Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques
Abstract
:1. Introduction
2. The Use of Fat Grafts in Breast Augmentation
3. Composition and Properties of Human Adipose Tissue
4. Imagistic Follow-Up After Fat Grafting
5. Techniques for Assessing Adipose Tissue and Fat Grafts
6. Application of Magnetic Resonance Imaging (MRI) in Breast Tissue Evaluation
- V3m represents the volume measured at three months after the intervention,
- Vpre is the initial volume recorded before the intervention, and
- Vinjected refers to the total volume of the injected material.
- V1post indicates the volume measured immediately after the intervention.
7. Dual-Energy X-Ray Absorptiometry (DEXA)
8. Ultrasonography in Breast Tissue Assessment
9. Factors Influencing Volume Calculation
10. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mojallal, A.; Foyatier, J.-L. Historical review of the use of adipose tissue transfer in plastic and reconstructive surgery. Ann. Chir. Plast. Esthét. 2004, 49, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Bayram, Y.; Sezgic, M.; Karakol, P.; Bozkurt, M.; Filinte, G.T. The Use of Autologous Fat Grafts in Breast Surgery: A Literature Review. Arch. Plast. Surg. 2019, 46, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Trojahn Kølle, S.-F.; Oliveri, R.S.; Glovinski, P.V.; Elberg, J.J.; Fischer-Nielsen, A.; Drzewiecki, K.T. Importance of Mesenchymal Stem Cells in Autologous Fat Grafting: A Systematic Review of Existing Studies. J. Plast. Surg. Hand Surg. 2012, 46, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Von Heimburg, D.; Hemmrich, K.; Haydarlioglu, S.; Staiger, H.; Pallua, N. Comparison of Viable Cell Yield from Excised versus Aspirated Adipose Tissue. Cells Tissues Organs 2004, 178, 87–92. [Google Scholar] [CrossRef]
- Khouri, R.K.; Eisenmann-Klein, M.; Cardoso, E.; Cooley, B.C.; Kacher, D.; Gombos, E.; Baker, T.J. Brava and Autologous Fat Transfer Is a Safe and Effective Breast Augmentation Alternative: Results of a 6-Year, 81-Patient, Prospective Multicenter Study. Plast. Reconstr. Surg. 2012, 129, 1173–1187. [Google Scholar] [CrossRef]
- Gutowski, K.A. Current Applications and Safety of Autologous Fat Grafts: A Report of the ASPS Fat Graft Task Force. Plast. Reconstr. Surg. 2009, 124, 272–280. [Google Scholar] [CrossRef]
- Wang, G.; Ren, Y.; Cao, W.; Yang, Y.; Li, S. Liposculpture and Fat Grafting for Aesthetic Correction of the Gluteal Concave Deformity Associated with Multiple Intragluteal Injection of Penicillin in Childhood. Aesthetic Plast. Surg. 2013, 37, 39–45. [Google Scholar] [CrossRef]
- Rusciani Scorza, A.; Rusciani Scorza, L.; Troccola, A.; Micci, D.M.; Rauso, R.; Curinga, G. Autologous Fat Transfer for Face Rejuvenation with Tumescent Technique Fat Harvesting and Saline Washing: A Report of 215 Cases. Dermatology 2012, 224, 244–250. [Google Scholar] [CrossRef]
- Choi, M.; Small, K.; Levovitz, C.; Lee, C.; Fadl, A.; Karp, N.S. The Volumetric Analysis of Fat Graft Survival in Breast Reconstruction: Plast. Reconstr. Surg. 2013, 131, 185–191. [Google Scholar] [CrossRef]
- Rosing, J.H.; Wong, G.; Wong, M.S.; Sahar, D.; Stevenson, T.R.; Pu, L.L.Q. Autologous Fat Grafting for Primary Breast Augmentation: A Systematic Review. Aesthetic Plast. Surg. 2011, 35, 882–890. [Google Scholar] [CrossRef]
