Emergencies in Hematology: Why, When and How I Treat?
Abstract
:1. Introduction
2. Hypercalcemia
- Albumin < 40 g/dL: corrected calcium = (Ca2+) + 0.02 [40 − (albumin)]
- Albumin ≥ 40 g/dL: corrected calcium = (Ca2+) − 0.02 [(albumin) − 45]
2.1. Symptoms
2.2. Pathophysiology
2.3. Management
3. Hyperleukocytosis and Leukostasis
3.1. Pathophysiology
3.2. Signs and Symptoms
3.3. Management
4. Tumor Lysis Syndrome
- uric acid ≥ 476 mmol/L or 25% increase from baseline;
- potassium ≥ 6 mmol/L or 25% increase from baseline;
- calcium ≤ 1.75 mmol/L or 25% decrease from baseline;
- phosphate ≥ 1.45 mmol/L or 25% increase from baseline.
4.1. Symptoms and Management
- High grade of intravenous hydration, starting at least 24 h before the therapy begins, with the aim of 3 L/day of diuresis or >100 mL/h;
- Hypouricemic therapy, with allopurinol (in low-medium risk patients, up to 600–800 mg/day, starting 2–3 days before treatment and continuing for about 10–14 days) or rasburicase (in high-risk patients, at 0.2 mg/kg intravenous for 3–7 days, depending on clinical and biochemical data). Rasburicase is a highly potent uricolytic agent that catalyzes the enzymatic oxidation of uric acid into allantoin, a water-soluble product that is easily excreted by the kidneys in the urine. A randomized phase 3 comparative study utilizing the recommended dose demonstrated a significantly faster onset of action for rasburicase than allopurinol. Four hours after the first dose, there was a significant difference (p < 0.0001) in the mean percentage change from baseline plasma uric acid levels between the rasburicase group (−86.0%) and the allopurinol group (−12.1%) [48]. Furthermore, febuxostat seems to be a valid alternative to allopurinol in patients with compromised kidney function, allopurinol intolerance, or resistance, where rasburicase is not available [38,49].
4.1.1. Hyperuricemia
4.1.2. Hyperphosphatemia
4.1.3. Hyperkalemia
4.1.4. Hypocalcemia
4.1.5. Renal Replacement Therapy
5. Neutropenic Fever and Septic Shock
5.1. Symptoms, Diagnosis, and Prognosis
5.2. Management
6. Blood Transfusion Reactions
Subtypes and Management
7. Disseminated Intravascular Coagulation
7.1. Clinical Presentation and Diagnosis
7.2. Management
8. Thrombotic Thrombocytopenic Purpura
8.1. Pathophysiology and Symptoms
8.2. Management
9. Sickle Cell Crisis
Diagnosis, Features, and Management
10. Cytokine Release and Immune Effector Cell-Associated Neurotoxicity Syndromes
10.1. Classification, Incidence, and Diagnosis
10.2. Management
11. Other Emergencies
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Asonitis, N.; Angelousi, A.; Zafeiris, C.; Lambrou, G.I.; Dontas, I.; Kassi, E. Diagnosis, Pathophysiology and Management of Hypercalcemia in Malignancy: A Review of the Literature. Horm. Metab. Res. 2019, 51, 770–778. [Google Scholar] [CrossRef]
- Walker, M.D.; Shane, E. Hypercalcemia: A Review. JAMA 2022, 328, 1624–1636. [Google Scholar] [CrossRef] [PubMed]
- Donald, D.M.; Drake, M.T.; Crowley, R.K. Treatment of Hypercalcaemia of Malignancy in Adults. Clin. Med. 2023, 23, 503. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, N.M.; Anastasopoulou, C.; Patel, G.; Badireddy, M. Hypercalcemia; StatPearls: Tampa, FL, USA, 2024. [Google Scholar]
- Akirov, A.; Gorshtein, A.; Shraga-Slutzky, I.; Shimon, I. Calcium Levels on Admission and before Discharge Are Associated with Mortality Risk in Hospitalized Patients. Endocrine 2017, 57, 344–351. [Google Scholar] [CrossRef]
