed. |
Denosumab (Prolia™, Amgen Inc., Thousand Oaks, CA, USA) | Inhibits resorption by targeting RANKL | Improved fusion rates when used in combination with TP. | Rapid BMD loss when ceased. Rare adverse effects include osteonecrosis of the jaw (ONJ) and atypical femoral fractures. | Rapid bone loss following treatment cessation raises concerns over long-term viability. |
Raloxifene (Evista™, Eli Lilly and Company, Indianapolis, IN, USA) | Increases BMD by acting as a SERM | Similar to denosumab. | Less effective than bisphosphonates in reducing fractures. | Weak evidence for standalone use to prevent fractures. Limited literature of use on ASD patients. |
Alendronate (Fosamax™, Merck & Co., Inc., Rahway, NJ, USA) | Reduces bone resorption | Common use includes maintaining BMD following teriparatide therapy. | Prolonged use risks atypical femoral fractures and ONJ. | Extensive evidence backing its use for osteoporosis, especially when combined with other agents. Moreover, more evidence needs to prove similar efficacy in ASD patients. Observational studies suggest its ability to reduce compression fractures and cage subsidence. |
Surgical Technique | Advantages | Disadvantages | Critical Appraisal of Evidence |
---|---|---|---|
Age-adjusted Alignment | Helps prevent future osteoporosis-related fractures. Accounts for compensatory lower-limb extension in patients with severe sagittal deformity. | Potential risk of over- or under-correction, leading to PJK. | Most studies supporting its use are observational and retrospective cohort studies, which may limit generalizability and need further validation. |
Fusion Levels (UT vs. LT Fusion) | UT fusion reduces PJK and improves sagittal alignment. Longer fusion constructs distribute stress away from individual vertebrae, reducing the risk of fractures and screw pullout. | UT fusion leads to longer operation times and increased intraoperative blood loss compared to LT fusion. Longer fusion constructs increase surgical complexity and potential for postoperative complications. | Retrospective studies favor UT fusion for ASD patients, particularly osteoporotic individuals. Although such findings are consistent across studies, the notably limited sample size, however, puts the strength of this evidence under scrutiny. |
Screws, Hooks, and Tethers | Increases stiffness of the instrumentation. Tethering significantly reduces rates of PJK and PJF. | Limited evidence exists for the efficacy of tethering in osteoporotic ASD patients. | Stronger evidence is needed as most of the current evidence comes from cadaver and retrospective studies. |
Expandable Screws | Greater stability and resistance to implant failure compared to standard screws. Improved fusion rates and reduced screw loosening in osteoporotic patients. | Clinical validation is needed for this relatively new technique. | Most results available come from early-stage studies. Long-term outcomes yet to be extensively studied. |
Cement Augmentation (PMMA, Calcium Phosphate) | Significantly improves the pullout strength of screws. Redistributes stress and reduces the risk of adjacent vertebral fractures. Cementation techniques (vertebroplasty and kyphoplasty) reduce pain and stabilize fractured vertebrae. | Potential risks of adjacent level fractures and cement leakage. | More research is needed to confer long-term benefits, as pain relief seems to be short-lasting. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroudi, M.; Daher, M.; Maheshwari, K.; Singh, M.; Nassar, J.E.; McDonald, C.L.; Diebo, B.G.; Daniels, A.H. Surgical Management of Adult Spinal Deformity Patients with Osteoporosis. J. Clin. Med. 2024, 13, 7173. https://doi.org/10.3390/jcm13237173
Baroudi M, Daher M, Maheshwari K, Singh M, Nassar JE, McDonald CL, Diebo BG, Daniels AH. Surgical Management of Adult Spinal Deformity Patients with Osteoporosis. Journal of Clinical Medicine. 2024; 13(23):7173. https://doi.org/10.3390/jcm13237173
Chicago/Turabian StyleBaroudi, Makeen, Mohammad Daher, Krish Maheshwari, Manjot Singh, Joseph E. Nassar, Christopher L. McDonald, Bassel G. Diebo, and Alan H. Daniels. 2024. "Surgical Management of Adult Spinal Deformity Patients with Osteoporosis" Journal of Clinical Medicine 13, no. 23: 7173. https://doi.org/10.3390/jcm13237173
APA StyleBaroudi, M., Daher, M., Maheshwari, K., Singh, M., Nassar, J. E., McDonald, C. L., Diebo, B. G., & Daniels, A. H. (2024). Surgical Management of Adult Spinal Deformity Patients with Osteoporosis. Journal of Clinical Medicine, 13(23), 7173. https://doi.org/10.3390/jcm13237173