- Yoshimura, K.; Sato, K.; Aoi, N.; Kurita, M.; Hirohi, T.; Harii, K. Cell-Assisted Lipotransfer for Cosmetic Breast Augmentation: Supportive Use of Adipose-Derived Stem/Stromal Cells. Aesthetic Plast. Surg. 2008, 32, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Di Pasquali, C.; Bocchini, I.; Floris, M.; Eleonora, T.; Fiaschetti, V.; Floris, R.; Cervelli, V. Breast Reconstruction with Autologous Fat Graft Mixed with Platelet-Rich Plasma. Surg. Innov. 2013, 20, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Lehuédé, C.; Laurent, V.; Dirat, B.; Dauvillier, S.; Bochet, L.; Le Gonidec, S.; Escourrou, G.; Valet, P.; Muller, C. Adipose Tissue and Breast Epithelial Cells: A Dangerous Dynamic Duo in Breast Cancer. Cancer Lett. 2012, 324, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Pearl, R.A.; Leedham, S.J.; Pacifico, M.D. The Safety of Autologous Fat Transfer in Breast Cancer: Lessons from Stem Cell Biology. J. Plast. Reconstr. Aesthet. Surg. 2012, 65, 283–288. [Google Scholar] [CrossRef]
- Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.-H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; et al. Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell 2012, 150, 366–376. [Google Scholar] [CrossRef]
- Lafontan, M. Historical Perspectives in Fat Cell Biology: The Fat Cell as a Model for the Investigation of Hormonal and Metabolic Pathways. Am. J. Physiol.-Cell Physiol. 2012, 302, C327–C359. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in Inflammation and Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, B.; Suuronen, R.; Miettinen, S. The Potential of Adipose Stem Cells in Regenerative Medicine. Stem Cell Rev. Rep. 2011, 7, 269–291. [Google Scholar] [CrossRef]
- Kayar, R.; Civelek, S.; Cobanoglu, M.; Gungor, O.; Catal, H.; Emiroglu, M. Five Methods of Breast Volume Measurement: A Comparative Study of Measurements of Specimen Volume in 30 Mastectomy Cases. Breast Cancer Basic Clin. Res. 2011, 5, BCBCR.S6128. [Google Scholar] [CrossRef]
- Rubin, J.P.; Coon, D.; Zuley, M.; Toy, J.; Asano, Y.; Kurita, M.; Aoi, N.; Harii, K.; Yoshimura, K. Mammographic Changes after Fat Transfer to the Breast Compared with Changes after Breast Reduction: A Blinded Study. Plast. Reconstr. Surg. 2012, 129, 1029–1038. [Google Scholar] [CrossRef]
- Parikh, R.P.; Doren, E.L.; Mooney, B.; Sun, W.V.; Laronga, C.; Smith, P.D. Differentiating Fat Necrosis from Recurrent Malignancy in Fat-Grafted Breasts: An Imaging Classification System to Guide Management. Plast. Reconstr. Surg. 2012, 130, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.; Cipriani, A.; Belli, P.; Bufi, E.; Fubelli, R.; Visconti, G.; Salgarello, M.; Bonomo, L. Radiological Findings in Mammary Autologous Fat Injections: A Multi-Technique Evaluation. Clin. Radiol. 2013, 68, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Juhl, A.A.; Redsted, S.; Engberg Damsgaard, T. Autologous Fat Grafting after Breast Conserving Surgery: Breast Imaging Changes and Patient-Reported Outcome. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, L.; Eder, M.; Hollweck, R.; Zimmermann, A.; Settles, M.; Schneider, A.; Endlich, M.; Mueller, A.; Schwenzer-Zimmerer, K.; Papadopulos, N.A.; et al. Comparison between Breast Volume Measurement Using 3D Surface Imaging and Classical Techniques. Breast 2007, 16, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, L.; Eder, M.; Hollweck, R.; Zimmermann, A.; Settles, M.; Schneider, A.; Udosic, K.; Schwenzer-Zimmerer, K.; Papadopulos, N.A.; Biemer, E. New Aspects of Breast Volume Measurement Using 3-Dimensional Surface Imaging. Ann. Plast. Surg. 2006, 57, 602–610. [Google Scholar] [CrossRef]