- Gupta, S.; Rastogi, A.; Singh, P.; Chophy, A.; Roushan, R.; Krishnan, A.S.; Joseph, D.; Goyal, B.; Gupta, A.; Gupta, M. Treatment Outcomes and Survival in Hypercalcemia of Malignancy: A Grave Metabolic Emergency. Cureus 2023, 15, e35783. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Wang, Y.; Lu, M.; Chu, B.; Shi, L.; Gao, S.; Fang, L.; Xiang, Q. Hypercalcemia Caused by Humoral Effects and Bone Damage Indicate Poor Outcomes in Newly Diagnosed Multiple Myeloma Patients. Cancer Med. 2020, 9, 8962. [Google Scholar] [CrossRef]
- Cafforio, P.; Savonarola, A.; Stucci, S.; De Matteo, M.; Tucci, M.; Brunetti, A.E.; Vecchio, V.M.; Silvestris, F. PTHrP Produced by Myeloma Plasma Cells Regulates Their Survival and Pro-Osteoclast Activity For Bone Disease Progression. J. Bone Miner. Res. 2014, 29, 55–66. [Google Scholar] [CrossRef]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 Patients with Newly Diagnosed Multiple Myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef]
- Okada, Y.; Tsukada, J.; Nakano, K.; Tonai, S.; Mine, S.; Tanaka, Y. Macrophage Inflammatory Protein-1α Induces Hypercalcemia in Adult T-Cell Leukemia. J. Bone Miner. Res. 2004, 19, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Burt, M.E.; Brennan, M.F. Incidence of Hypercalcemia and Malignant Neoplasm. Arch. Surg. 1980, 115, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M.; Kantorovich, V.; Liker, H.R.; Van Herle, A.J.; Cohan, P.; Zehnder, D.; Adams, J.S. Vitamin D-Mediated Hypercalcemia in Lymphoma: Evidence for Hormone Production by Tumor-Adjacent Macrophages. J. Bone Miner. Res. 2003, 18, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Oshimi, K. Extensive Bone Marrow Necrosis and Symptomatic Hypercalcemia in B Cell Blastic Transformation of Chronic Myeloid Leukemia: Report of a Case and Review of the Literature. Acta Haematol. 2007, 118, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Gould Rothberg, B.E.; Quest, T.E.; Yeung, S.J.; Pelosof, L.C.; Gerber, D.E.; Seltzer, J.A.; Bischof, J.J.; Thomas, C.R.; Akhter, N.; Mamtani, M.; et al. Oncologic Emergencies and Urgencies: A Comprehensive Review. CA Cancer J. Clin. 2022, 72, 570–593. [Google Scholar] [CrossRef] [PubMed]
- Yee, A.J.; Raje, N.S. Denosumab, a RANK Ligand Inhibitor, for the Management of Bone Loss in Cancer Patients. Clin. Interv. Aging 2012, 7, 331–338. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Zeidan, A.M. Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments? Cells 2020, 9, 2310. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, L.M.; Brown, S.; Munyon, A.; Orovets, M. Leukostasis: Management to Prevent Crisis in Acute Leukemia. Clin. J. Oncol. Nurs. 2017, 21, E267–E271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhu, Y.; Jin, Y.; Kaweme, N.M.; Dong, Y. Leukapheresis and Hyperleukocytosis, Past and Future. Int. J. Gen. Med. 2021, 14, 3457–3467. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Nardo, A.; Giuffrida, G.; Leotta, S.; Markovic, U.; Giallongo, C.; Tibullo, D.; Romano, A.; Di Raimondo, F.; Palumbo, G.A. Myelofibrosis and Survival Prognostic Models: A Journey between Past and Future. J. Clin. Med. 2023, 12, 2188. [Google Scholar] [CrossRef]
- Ali, A.M.; Mirrakhimov, A.E.; Abboud, C.N.; Cashen, A.F. Leukostasis in Adult Acute Hyperleukocytic Leukemia: A Clinician’s Digest. Hematol. Oncol. 2016, 34, 69–78. [Google Scholar] [CrossRef]
