COVID-19 and Cardiac Arrhythmias: Lesson Learned and Dilemmas
Abstract
:1. Introduction
2. Pathophysiologic Mechanisms of Cardiac Arrhythmias During SARS-CoV-2 Infection
2.1. Proarrhythmogenic Effects of AT2
2.2. Hypoxia
2.3. Abnormal Inflammatory Response
2.4. Myocardial Ischemia
2.5. Myocardial Inflammation
2.6. Electrolyte Imbalance
2.7. Drug Side Effects
3. Clinical Manifestations
3.1. Bradyarrhythmias
3.2. Tachyarrhythmias
3.2.1. Inappropriate Sinus Tachycardia
3.2.2. Atrial Fibrillation
3.2.3. Ventricular Arrhythmias
4. Therapeutic Dilemmas in the Management of Arrhythmias Associated with COVID-19
4.1. Need for Permanent Pacing in Bradyarrhythmias
4.2. Need for ICD Implant
4.3. Need for Lifelong Oral Anticoagulation in New-Onset AF During COVID-19
5. Long COVID and Cardiac Arrhythmias
6. COVID-19, Cardiac Arrhythmias, and New Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatla, A.; Mayer, M.M.; Adusumalli, S.; Hyman, M.C.; Oh, E.; Tierney, A.; Moss, J.; Chahal, A.A.; Anesi, G.; Denduluri, S.; et al. COVID-19 and cardiac arrhythmias. Heart Rhythm 2020, 17, 1439–1444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069, Erratum in JAMA 2021, 325, 1113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, K.; Fang, Y.Y.; Deng, Y.; Liu, W.; Wang, M.F.; Ma, J.P.; Xiao, W.; Wang, Y.N.; Zhong, M.H.; Li, C.H.; et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. 2020, 133, 1025–1031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gopinathannair, R.; Merchant, F.M.; Lakkireddy, D.R.; Etheridge, S.P.; Feigofsky, S.; Han, J.K.; Kabra, R.; Natale, A.; Poe, S.; Saha, S.A.; et al. COVID-19 and cardiac arrhythmias: A global perspective on arrhythmia characteristics and management strategies. J. Interv. Card. Electrophysiol. 2020, 59, 329–336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Helms, J.; Combes, A.; Aissaoui, N. Cardiac injury in COVID-19. Intensive Care Med. 2022, 48, 111–113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wen, W.; Zhang, H.; Zhou, M.; Cheng, Y.; Ye, L.; Chen, J.; Wang, M.; Feng, Z. Arrhythmia in patients with severe coronavirus disease (COVID-19): A meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11395–11401. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef] [PubMed]
- Angeli, F.; Zappa, M.; Reboldi, G.; Trapasso, M.; Cavallini, C.; Spanevello, A.; Verdecchia, P. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection: One year later. Eur. J. Intern. Med. 2021, 93, 28–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cole-Jeffrey, C.T.; Liu, M.; Katovich, M.J.; Raizada, M.K.; Shenoy, V. ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. J. Cardiovasc. Pharmacol. 2015, 66, 540–550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garg, S.; Narula, J.; Marelli, C.; Cesario, D. Role of angiotensin receptor blockers in the prevention and treatment of arrhythmias. Am. J. Cardiol. 2006, 97, 921–925. [Google Scholar] [CrossRef] [PubMed]
- De Mello, W.C.; Crespo, M.J. Cardiac refractoriness in rats is reduced by angiotensin II. J. Cardiovasc. Pharmacol. 1995, 25, 51–56. [Google Scholar] [CrossRef] [PubMed]
- de Langen, C.D.; de Graeff, P.A.; van Gilst, W.H.; Bel, K.J.; Kingma, J.H.; Wesseling, H. Effects of angiotensin II and captopril on inducible sustained ventricular tachycardia two weeks after myocardial infarction in the pig. J. Cardiovasc. Pharmacol. 1989, 13, 186–191. [Google Scholar] [CrossRef] [PubMed]
- De Mello, W.; Altieri, P. The role of the renin-angiotensin system in the control of cell communication in the heart: Effects of enalapril and angiotensin II. J. Cardiovasc. Pharmacol. 1992, 20, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Malik, K.U.; Nasjletti, A. Facilitation of adrenergic transmission by locally generated angiotensin II in rat mesenteric arteries. Circ. Res. 1976, 38, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Hirata, Y.; Emori, T.; Yanagisawa, M.; Masaki, T.; Marumo, F. Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension 1992, 19 Pt 2, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Chua, B.H.; Chua, C.C.; Diglio, C.A.; Siu, B.B. Regulation of endothelin-1 mRNA by angiotensin II in rat heart endothelial cells. Biochim. Biophys. Acta Mol. Cell Res. 1993, 1178, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Goette, A.; Arndt, M.; Röcken, C.; Spiess, A.; Staack, T.; Geller, J.C.; Huth, C.; Ansorge, S.; Klein, H.U.; Lendeckel, U. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 2000, 101, 2678–2681. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, R.; Hatta, E.; Yasuda, K.; Smith, N.C.; Levi, R. Angiotensin-converting enzyme-independent angiotensin formation in a human model of myocardial ischemia: Modulation of norepinephrine release by angiotensin type 1 and angiotensin type 2 receptors. J. Pharmacol. Exp. Ther. 2000, 294, 248–254. [Google Scholar] [PubMed]
- Joy, M.D.; Lowe, R.D. Evidence that the area postrema mediates the central cardiovascular response to angiotensin II. Nature 1970, 228, 1303–1304. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Gutkind, J.S.; Saavedra, J.M. Angiotensin II binding sites in the conduction system of rat hearts. Am. J. Physiol. 1987, 253 Pt 2, H1618–H1622. [Google Scholar] [CrossRef] [PubMed]
- Kass, R.S.; Blair, M.L. Effects of angiotensin II on membrane current in cardiac Purkinje fibers. J. Mol. Cell Cardiol. 1981, 13, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, P.B.; Wong, P.C.; Chiu, A.T.; Herblin, W.F.; Benfield, P.; Carini, D.J.; Lee, R.J.; Wexler, R.R.; Saye, J.A.; Smith, R.D. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol. Rev. 1993, 45, 205–251. [Google Scholar] [PubMed]
- Gunasegaram, S.; Haworth, R.S.; Hearse, D.J.; Avkiran, M. Regulation of sarcolemmal Na(+)/H(+) exchanger activity by angiotensin II in adult rat ventricular myocytes: Opposing actions via AT(1) versus AT(2) receptors. Circ. Res. 1999, 85, 919–930. [Google Scholar] [CrossRef] [PubMed]
- De Mello, W.C. Renin-angiotensin system and cell communication in the failing heart. Hypertension 1996, 27, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.S.; Gavras, H.; Hood, W.B., Jr. Renin-angiotensin system inhibition in conscious sodium-depleted dogs. Effects on systemic and coronary hemodynamics. J. Clin. Investig. 1978, 61, 874–883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meggs, L.G.; Coupet, J.; Huang, H.; Cheng, W.; Li, P.; Capasso, J.M.; Homcy, C.J.; Anversa, P. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ. Res. 1993, 72, 1149–1162. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, P.E.; Boutjdir, M.; Capecchi, P.L. COVID-19, Arrhythmic Risk, and Inflammation: Mind the Gap! Circulation 2020, 142, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Duckheim, M.; Schreieck, J. COVID-19 and Cardiac Arrhythmias. Hamostaseologie 2021, 41, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Atri, D.; Siddiqi, H.K.; Lang, J.P.; Nauffal, V.; Morrow, D.A.; Bohula, E.A. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic. Transl. Sci. 2020, 5, 518–536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lazzerini, P.E.; Laghi-Pasini, F.; Boutjdir, M.; Capecchi, P.L. Cardioimmunology of arrhythmias: The role of autoimmune and inflammatory cardiac channelopathies. Nat. Rev. Immunol. 2019, 19, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Mátyás, B.B.; Benedek, I.; Blîndu, E.; Gerculy, R.; Roșca, A.; Rat, N.; Kovács, I.; Opincariu, D.; Parajkó, Z.; Szabó, E.; et al. Elevated FAI Index of Pericoronary Inflammation on Coronary CT Identifies Increased Risk of Coronary Plaque Vulnerability after COVID-19 Infection. Int. J. Mol. Sci. 2023, 24, 7398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lazzerini, P.E.; Capecchi, P.L.; Laghi-Pasini, F. Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Front. Cardiovasc. Med. 2015, 2, 26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bi, X.; Zhang, S.; Jiang, H.; Ma, W.; Li, Y.; Lu, W.; Yang, F.; Wei, Z. Mechanistic Insights Into Inflammation-Induced Arrhythmias: A Simulation Study. Front. Physiol. 2022, 13, 843292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Musher, D.M.; Abers, M.S.; Corrales-Medina, V.F. Acute Infection and Myocardial Infarction. N. Engl. J. Med. 2019, 380, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Norooznezhad, A.H.; Mansouri, K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc. Res. 2021, 137, 104188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siripanthong, B.; Nazarian, S.; Muser, D.; Deo, R.; Santangeli, P.; Khanji, M.Y.; Cooper, L.T., Jr.; Chahal, C.A.A. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020, 17, 1463–1471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N. Engl. J. Med. 2020, 382, 1653–1659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mueller, K.A.L.; Langnau, C.; Günter, M.; Pöschel, S.; Gekeler, S.; Petersen-Uribe, Á.; Kreisselmeier, K.P.; Klingel, K.; Bösmüller, H.; Li, B.; et al. Numbers and phenotype of non-classical CD14dimCD16+ monocytes are predictors of adverse clinical outcome in patients with coronary artery disease and severe SARS-CoV-2 infection. Cardiovasc. Res. 2021, 117, 224–239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tse, G.; Yeo, J.M.; Chan, Y.W.; Lai, E.T.; Yan, B.P. What Is the Arrhythmic Substrate in Viral Myocarditis? Insights from Clinical and Animal Studies. Front. Physiol. 2016, 7, 308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peretto, G.; Sala, S.; Rizzo, S.; De Luca, G.; Campochiaro, C.; Sartorelli, S.; Benedetti, G.; Palmisano, A.; Esposito, A.; Tresoldi, M.; et al. Arrhythmias in myocarditis: State of the art. Heart Rhythm 2019, 16, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Surawicz, B. Role of electrolytes in etiology and management of cardiac arrhythmias. Prog. Cardiovasc. Dis. 1966, 8, 364–386. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diao, B.; Wang, C.; Wang, R.; Feng, Z.; Zhang, J.; Yang, H.; Tan, Y.; Wang, H.; Wang, C.; Liu, L.; et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat. Commun. 2021, 12, 2506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alfano, G.; Fontana, F.; Mori, G.; Giaroni, F.; Ferrari, A.; Giovanella, S.; Ligabue, G.; Ascione, E.; Cazzato, S.; Ballestri, M.; et al. Acid base disorders in patients with COVID-19. Int. Urol. Nephrol. 2022, 54, 405–410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Emmett, M. Metabolic Alkalosis: A Brief Pathophysiologic Review. Clin. J. Am. Soc. Nephrol. 2020, 15, 1848–1856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, D.; Li, X.; Song, Q.; Hu, C.; Su, F.; Dai, J.; Ye, Y.; Huang, J.; Zhang, X. Assessment of Hypokalemia and Clinical Characteristics in Patients with Coronavirus Disease 2019 in Wenzhou, China. JAMA Netw. Open. 2020, 3, e2011122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dherange, P.; Lang, J.; Qian, P.; Oberfeld, B.; Sauer, W.H.; Koplan, B.; Tedrow, U. Arrhythmias and COVID-19: A Review. JACC Clin. Electrophysiol. 2020, 6, 1193–1204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolopoulos, E.J.; Papatheou, D.; Melita, H. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc. Med. 2020, 30, 451–460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naksuk, N.; Lazar, S.; Peeraphatdit, T.B. Cardiac safety of off-label COVID-19 drug therapy: A review and proposed monitoring protocol. Eur. Heart J. Acute Cardiovasc. Care. 2020, 9, 215–221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ishisaka, Y.; Aikawa, T.; Malik, A.; Kampaktsis, P.N.; Briasoulis, A.; Kuno, T. Association of Remdesivir use with bradycardia: A systematic review and meta-analysis. J. Med. Virol. 2023, 95, e29018. [Google Scholar] [CrossRef] [PubMed]
- Adamo, G.; Amata, M.; Cannizzaro, N.; Chessari, C.; Sapienza, G.M.; Capizzi, G.M.; Battaglia, S.; Benfante, A.; Scichilone, N. Transient asymptomatic bradycardia and remdesivir in COVID-19 patients. Minerva Med. 2023, 114, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.Y.; Chang, W.L.; Yang, C.J. Remdesivir-Induced Bradycardia and Mortality in SARS-CoV-2 Infection, Potential Risk Factors Assessment: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 7518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2021, 42, 3427–3520, Erratum in Eur. Heart J. 2022, 43, 1651. [Google Scholar] [CrossRef] [PubMed]