- Herold, C.; Ueberreiter, K.; Busche, M.N.; Vogt, P.M. Autologous Fat Transplantation: Volumetric Tools for Estimation of Volume Survival. A Systematic Review. Aesthetic Plast. Surg. 2013, 37, 380–387. [Google Scholar] [CrossRef]
- Petridou, E.; Kibiro, M.; Gladwell, C.; Malcolm, P.; Toms, A.; Juette, A.; Borga, M.; Dahlqvist Leinhard, O.; Romu, T.; Kasmai, B.; et al. Breast Fat Volume Measurement Using Wide-Bore 3 T MRI: Comparison of Traditional Mammographic Density Evaluation with MRI Density Measurements Using Automatic Segmentation. Clin. Radiol. 2017, 72, 565–572. [Google Scholar] [CrossRef]
- Khoobehi, K. Commentary on: Identification of the Optimal Recipient Layer for Transplanted Fat: A Prospective Study on Breast Lipoaugmentation. Aesthet. Surg. J. 2019, 39, 1082–1084. [Google Scholar] [CrossRef]
- Ueberreiter, C.S.; Ueberreiter, K.; Mohrmann, C.; Herm, J.; Herold, C. Langzeitevaluation nach autologer Fetttransplantation zur Brustvergrößerung. Handchir. · Mikrochir. · Plast. Chir. 2021, 53, 149–158. [Google Scholar] [CrossRef]
- Wang, C.; Luan, J. Magnetic Resonance Imaging Versus 3-Dimensional Laser Scanning for Breast Volume Assessment After Breast Reconstruction. Ann. Plast. Surg. 2018, 80, 592. [Google Scholar] [CrossRef]
- Liu, C.; Ji, K.; Sun, J.; Luan, J. Does Respiration Influence Breast Volumetric Change Measurement with the Three-Dimensional Scanning Technique? Aesthetic Plast. Surg. 2014, 38, 115–119. [Google Scholar] [CrossRef]
- Herold, C.; Knobloch, K.; Stieglitz, L.H.; Samii, A.; Vogt, P.M. Magnetic Resonance Imaging–Based Breast Volumetry in Breast Surgery: A Transfer from Neurosurgery. Plast. Reconstr. Surg. 2010, 125, 17e–19e. [Google Scholar] [CrossRef] [PubMed]
- Glovinski, P.V.; Herly, M.; Müller, F.C.; Elberg, J.J.; Kølle, S.-F.T.; Fischer-Nielsen, A.; Thomsen, C.; Drzewiecki, K.T. Avoiding a Systematic Error in Assessing Fat Graft Survival in the Breast with Repeated Magnetic Resonance Imaging. Plast. Reconstr. Surg. Glob. Open 2016, 4, e1023. [Google Scholar] [CrossRef] [PubMed]
- Basile, F.V.; Basile, A.R. Prospective Controlled Study of Chin Augmentation by Means of Fat Grafting. Plast. Reconstr. Surg. 2017, 140, 1133–1141. [Google Scholar] [CrossRef]
- Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A.; et al. Association of Muscle and Adiposity Measured by Computed Tomography with Survival in Patients with Nonmetastatic Breast Cancer. JAMA Oncol. 2018, 4, 798. [Google Scholar] [CrossRef]
- Iyengar, N.M.; Arthur, R.; Manson, J.E.; Chlebowski, R.T.; Kroenke, C.H.; Peterson, L.; Cheng, T.-Y.D.; Feliciano, E.C.; Lane, D.; Luo, J.; et al. Association of Body Fat and Risk of Breast Cancer in Postmenopausal Women with Normal Body Mass Index: A Secondary Analysis of a Randomized Clinical Trial and Observational Study. JAMA Oncol. 2019, 5, 155. [Google Scholar] [CrossRef]
- Sampathkumar, U.; Nowroozilarki, Z.; Bordes, M.C.; Reece, G.P.; Hanson, S.E.; Markey, M.K.; Merchant, F.A. Review of Quantitative Imaging for Objective Assessment of Fat Grafting Outcomes in Breast Surgery. Aesthet. Surg. J. 2021, 41, S39–S49. [Google Scholar] [CrossRef] [PubMed]