- Stucki, A.; Rivier, A.S.; Gikic, M.; Monai, N.; Schapira, M.; Spertini, O. Endothelial Cell Activation by Myeloblasts: Molecular Mechanisms of Leukostasis and Leukemic Cell Dissemination. Blood 2001, 97, 2121–2129. [Google Scholar] [CrossRef] [PubMed]
- Bug, G.; Anargyrou, K.; Tonn, T.; Bialleck, H.; Seifried, E.; Hoelzer, D.; Ottmann, O.G. Impact of Leukapheresis on Early Death Rate in Adult Acute Myeloid Leukemia Presenting with Hyperleukocytosis. Transfusion 2007, 47, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf, J.P.; Giri, S.; Tallman, M.S.; Zeidan, A.M.; Stahl, M. Leukapheresis for the Management of Hyperleukocytosis in Acute Myeloid Leukemia-A Systematic Review and Meta-Analysis. Transfusion 2020, 60, 2360–2369. [Google Scholar] [CrossRef] [PubMed]
- Farid, K.M.N.; Sauer, T.; Schmitt, M.; Müller-Tidow, C.; Schmitt, A. Symptomatic Patients with Hyperleukocytic FLT3-ITD Mutated Acute Myeloid Leukemia Might Benefit from Leukapheresis. Cancers 2023, 16, 58. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Maugeri, C.; Parisi, M.; Mauro, E.; Fiumara, P.F.; Randazzo, V.; Salemi, D.; Agueli, C.; Palumbo, G.A.; Santoro, A.; et al. Target Therapy for Extramedullary Relapse of FLT3-ITD Acute Myeloid Leukemia: Emerging Data from the Field. Cancers 2022, 14, 2186. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.R.; Müller-Beißenhirtz, H.; Herget-Hosenthal, S.; Kribben, A.; Düiwsen, U. Grading of Symptoms in Hyperleukocytic Leukaemia: A Clinical Model for the Role of Different Blast Types and Promyelocytes in the Development of Leukostasis Syndrome. Eur. J. Haematol. 2005, 74, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Ganzel, C.; Becker, J.; Mintz, P.D.; Lazarus, H.M.; Rowe, J.M. Hyperleukocytosis, Leukostasis and Leukapheresis: Practice Management. Blood Rev. 2012, 26, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Van Buchem, M.A.; Wondergem, J.H.; Schultze Kool, L.J.; Te Velde, J.; Kluin, P.M.; Bode, P.J.; Busscher, D.L.T. Pulmonary Leukostasis: Radiologic-Pathologic Study. Radiology 1987, 165, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Shallis, R.M.; Wei, W.; Montesinos, P.; Lengline, E.; Neukirchen, J.; Bhatt, V.R.; Sekeres, M.A.; Fathi, A.T.; Konig, H.; et al. Management of Hyperleukocytosis and Impact of Leukapheresis among Patients with Acute Myeloid Leukemia (AML) on Short- and Long-Term Clinical Outcomes: A Large, Retrospective, Multicenter, International Study. Leukemia 2020, 34, 3149–3160. [Google Scholar] [CrossRef]
- Powell, B.; Gregory, B.; Evans, J.K.; White, J.; Lyerly, E.; Chorley, H.; Russell, G.; Capizzi, R. Leukapheresis Induced Changes in Cell Cycle Distribution and Nucleoside Transporters in Patients with Untreated Acute Myeloid Leukemia. Leukemia 1991, 5, 1037–1042. [Google Scholar]
- Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J. Clin. Apher. 2019, 34, 171–354. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Kantarjian, H.; Marcucci, G.; Pierce, S.; Brandt, M.; Dinardo, C.; Pemmaraju, N.; Garcia-Manero, G.; O’Brien, S.; Ferrajoli, A.; et al. Clinical Characteristics and Outcomes in Patients with Acute Promyelocytic Leukaemia and Hyperleucocytosis. Br. J. Haematol. 2015, 168, 646–653. [Google Scholar] [CrossRef]
- Iland, H.J.; Russell, N.; Dillon, R.; Schuh, A.C.; Tedjaseputra, A.; Wei, A.; Khwaja, A.; Knapper, S.; Lane, S.W.; Reynolds, J.; et al. Characteristics and Outcomes of Patients with Acute Promyelocytic Leukemia and Extreme Hyperleukocytosis at Presentation. Blood Adv. 2023, 7, 2580–2585. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; et al. Management of Acute Promyelocytic Leukemia: Updated Recommendations from an Expert Panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef]