- Tovia-Brodie, O.; Rav Acha, M.; Belhassen, B.; Gasperetti, A.; Schiavone, M.; Forleo, G.B.; Guevara-Valdivia, M.E.; Ruiz, D.V.; Lellouche, N.; Hamon, D.; et al. Implantation of cardiac electronic devices in active COVID-19 patients: Results from an international survey. Heart Rhythm 2022, 19, 206–216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ansari, S.A.; Ansari, Y.; Khan, T.M.A. COVID-19 and Bradyarrhythmias: A Case Report with Literature Review. Cureus 2022, 14, e21552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kir, D.; Mohan, C.; Sancassani, R. Heart Brake: An Unusual Cardiac Manifestation of COVID-19. JACC Case Rep. 2020, 2, 1252–1255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Assaf, O.; Mirza, M.; Musa, A. Atypical presentation of COVID-19 as subclinical myocarditis with persistent high-degree atrioventricular block treated with pacemaker implant. HeartRhythm Case Rep. 2020, 6, 884–887. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chinitz, J.S.; Goyal, R.; Harding, M.; Veseli, G.; Gruberg, L.; Jadonath, R.; Maccaro, P.; Gandotra, P.; Ong, L.; Epstein, L.M. Bradyarrhythmias in patients with COVID-19: Marker of poor prognosis? Pacing Clin. Electrophysiol. 2020, 43, 1199–1204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cimino, G.; Pascariello, G.; Bernardi, N.; Calvi, E.; Arabia, G.; Salghetti, F.; Bontempi, L.; Vizzardi, E.; Metra, M.; Curnis, A. Sinus Node Dysfunction in a Young Patient with COVID-19. JACC Case Rep. 2020, 2, 1240–1244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pecora, D.; La Greca, C.; Pezzotti, E.; Botti, P.; Campana, M.; Cuccia, C. COVID-19 e coinvolgimento cardiaco: Una presentazione inusuale [An unusual presentation of cardiac involvement during the COVID-19 pandemic]. G. Ital. Cardiol. 2020, 21, 594–597. (In Italian) [Google Scholar] [CrossRef] [PubMed]
- Peigh, G.; Leya, M.V.; Baman, J.R.; Cantey, E.P.; Knight, B.P.; Flaherty, J.D. Novel coronavirus 19 (COVID-19) associated sinus node dysfunction: A case series. Eur. Heart J. Case Rep. 2020, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kochav, S.M.; Coromilas, E.; Nalbandian, A.; Ranard, L.S.; Gupta, A.; Chung, M.K.; Gopinathannair, R.; Biviano, A.B.; Garan, H.; Wan, E.Y. Cardiac Arrhythmias in COVID-19 Infection. Circ. Arrhythm. Electrophysiol. 2020, 13, e008719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Babapoor-Farrokhran, S.; Batnyam, U.; Wiener, P.C.; Kanjanahattakij, N.; Khraisha, O.; Amanullah, A.; Mainigi, S.K. Atrioventricular and Sinus Node Dysfunction in Stable COVID-19 Patients. SN Compr. Clin. Med. 2020, 2, 1955–1958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, A.K.; Parker, B.M.; Priyadarshi, V.; Parker, J. Cardiac Adverse Events with Remdesivir in COVID-19 Infection. Cureus 2020, 12, e11132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, M.D.; Qamar, A.; Mp, G.; Safal, S.; Batra, V.; Basia, D.; Mandal, S.K.; Yusuf, J.; Mukhopadhyay, S.; Bansal, A. Bradyarrhythmias in patients with COVID-19: A case series. Indian Pacing Electrophysiol. J. 2020, 20, 211–212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goette, A.; Patscheke, M.; Henschke, F.; Hammwöhner, M. COVID-19-Induced Cytokine Release Syndrome Associated with Pulmonary Vein Thromboses, Atrial Cardiomyopathy, and Arterial Intima Inflammation. TH Open 2020, 4, e271–e279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ashok, V.; Loke, W.I. Case report: High-grade atrioventricular block in suspected COVID-19 myocarditis. Eur. Heart J. Case Rep. 2020, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Assaad, I.E.; Hood-Pishchany, M.I.; Kheir, J.; Mistry, K.; Dixit, A.; Halyabar, O.; Mah, D.Y.; Meyer-Macaulay, C.; Cheng, H. Complete Heart Block, Severe Ventricular Dysfunction and Myocardial Inflammation in a Child with COVID-19 Infection. JACC Case Rep. 2020, 2, 1351–1355. [Google Scholar] [CrossRef]
- Rivetti, L.; Mantovan, R.; Sitta, N.; Marinigh, R.; Allocca, G.; Mohammed, M.; Pizzino, F.; Nucifora, G. Management of Pacemaker Implantation during COVID-19 Infection. Case Rep. Cardiol. 2020, 2020, 8833660. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haddadin, F.I.; Mahdawi, T.E.; Hattar, L.; Beydoun, H.; Fram, F.; Homoud, M. A case of complete heart block in a COVID-19 infected patient. J. Cardiol. Cases. 