- Goddi, A.; Bonardi, M.; Alessi, S. Breast Elastography: A Literature Review. J. Ultrasound 2012, 15, 192–198. [Google Scholar] [CrossRef]
- Soguel, L.; Durocher, F.; Tchernof, A.; Diorio, C. Adiposity, Breast Density, and Breast Cancer Risk: Epidemiological and Biological Considerations. Eur. J. Cancer Prev. 2017, 26, 511–520. [Google Scholar] [CrossRef]
- Gentilucci, M.; Mazzocchi, M.; Alfano, C. Effects of Prophylactic Lipofilling After Radiotherapy Compared to Non–Fat Injected Breasts: A Randomized, Objective Study. Aesthet. Surg. J. 2020, 40, NP597–NP607. [Google Scholar] [CrossRef]
- Hyakusoku, H.; Ogawa, R.; Ono, S.; Ishii, N.; Hirakawa, K. Complications after Autologous Fat Injection to the Breast. Plast. Reconstr. Surg. 2009, 123, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.-N.; Li, Q.-F.; Lei, H.; Zheng, S.-W.; Xie, Y.-Z.; Xu, Q.-H.; Yun, X.; Pu, L.L.Q. Autologous Fat Grafting to the Breast for Cosmetic Enhancement: Experience in 66 Patients with Long-Term Follow Up. J. Plast. Reconstr. Aesthet. Surg. 2008, 61, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Bartella, L.; Smith, C.S.; Dershaw, D.D.; Liberman, L. Imaging Breast Cancer. Radiol. Clin. North Am. 2007, 45, 45–67. [Google Scholar] [CrossRef] [PubMed]
- DeMartini, W.; Lehman, C.; Partridge, S. Breast MRI for Cancer Detection and Characterization. Acad. Radiol. 2008, 15, 408–416. [Google Scholar] [CrossRef]
- Herly, M.; Müller, F.C.; Ørholt, M.; Hansen, J.; Sværke, S.; Hemmingsen, M.N.; Rasmussen, B.S.; Elberg, J.J.; Drzewiecki, K.T.; Vester-Glowinski, P.V. The Current Gold Standard Breast Volumetry Technique Seems to Overestimate Fat Graft Volume Retention in the Breast: A Validation Study. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 1278–1284. [Google Scholar] [CrossRef]
- Guimarães, P.A.M.P.; Sabino Neto, M.; Lage, F.C.; Guirado, F.F.; De Mello, G.G.N.; Ferreira, L.M. Evaluation of Retropectoral Fat Grafting in Breast Reduction by Magnetic Resonance Imaging: A Pilot Study. Aesthet. Surg. J. 2019, 39, 518–523. [Google Scholar] [CrossRef]
- Herly, M.; Ørholt, M.; Müller, F.C.; Hemmingsen, M.N.; Hansen, J.; Larsen, A.; Rasmussen, B.S.; Elberg, J.J.; Von Buchwald, C.; Drzewiecki, K.T.; et al. New Validated Method for Measuring Fat Graft Retention in the Breast with MRI. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3052. [Google Scholar] [CrossRef]
- Kølle, S.-F.T.; Duscher, D.; Taudorf, M.; Fischer-Nielsen, A.; Svalgaard, J.D.; Munthe-Fog, L.; Jønsson, B.; Selvig, P.B.; Mamsen, F.P.; Katz, A.J. Ex Vivo-Expanded Autologous Adipose Tissue-Derived Stromal Cells Ensure Enhanced Fat Graft Retention in Breast Augmentation: A Randomized Controlled Clinical Trial. Stem Cells Transl. Med. 2020, 9, 1277–1286. [Google Scholar] [CrossRef]
- Gentile, P.; Kothari, A.; Casella, D.; Calabrese, C. Fat Graft Enhanced with Adipose-Derived Stem Cells in Aesthetic Breast Augmentation: Clinical, Histological, and Instrumental Evaluation. Aesthet. Surg. J. 2020, 40, 962–977. [Google Scholar] [CrossRef]
- O’Connell, R.L.; Khabra, K.; Bamber, J.C.; deSouza, N.; Meybodi, F.; Barry, P.A.; Rusby, J.E. Validation of the Vectra XT Three-Dimensional Imaging System for Measuring Breast Volume and Symmetry Following Oncological Reconstruction. Breast Cancer Res. Treat. 2018, 171, 391–398. [Google Scholar] [CrossRef]