- Vahdat, L.; Maslak, P.; Miller, W.H.; Eardley, A.; Heller, G.; Scheinberg, D.A.; Warrell, R.P. Early Mortality and the Retinoic Acid Syndrome in Acute Promyelocytic Leukemia: Impact of Leukocytosis, Low-Dose Chemotherapy, PMN/RAR-Alpha Isoform, and CD13 Expression in Patients Treated with All-Trans Retinoic Acid. Blood 1994, 84, 3843–3849. [Google Scholar] [CrossRef] [PubMed]
- Mamez, A.C.; Raffoux, E.; Chevret, S.; Lemiale, V.; Boissel, N.; Canet, E.; Schlemmer, B.; Dombret, H.; Azoulay, E.; Lengliné, E. Pre-Treatment with Oral Hydroxyurea Prior to Intensive Chemotherapy Improves Early Survival of Patients with High Hyperleukocytosis in Acute Myeloid Leukemia. Leuk. Lymphoma 2016, 57, 2281–2288. [Google Scholar] [CrossRef]
- Röllig, C.; Ehninger, G. How I Treat Hyperleukocytosis in Acute Myeloid Leukemia. Blood 2015, 125, 3246–3252. [Google Scholar] [CrossRef]
- Matuszkiewicz-Rowinska, J.; Malyszko, J. Prevention and Treatment of Tumor Lysis Syndrome in the Era of Onco-Nephrology Progress. Kidney Blood Press. Res. 2020, 45, 645–660. [Google Scholar] [CrossRef]
- Cairo, M.S.; Bishop, M. Tumour Lysis Syndrome: New Therapeutic Strategies and Classification. Br. J. Haematol. 2004, 127, 3–11. [Google Scholar] [CrossRef]
- Puri, I.; Sharma, D.; Gunturu, K.S.; Ahmed, A.A. Diagnosis and Management of Tumor Lysis Syndrome. J. Community Hosp. Intern. Med. Perspect. 2020, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Lorenzo, I.; Martín, G.; Sanz, J.; Pérez-Sirvent, M.L.; Martínez, D.; Ortí, G.; Algarra, L.; Martínez, J.; Moscardó, F.; et al. Tumor Lysis Syndrome in Patients with Acute Myeloid Leukemia: Identification of Risk Factors and Development of a Predictive Model. Haematologica 2008, 93, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Adeyinka, A.; Kaur, A.; Bashir, K. Tumor Lysis Syndrome; StatPearls: Tampa, FL, USA, 2024. [Google Scholar]
- Jasek, A.M.; Day, H.J. Acute Spontaneous Tumor Lysis Syndrome. Am. J. Hematol. 1994, 47, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Belay, Y.; Yirdaw, K.; Enawgaw, B. Tumor Lysis Syndrome in Patients with Hematological Malignancies. J. Oncol. 2017, 2017, 9684909. [Google Scholar] [CrossRef]
- Hande, K.R.; Garrow, G.C. Acute Tumor Lysis Syndrome in Patients with High-Grade Non-Hodgkin’s Lymphoma. Am. J. Med. 1993, 94, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Cairo, M.S.; Thompson, S.; Stern, L.; Sherman, S. Incidence of Treatment-Related, Laboratory and Clinical Tumor Lysis Syndrome. Blood 2012, 120, 238. [Google Scholar] [CrossRef]
- Annemans, L.; Moeremans, K.; Lamotte, M.; Garcia Conde, J.; Van Den Berg, H.; Myint, H.; Pieters, R.; Uyttebroeck, A. Incidence, Medical Resource Utilisation and Costs of Hyperuricemia and Tumour Lysis Syndrome in Patients with Acute Leukaemia and Non-Hodgkin’s Lymphoma in Four European Countries. Leuk. Lymphoma 2003, 44, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Moore, J.O.; Maziarz, R.T.; Wetzler, M.; Craig, M.; Matous, J.; Luger, S.; Dey, B.R.; Schiller, G.J.; Pham, D.; et al. Control of Plasma Uric Acid in Adults at Risk for Tumor Lysis Syndrome: Efficacy and Safety of Rasburicase Alone and Rasburicase Followed by Allopurinol Compared with Allopurinol Alone--Results of a Multicenter Phase III Study. J. Clin. Oncol. 2010, 28, 4207–4213. [Google Scholar] [CrossRef] [PubMed]