2021, 23, 27–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hiraiwa, H.; Goto, Y.; Nakamura, G.; Yasuda, Y.; Sakai, Y.; Kasugai, D.; Jinno, S.; Tanaka, T.; Ogawa, H.; Higashi, M.; et al. Relative bradycardia as a clinical feature in patients with coronavirus disease 2019 (COVID-19): A report of two cases. J. Cardiol. Cases 2020, 22, 260–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eid, M.M. COVID-19 patient with symptomatic bradycardia. Vis. J. Emerg. Med. 2021, 22, 100920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gatto, M.C.; Persi, A.; Tung, M.; Masi, R.; Canitano, S.; Kol, A. Bradyarrhythmias in patients with SARS-CoV-2 infection: A narrative review and a clinical report. Pacing Clin. Electrophysiol. 2021, 44, 1607–1615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dagher, L.; Wanna, B.; Mikdadi, G.; Young, M.; Sohns, C.; Marrouche, N.F. High-degree atrioventricular block in COVID-19 hospitalized patients. Europace 2021, 23, 451–455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amir, M.; Yoseph, H.; Farisi, A.T.A.; Phie, J.K.P.; Adam, A.T.S. Symptomatic Bradycardia in Covid-19 Hospitalized Patients: A Case Series. Int. J. Infect. Dis. 2021, 111, 1–4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abe, M.; Chiba, S.; Kataoka, S.; Gima, Y.; Nago, C.; Hatano, S.; Chinen, T.; Nakamura, K.; Miyagi, N.; Nakae, M.; et al. Paroxysmal Atrioventricular Block in a Relatively Young Patient with COVID-19. Intern. Med. 2021, 60, 2623–2626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maheshwari, M.; Athiraman, H. Bradycardia Related to Remdesivir During COVID-19: Persistent or Permanent? Cureus 2021, 13, e19919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akhtar, Z.; Leung, L.W.; Kontogiannis, C.; Zuberi, Z.; Bajpai, A.; Sharma, S.; Chen, Z.; Beeton, I.; Sohal, M.; Gallagher, M.M. Prevalence of bradyarrhythmias needing pacing in COVID-19. Pacing Clin. Electrophysiol. 2021, 44, 1340–1346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azarkish, M.; Laleh Far, V.; Eslami, M.; Mollazadeh, R. Transient complete heart block in a patient with critical COVID-19. Eur. Heart J. 2020, 41, 2131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sisko, S.G.; Atik, S.U.; Karadeniz, C.; Guzeltas, A.; Ergul, Y. Complete heart block, severe right ventricular dysfunction in a child with COVID-19 infection. Cardiol. Young 2022, 32, 1001–1003. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barkas, F.; Styla, C.P.; Bechlioulis, A.; Milionis, H.; Liberopoulos, E. Sinus Bradycardia Associated with Remdesivir Treatment in COVID-19: A Case Report and Literature Review. J. Cardiovasc. Dev. Dis. 2021, 8, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ching, P.R.; Lee, C. Remdesivir-associated bradycardia. BMJ Case Rep. 2021, 14, e245289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chow, E.J.; Maust, B.; Kazmier, K.M.; Stokes, C. Sinus Bradycardia in a Pediatric Patient Treated with Remdesivir for Acute Coronavirus Disease 2019: A Case Report and a Review of the Literature. J. Pediatric Infect. Dis. Soc. 2021, 10, 926–929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell, M.; Ward, B.; Dickson, R.; Patrick, C. Prehospital Sinus Node Dysfunction and Asystole in a Previously Healthy Patient with COVID-19. Prehosp. Emerg. Care. 2022, 26, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Awadelkarim, A.; Bishop, P.; Alhusain, R.; Adam, O.; Subahi, A.; Elmoghrabi, A.; Afonso, L. Severe Sinus Bradycardia: An Unusual Cardiac Manifestation of COVID-19. J. Investig. Med. High Impact. Case Rep. 2021, 9, 23247096211013185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amir, M.; Renata, A.; Ratana, L.T. Symptomatic sinus bradycardia due to electrolyte imbalances in syndrome of inappropriate antidiuretic hormone (SIADH) related covid-19: A case report. BMC Infect. Dis. 2021, 21, 465. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elices-Teja, J.; Bueno-Sacristán, Á.; Durán-Bobin, O.; Ferreiro-González, A.M.; Gonzalez-Juanatey, C. Sinus Node Syndrome in a critical COVID-19 patient. Rev. Port. Cardiol. 2021, 40, 987–988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shree, V.; En Liew, L.Q.; Teo, W.W.; Ting, J.; Liew, M.F. Potentially fatal severe brady arrythmias related to Lopinavir-Ritonavir in a COVID 19 patient. J. Microbiol. Immunol. Infect. 