- Petak, S.; Barbu, C.G.; Yu, E.W.; Fielding, R.; Mulligan, K.; Sabowitz, B.; Wu, C.-H.; Shepherd, J.A. The Official Positions of the International Society for Clinical Densitometry: Body Composition Analysis Reporting. J. Clin. Densitom. 2013, 16, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Ponti, F.; Plazzi, A.; Guglielmi, G.; Marchesini, G.; Bazzocchi, A. Body Composition, Dual-Energy X-Ray Absorptiometry and Obesity: The Paradigm of Fat (Re)Distribution. BJR Case Rep. 2019, 5, 20170078. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Wen, W.; He, Y.; Wei, T.; Zheng, Y.; Pan, X.; Li, Y.; Wu, Y.; Dong, F.; et al. Evaluation of Standard Breast Ultrasonography by Adding Two-Dimensional and Three-Dimensional Shear Wave Elastography: A Prospective, Multicenter Trial. Eur. Radiol. 2023, 34, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Störchle, P.; Müller, W.; Sengeis, M.; Ahammer, H.; Fürhapter-Rieger, A.; Bachl, N.; Lackner, S.; Mörkl, S.; Holasek, S. Standardized Ultrasound Measurement of Subcutaneous Fat Patterning: High Reliability and Accuracy in Groups Ranging from Lean to Obese. Ultrasound Med. Biol. 2017, 43, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Smith-Ryan, A.E.; Fultz, S.N.; Melvin, M.N.; Wingfield, H.L.; Woessner, M.N. Reproducibility and Validity of A-Mode Ultrasound for Body Composition Measurement and Classification in Overweight and Obese Men and Women. PLoS ONE 2014, 9, e91750. [Google Scholar] [CrossRef] [PubMed]
- Carpéné, C.; Les, F.; Hasnaoui, M.; Biron, S.; Marceau, P.; Richard, D.; Galitzky, J.; Joanisse, D.R.; Mauriège, P. Anatomical Distribution of Primary Amine Oxidase Activity in Four Adipose Depots and Plasma of Severely Obese Women with or without a Dysmetabolic Profile. J. Physiol. Biochem. 2016, 73, 475–486. [Google Scholar] [CrossRef]
- Calabrese, S.; Zingaretti, N.; De Francesco, F.; Riccio, M.; De Biasio, F.; Massarut, S.; Almesberger, D.; Parodi, P.C. Long-Term Impact of Lipofilling in Hybrid Breast Reconstruction: Retrospective Analysis of Two Cohorts. Eur. J. Plast. Surg. 2020, 43, 257–268. [Google Scholar] [CrossRef]
- Wang, C.; Liu, C.; Giatsidis, G.; Cheng, H.; Chen, L.; Kang, D.; Panayi, A.C.; Luan, J. The Effect of Respiration on Breast Measurement Using Three-Dimensional Breast Imaging. Aesthetic Plast. Surg. 2019, 43, 53–58. [Google Scholar] [CrossRef]
- Wang, C.; Luan, J.; Cheng, H.; Chen, L.; Li, Z.; Panayi, A.C.; Liu, C. Menstrual Cycle-Related Fluctuations in Breast Volume Measured Using Three-Dimensional Imaging: Implications for Volumetric Evaluation in Breast Augmentation. Aesthetic Plast. Surg. 2019, 43, 1–6. [Google Scholar] [CrossRef]
- Wang, K.; Mu, D.; Zhang, X.; Lin, Y. Lactation History Affects Postoperative Fat Volume Retention Rate in Autologous Fat Grafting Breast Augmentation. Aesthetic Plast. Surg. 2021, 45, 118–126. [Google Scholar] [CrossRef]
Method | Benefit | References |
---|---|---|
3D Scanning (JRCB-D Scanner) | Highly accurate (≤0.1 mm precision), non-invasive volumetric assessment, with minimized breathing effect during scans. | Liu et al. [31] |
Magnetic Resonance Imaging (MRI) | Gold standard for precise, non-invasive volumetry, sensitive to complications (e.g., oil cysts, necrosis), consistent with fixed bone landmarks. | Herold et al. [26,32], Glovinski et al. [33] |
Computed Tomography (CT) | Useful for volume assessment but may overestimate fat retention rates. | Basile et Basile [34] |