- Spina, M.; Nagy, Z.; Ribera, J.M.; Federico, M.; Aurer, I.; Jordan, K.; Borsaru, G.; Pristupa, A.S.; Bosi, A.; Grosicki, S.; et al. FLORENCE: A Randomized, Double-Blind, Phase III Pivotal Study of Febuxostat versus Allopurinol for the Prevention of Tumor Lysis Syndrome (TLS) in Patients with Hematologic Malignancies at Intermediate to High TLS Risk. Ann. Oncol. 2015, 26, 2155–2161. [Google Scholar] [CrossRef]
- Kang, D.H.; Park, S.K.; Lee, I.K.; Johnson, R.J. Uric Acid-Induced C-Reactive Protein Expression: Implication on Cell Proliferation and Nitric Oxide Production of Human Vascular Cells. J. Am. Soc. Nephrol. 2005, 16, 3553–3562. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, D.S.; Gerry, H.W.; Saral, R.; Harker, W.G.; Sanders, R.C. Hyperphosphatemia, Hypocalcemia, and Transient Renal Failure. Results of Cytotoxic Treatment of Acute Lymphoblastic Leukemia. JAMA 1978, 239, 2472–2474. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Anastasopoulou, C.; Ngu, M.; Singh, S. Hypocalcemia. In Endocrinology and Diabetes: A Problem Oriented Approach, 2nd ed.; Springer: Cham, Switzerland, 2023; pp. 219–230. [Google Scholar] [CrossRef]
- Jones, G.L.; Will, A.; Jackson, G.H.; Webb, N.J.A.; Rule, S. Guidelines for the Management of Tumour Lysis Syndrome in Adults and Children with Haematological Malignancies on Behalf of the British Committee for Standards in Haematology. Br. J. Haematol. 2015, 169, 661–671. [Google Scholar] [CrossRef]
- Long, B.; Koyfman, A. Oncologic Emergencies: The Fever With Too Few Neutrophils. J. Emerg. Med. 2019, 57, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.A.H.; Wingard, J.R. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef]
- Safdar, A.; Armstrong, D. Infections in Patients with Hematologic Neoplasms and Hematopoietic Stem Cell Transplantation: Neutropenia, Humoral, and Splenic Defects. Clin. Infect. Dis. 2011, 53, 798–806. [Google Scholar] [CrossRef]
- Duminuco, A.; Scarso, S.; Cupri, A.; Parrinello, N.L.; Villari, L.; Scuderi, G.; Giunta, G.; Leotta, S.; Milone, G.A.; Giuffrida, G.; et al. Leishmania Infection during Ruxolitinib Treatment: The Cytokines-Based Immune Response in the Setting of Immunocompromised Patients. J. Clin. Med. 2023, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, G.A.; Cambria, D.; La Spina, E.; Duminuco, A.; Laneri, A.; Longo, A.; Vetro, C.; Giallongo, S.; Romano, A.; Di Raimondo, F.; et al. Ruxolitinib Treatment in Myelofibrosis and Polycythemia Vera Causes Suboptimal Humoral Immune Response Following Standard and Booster Vaccination with BNT162b2 MRNA COVID-19 Vaccine. Front. Oncol. 2023, 13, 1117815. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Romano, A.; Leotta, D.; La Spina, E.; Cambria, D.; Bulla, A.; Del Fabro, V.; Tibullo, D.; Giallongo, C.; Palumbo, G.A.; et al. Clinical Outcome of SARS-CoV-2 Infections Occurring in Multiple Myeloma Patients after Vaccination and Prophylaxis with Tixagevimab/Cilgavimab. Front. Oncol. 2023, 13, 1157610. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Nardo, A.; Orofino, A.; Giunta, G.; Conticello, C.; Del Fabro, V.; Chiarenza, A.; Parisi, M.S.; Figuera, A.; Leotta, S.; et al. Efficacy and Safety of Tixagevimab-Cilgavimab versus SARS-CoV-2 Breakthrough Infection in the Hematological Conditions. Cancer 2024, 130, 41–50. [Google Scholar] [CrossRef]