2021, 54, 133–135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kilicaslan, O.; Isancli, D.K.; Ulutas, O.Y.; Ergin, S.O.; Karbuz, A. A case of bradycardia during SARS CoV-2 infection in a 14-year-old child. Infect. Di.s 2021, 53, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Eneizat Mahdawi, T.; Wang, H.; Haddadin, F.I.; Al-Qaysi, D.; Wylie, J.V. Heart block in patients with coronavirus disease 2019: A case series of 3 patients infected with SARS-CoV-2. HeartRhythm Case Rep. 2020, 6, 652–656. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Day, L.B.; Abdel-Qadir, H.; Fralick, M. Bradycardia associated with remdesivir therapy for COVID-19 in a 59-year-old man. CMAJ 2021, 193, E612–E615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wojewoda, K.; Tarkowski, A.; Wysokinska, K.; Kozak, M.; Janowski, M.; Baszak, J.; Waciński, P.; Wysokinski, A.; Glowniak, A. Syncope due to third-degree atrioventricular block as the only manifestation of myocarditis following COVID-19 infection. Kardiol. Pol. 2021, 79, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Sallam, S.; Sullivan, C. A Case of Complete Heart Block and Acute Appendicitis in a Young Patient with COVID-19. Cureus 2022, 14, e22926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahmadhany, A.; Sukardi, R.; Nursyirwan, S.R.; Djer, M.M. Complete atrioventricular block due to multisystem inflammatory syndrome in children: A case report. Turk. J. Pediatr. 2022, 64, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Guziejko, K.; Talalaj, J.; Chorazy, M.; Groth, M.; Moniuszko-Malinowska, A. Remdesivir-induced bradycardia in a 26-year-old patient with COVID-19: A case report. Infection 2022, 50, 1605–1613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miśkowiec, D.; Życiński, P.; Qawoq, H.D.; Kasprzak, J.D. Isolated persistent left superior vena cava: A rare and unexpected finding in a patient with COVID-19 and complete heart block. Cardiol. J. 2023, 30, 327–328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gubitosa, J.C.; Kakar, P.; Gerula, C.; Nossa, H.; Finkel, D.; Wong, K.; Khatri, M.; Ali, H. Marked Sinus Bradycardia Associated with Remdesivir in COVID-19: A Case and Literature Review. JACC Case Rep. 2020, 2, 2260–2264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gubitosa, J.C.; Xu, P.; Ahmed, A.; Pergament, K. Incomplete Trifascicular Block and Mobitz Type II Atrioventricular Block in COVID-19. Cureus 2020, 12, e10461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malekrah, A.; Fatahian, A. A case report of a rare cardiac complication in novel coronavirus disease. Eur. Heart J. Case Rep. 2020, 4, 1–4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.Y.; Ng, G.Y.P. COVID-19 treatment with lopinavir-ritonavir resulting in sick sinus syndrome: A case report. Eur. Heart J. Case Rep. 2020, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domico, M.; McCanta, A.C.; Hunt, J.L.; Ashouri, N.; Nugent, D.; Kelly, R.B. High-grade heart block requiring transvenous pacing associated with multisystem inflammatory syndrome in children during the COVID-19 pandemic. HeartRhythm Case Rep. 2020, 6, 811–814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, Y.; Zhu, J.; Yang, L.; Nilsson-Payant, B.E.; Hurtado, R.; Lacko, L.A.; Sun, X.; Gade, A.R.; Higgins, C.A.; Sisso, W.J.; et al. SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells. Circ. Res. 2022, 130, 963–977. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nishiga, M.; Jahng, J.W.S.; Wu, J.C. Ferroptosis of Pacemaker Cells in COVID-19. Circ. Res. 2022, 130, 978–980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506, Erratum in Lancet 2020, 395, 496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Aranyó, J.; Bazan, V.; Lladós, G.; Dominguez, M.J.; Bisbal, F.; Massanella, M.; Sarrias, A.; Adeliño, R.; Riverola, A.; Paredes, R.; et al. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci. Rep. 2022, 12, 298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shouman, K.; Vanichkachorn, G.; Cheshire, W.P.; Suarez, M.D.; Shelly, S.; Lamotte, G.J.; Sandroni, P.; Benarroch, E.E.; Berini, S.E.; Cutsforth-Gregory, J.K.; et al. Autonomic dysfunction following COVID-19 infection: An early experience. Clin. Auton. Res. 2021, 31, 385–394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bisaccia, G.; Ricci, F.; Recce, V.; Serio, A.; Iannetti, G.; Chahal, A.A.; Ståhlberg, M.; Khanji, M.Y.; Fedorowski, A.; Gallina, S. Post-Acute Sequelae of COVID-19 and Cardiovascular Autonomic Dysfunction: What Do We Know? J. Cardiovasc. Dev. Dis. 2021, 8, 156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Russo, V.; Rago, A.; Carbone, A.; Bottino, R.; Ammendola, E.; Della Cioppa, N.; Galante, D.; Golino, P.; Nigro, G. Atrial Fibrillation in COVID-19: From Epidemiological Association to Pharmacological Implications. J. Cardiovasc. Pharmacol. 2020, 76, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Pardo Sanz, A.; Salido Tahoces, L.; Ortega Pérez, R.; González Ferrer, E.; Sánchez Recalde, Á.; Zamorano Gómez, J.L. New-onset atrial fibrillation during COVID-19 infection predicts poor prognosis. Cardiol. J. 2021, 28, 34–40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Musikantow, D.R.; Turagam, M.K.; Sartori, S.; Chu, E.; Kawamura, I.; Shivamurthy, P.; Bokhari, M.; Oates, C.; Zhang, C.; Pumill, C.; et al. Atrial Fibrillation in Patients Hospitalized with COVID-19: Incidence, Predictors, Outcomes, and Comparison to Influenza. JACC Clin. Electrophysiol. 2021, 7, 1120–1130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818, Erratum in JAMA Cardiol. 2020, 5, 848. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.D.; Boursiquot, B.C.; Melki, L.; Wan, E.Y. Management of Arrhythmias Associated with COVID-19. Curr. Cardiol. Rep. 2020, 23, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; ESC Scientific Document Group; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Ge, Y.; Antiochos, P.; Seno, A.; Qamar, I.; Blankstein, R.; Steigner, M.; Aghayev, A.; Jerosch-Herold, M.; Tedrow, U.B.; Stevenson, W.G.; et al. Diagnostic Impact and Prognostic Value of Cardiac Magnetic Resonance in Patients with Ventricular Arrhythmias. JACC Cardiovasc. Imaging. 2023, 16, 1536–1549. [Google Scholar] [CrossRef] [PubMed]
- Chyży, T.; Małecka, B.; Bednarek, J.; Mielnik, M.; Dębski, M.; Miszalski-Jamka, T.; Boczar, K.; Lelakowski, J.; Ząbek, A. A wearable cardioverter-defibrillator vest as a diagnostic and therapeutic tool after COVID-19. Kardiol. Pol. 2023, 81, 800–801. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Walkey, A.J.; Myers, L.C.; Thai, K.K.; Kipnis, P.; Desai, M.; Go, A.S.; Lu, Y.; Clancy, H.; Devis, Y.; Neugebauer, R.; et al. Practice Patterns and Outcomes Associated with Anticoagulation Use Following Sepsis Hospitalizations with New-Onset Atrial Fibrillation. Circ. Cardiovasc. Qual. Outcomes 2023, 16, e009494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chyou, J.Y.; Barkoudah, E.; Dukes, J.W.; Goldstein, L.B.; Joglar, J.A.; Lee, A.M.; Lubitz, S.A.; Marill, K.A.; Sneed, K.B.; Streur, M.M.; et al. Atrial Fibrillation Occurring During Acute Hospitalization: A Scientific Statement from the American Heart Association. Circulation 2023, 147, e676–e698, Erratum in Circulation 2023, 147, e717. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.F.; Cotler, J.; Jason, L.A. Post-viral fatigue and COVID-19: Lessons from past epidemics. Fatigue Biomed. Health Behav. 2020, 8, 61–69. [Google Scholar] [CrossRef]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shrestha, A.B.; Mehta, A.; Pokharel, P.; Mishra, A.; Adhikari, L.; Shrestha, S.; Yadav, R.S.; Khanal, S.; Sah, R.; Nowrouzi-Kia, B.; et al. Long COVID Syndrome and Cardiovascular Manifestations: A Systematic Review and Meta-Analysis. Diagnostics 2023, 13, 491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radin, J.M.; Quer, G.; Ramos, E.; Baca-Motes, K.; Gadaleta, M.; Topol, E.J.; Steinhubl, S.R. Assessment of Prolonged Physiological and Behavioral Changes Associated with COVID-19 Infection. JAMA Netw. Open. 2021, 4, e2115959. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blitshteyn, S.; Whitelaw, S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: A case series of 20 patients. Immunol. Res. 2021, 69, 205–211, Erratum in Immunol. Res. 2021, 69, 212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Feltz-Cornelis, C.M.; Sweetman, J.; Allsopp, G.; Attree, E.; Crooks, M.G.; Cuthbertson, D.J.; Forshaw, D.; Gabbay, M.; Green, A.; Heightman, M.; et al. STIMULATE-ICP-Delphi (Symptoms, Trajectory, Inequalities and Management: Understanding Long-COVID to Address and Transform Existing Integrated Care Pathways Delphi): Study protocol. PLoS ONE 2022, 17, e0277936. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pessoa-Amorim, G.; Mafham, M.M. The RECOVERY trial: Cardiovascular implications of a large, simple randomized trial in COVID-19. Cardiovasc. Res. 2021, 117, e110–e113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gandhi, R.S.; Raman, B. The complexity of cardiovascular long COVID: Where we are. Cardiovasc. Res. 2024, 120, e30–e32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernandez, I.; He, M.; Guo, J.; Tadrous, M.; Gabriel, N.; Swabe, G.; Gellad, W.F.; Essien, U.R.; Saba, S.; Benjamin, E.J.; et al. COVID-19 pandemic and trends in new diagnosis of atrial fibrillation: A nationwide analysis of claims data. PLoS ONE 2023, 18, e0281068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mairesse, G.H.; Braunschweig, F.; Klersy, K.; Cowie, M.R.; Leyva, F. Implementation and reimbursement of remote monitoring for cardiac implantable electronic devices in Europe: A survey from the health economics committee of the European Heart Rhythm Association. Europace 2015, 17, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.C.; Skoll, D.; Saxon, L.A. Home Monitoring of Cardiac Devices in the Era of COVID-19. Curr. Cardiol. Rep. 2020, 23, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maines, M.; Tomasi, G.; Moggio, P.; Peruzza, F.; Catanzariti, D.; Angheben, C.; Simoncelli, M.; Degiampietro, M.; Piffer, L.; Valsecchi, S.; et al. Implementation of remote follow-up of cardiac implantable electronic devices in clinical practice: Organizational implications and resource consumption. J. Cardiovasc. Med. 2020, 21, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Maines, M.; Palmisano, P.; Del Greco, M.; Melissano, D.; De Bonis, S.; Baccillieri, S.; Zanotto, G.; D’Onofrio, A.; Ricci, R.P.; De Ponti, R.; et al. Impact of COVID-19 Pandemic on Remote Monitoring of Cardiac Implantable Electronic Devices in Italy: Results of a Survey Promoted by AIAC (Italian Association of Arrhythmology and Cardiac Pacing). J. Clin. Med. 2021, 10, 4086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diemberger, I.; Vicentini, A.; Cattafi, G.; Ziacchi, M.; Iacopino, S.; Morani, G.; Pisanò, E.; Molon, G.; Giovannini, T.; Dello Russo, A.; et al. The Impact of COVID-19 Pandemic and Lockdown Restrictions on Cardiac Implantable Device Recipients with Remote Monitoring. J. Clin. Med. 2021, 10, 5626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ziacchi, M.; Calò, L.; D’Onofrio, A.; Manzo, M.; Dello Russo, A.; Santini, L.; Giubilato, G.; Carriere, C.; Santobuono, V.E.; Savarese, G.; et al. Implantable Cardioverter Defibrillator Multisensor Monitoring during Home Confinement Caused by the COVID-19 Pandemic. Biology 2022, 11, 120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Cardiac electrical activity |
|
Autonomic nervous system |
|
Coronary vessels |
|
Bradyarrhythmias |
|
Tachyarrhythmias |
Supraventricular Inappropriate sinus tachycardia Atrial premature beat Atrial fibrillation Atrial flutter Atrial tachycardia |
Ventricular Ventricular premature complexes and non-sustained ventricular tachycardia Sustained ventricular tachycardia Polymorphic ventricular tachycardia (torsade de pointes) Ventricular fibrillation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasi, F.; Vicenzi, M.; De Ponti, R. COVID-19 and Cardiac Arrhythmias: Lesson Learned and Dilemmas. J. Clin. Med. 2024, 13, 7259. https://doi.org/10.3390/jcm13237259
Blasi F, Vicenzi M, De Ponti R. COVID-19 and Cardiac Arrhythmias: Lesson Learned and Dilemmas. Journal of Clinical Medicine. 2024; 13(23):7259. https://doi.org/10.3390/jcm13237259
Chicago/Turabian StyleBlasi, Federico, Marco Vicenzi, and Roberto De Ponti. 2024. "COVID-19 and Cardiac Arrhythmias: Lesson Learned and Dilemmas" Journal of Clinical Medicine 13, no. 23: 7259. https://doi.org/10.3390/jcm13237259
APA StyleBlasi, F., Vicenzi, M., & De Ponti, R. (2024). COVID-19 and Cardiac Arrhythmias: Lesson Learned and Dilemmas. Journal of Clinical Medicine, 13(23), 7259. https://doi.org/10.3390/jcm13237259