Dual-energy X-ray absorptiometry (DEXA) | Accurate, cost-effective method for quantifying body fat and tracking composition changes. | Caan et al. [35] Iyengar et al. [36] |
Ultrasonography | Reliable, non-invasive, high-precision tool for measuring subcutaneous fat thickness, sensitive for fat retention in breast imaging. | Sampathkumar et al. [37] Goddi [38] |
Bioelectrical Impedance | Cost-effective, non-invasive estimation of body fat through tissue conductance/resistance differences. | Soguel et al. [39] |
Excision and Caliper Measurement | Tissue biopsy followed by fat thickness measurements with caliper; highly precise, often repeated for accuracy. | Gentilucci et al. [40] |
Factors | Impact on Measurements |
---|---|
Measurement Technique | Different imaging methods (MRI, CT, ultrasound) yield varying results in volume accuracy and estimation. |
Cyclical Fluctuations | Hormonal changes can cause breast volume variations, ranging from −5.5% to +8.1% during the menstrual cycle. |
Parous Status | Women who have breastfed tend to retain more fat volume compared to those who haven’t. |
Adipocyte Damage | Initial fat transfer can cause temporary volume loss, which may be compensated by tissue regeneration over time. |
Body Mass Index (BMI) | Fluctuations in BMI can significantly impact breast volume; weight loss leads to decreased volume, while weight gain results in increased volume. |
Postoperative Swelling | Immediate postoperative swelling can lead to an overestimation of breast volume in early assessments. |
Breathing Patterns | Variations in breathing during imaging can lead to inconsistencies in volume measurements. |
Posture | The patient’s posture during imaging affects measurement accuracy and consistency. |
Breast Shape and Contour | Individual anatomical variations can lead to differences in measured breast volume across patients. |
MRI Positioning | The prone positioning used in MRI may not correspond with the standard inspection positions used in clinical evaluations, potentially introducing measurement errors. |
Timing of Assessments | The timing of MRI scans post-surgery affects accuracy-scans may overestimate retained fat due to swelling. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdan, R.-G.; Helgiu, A.; Cimpean, A.-M.; Ichim, C.; Todor, S.B.; Iliescu-Glaja, M.; Bodea, I.C.; Crainiceanu, Z.P. Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques. J. Clin. Med. 2024, 13, 7209. https://doi.org/10.3390/jcm13237209
Bogdan R-G, Helgiu A, Cimpean A-M, Ichim C, Todor SB, Iliescu-Glaja M, Bodea IC, Crainiceanu ZP. Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques. Journal of Clinical Medicine. 2024; 13(23):7209. https://doi.org/10.3390/jcm13237209
Chicago/Turabian StyleBogdan, Razvan-George, Alina Helgiu, Anca-Maria Cimpean, Cristian Ichim, Samuel Bogdan Todor, Mihai Iliescu-Glaja, Ioan Catalin Bodea, and Zorin Petrisor Crainiceanu. 2024. "Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques" Journal of Clinical Medicine 13, no. 23: 7209. https://doi.org/10.3390/jcm13237209
APA StyleBogdan, R.-G., Helgiu, A., Cimpean, A.-M., Ichim, C., Todor, S. B., Iliescu-Glaja, M., Bodea, I. C., & Crainiceanu, Z. P. (2024). Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques. Journal of Clinical Medicine, 13(23), 7209. https://doi.org/10.3390/jcm13237209