- Guarino, M.; Perna, B.; Cesaro, A.E.; Maritati, M.; Spampinato, M.D.; Contini, C.; De Giorgio, R. 2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department. J. Clin. Med. 2023, 12, 3188. [Google Scholar] [CrossRef] [PubMed]
- Keck, J.M.; Wingler, M.J.B.; Cretella, D.A.; Vijayvargiya, P.; Wagner, J.L.; Barber, K.E.; Jhaveri, T.A.; Stover, K.R. Approach to Fever in Patients with Neutropenia: A Review of Diagnosis and Management. Ther. Adv. Infect. Dis. 2022, 9, 20499361221138346. [Google Scholar] [CrossRef]
- Chan, C.W.; Molassiotis, A.; Lee, H.K.K. Clinical and Microbiological Profiles in Post-Chemotherapy Neutropenic Fever in Hematological Malignancy: Exploration of Clinical Phenotype Patterns by Two-Step Cluster Analysis. BMC Infect. Dis. 2023, 23, 226. [Google Scholar] [CrossRef]
- Lakshmaiah, K.C.; Malabagi, A.S.; Shetty, R.; Sinha, M.; Jayashree, R.S. Febrile Neutropenia in Hematological Malignancies: Clinical and Microbiological Profile and Outcome in High Risk Patients. J. Lab. Physicians 2015, 7, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Vetro, C.; Maugeri, C.; Mauro, E.; Palumbo, G.A.M.; Parisi, M.S.; Esposito, B.; Giuliano, G.; Romano, A.; Di Raimondo, F. Saprochete Capitata: Emerging Infections from Uncommon Microorganisms in Hematological Diseases. Hematol. Rep. 2022, 14, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Łanocha, A.; Łanocha-Arendarczyk, N.; Wilczyńska, D.; Zdziarska, B.; Kosik-Bogacka, D. Protozoan Intestinal Parasitic Infection in Patients with Hematological Malignancies. J. Clin. Med. 2022, 11, 2847. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Mauro, E.; Palumbo, G.A.M.; Garibaldi, B.; Parisi, M.; Di Raimondo, F.; Maugeri, C.; Vetro, C. Therapeutic Innovation for Multi-Resistant Candidemics: Synergy of Isavuconazole and Caspofungin Association. Hematol. Rep. 2021, 13, 9329. [Google Scholar] [CrossRef]
- Massey, E.J.; Davenport, R.D.; Kaufman, R.M. Hemolytic Transfusion Reaction. In Practical Transfusion Medicine, 6th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2023; pp. 91–107. [Google Scholar] [CrossRef]
- Rebetz, J.; Semple, J.W.; Kapur, R. The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfus. Med. Hemother. 2018, 45, 290–298. [Google Scholar] [CrossRef]
- Semple, J.W.; Rebetz, J.; Kapur, R. Transfusion-Associated Circulatory Overload and Transfusion-Related Acute Lung Injury. Blood 2019, 133, 1840–1853. [Google Scholar] [CrossRef]
- Kuehnert, M.J.; Roth, V.R.; Haley, N.R.; Gregory, K.R.; Elder, K.V.; Schreiber, G.B.; Arduino, M.J.; Holt, S.C.; Carson, L.A.; Banerjee, S.N.; et al. Transfusion-Transmitted Bacterial Infection in the United States, 1998 through 2000. Transfusion 2001, 41, 1493–1499. [Google Scholar] [CrossRef]
- Long, B.; Koyfman, A. Emergency Medicine Evaluation and Management of Anemia. Emerg. Med. Clin. N. AM. 2018, 36, 609–630. [Google Scholar] [CrossRef]
- Carman, M.; Uhlenbrock, J.S.; McClintock, S.M. CE: A Review of Current Practice in Transfusion Therapy. Am. J. Nurs. 2018, 118, 36–44. [Google Scholar] [CrossRef]
- Iba, T.; Levi, M.; Thachil, J.; Levy, J.H. Disseminated Intravascular Coagulation: The Past, Present, and Future Considerations. Semin. Thromb. Hemost. 2022, 48, 978–987. [Google Scholar] [CrossRef]
- Wang, T.F.; Makar, R.S.; Antic, D.; Levy, J.H.; Douketis, J.D.; Connors, J.M.; Carrier, M.; Zwicker, J.I. Management of Hemostatic Complications in Acute Leukemia: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2020, 18, 3174–3183. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, X.; Tan, Y.; Xu, Z.; Xu, L. Coagulopathy in Cytogenetically and Molecularly Distinct Acute Leukemias at Diagnosis: Comprehensive Study. Blood Cells Mol. Dis. 2020, 81, 102393. [Google Scholar] [CrossRef] [PubMed]
- Del Principe, M.I.; Del Principe, D.; Venditti, A. Thrombosis in Adult Patients with Acute Leukemia. Curr. Opin. Oncol. 2017, 29, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Kwaan, H.C.; Weiss, I.; Tallman, M.S. The Role of Abnormal Hemostasis and Fibrinolysis in Morbidity and Mortality of Acute Promyelocytic Leukemia. Semin. Thromb. Hemost. 2019, 45, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, C.; Jourdi, G.; Adjambri, E.; Walborn, A.; Patel, P.; Fareed, J.; Elalamy, I.; Hoppensteadt, D.; Gerotziafas, G.T. Disseminated Intravascular Coagulation: An Update on Pathogenesis, Diagnosis, and Therapeutic Strategies. Clin. Appl. Thromb. Hemost. 2018, 24, 8S–28S. [Google Scholar] [CrossRef]
- Zanoli, L.; Ozturk, K.; Cappello, M.; Inserra, G.; Geraci, G.; Tuttolomondo, A.; Torres, D.; Pinto, A.; Duminuco, A.; Riguccio, G.; et al. Inflammation and Aortic Pulse Wave Velocity: A Multicenter Longitudinal Study in Patients with Inflammatory Bowel Disease. J. Am. Heart Assoc. 2019, 8, e010942. [Google Scholar] [CrossRef]
- Milone, G.; Bellofiore, C.; Leotta, S.; Milone, G.A.; Cupri, A.; Duminuco, A.; Garibaldi, B.; Palumbo, G. Endothelial Dysfunction after Hematopoietic Stem Cell Transplantation: A Review Based on Physiopathology. J. Clin. Med. 2022, 11, 623. [Google Scholar] [CrossRef] [PubMed]
- Taylor, F.B., Jr.; Toh, C.H.; Hoots, K.W.; Wada, H.; Levi, M. Towards Definition, Clinical and Laboratory Criteria, and a Scoring System for Disseminated Intravascular Coagulation. Thromb. Haemost. 2001, 86, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Yanada, M.; Matsushita, T.; Suzuki, M.; Kiyoi, H.; Yamamoto, K.; Kinoshita, T.; Kojima, T.; Saito, H.; Naoe, T. Disseminated Intravascular Coagulation in Acute Leukemia: Clinical and Laboratory Features at Presentation. Eur. J. Haematol. 2006, 77, 282–287. [Google Scholar] [CrossRef]
- Gando, S.; Iba, T.; Eguchi, Y.; Ohtomo, Y.; Okamoto, K.; Koseki, K.; Mayumi, T.; Murata, A.; Ikeda, T.; Ishikura, H.; et al. A Multicenter, Prospective Validation of Disseminated Intravascular Coagulation Diagnostic Criteria for Critically Ill Patients: Comparing Current Criteria. Crit. Care Med. 2006, 34, 625–631. [Google Scholar] [CrossRef]
- Levi, M.; Toh, C.H.; Thachil, J.; Watson, H.G. Guidelines for the Diagnosis and Management of Disseminated Intravascular Coagulation. British Committee for Standards in Haematology. Br. J. Haematol. 2009, 145, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Asakura, H.; Okamoto, K.; Iba, T.; Uchiyama, T.; Kawasugi, K.; Koga, S.; Mayumi, T.; Koike, K.; Gando, S.; et al. Expert Consensus for the Treatment of Disseminated Intravascular Coagulation in Japan. Thromb. Res. 2010, 125, 6–11. [Google Scholar] [CrossRef]
- Di Nisio, M.; Baudo, F.; Cosmi, B.; D’Angelo, A.; De Gasperi, A.; Malato, A.; Schiavoni, M.; Squizzato, A. Italian Society for Thrombosis and Haemostasis Diagnosis and Treatment of Disseminated Intravascular Coagulation: Guidelines of the Italian Society for Haemostasis and Thrombosis (SISET). Thromb. Res. 2012, 129, e177–e184. [Google Scholar] [CrossRef]
- Wada, H.; Thachil, J.; Di Nisio, M.; Mathew, P.; Kurosawa, S.; Gando, S.; Kim, H.K.; Nielsen, J.D.; Dempfle, C.-E.; Levi, M.; et al. Guidance for Diagnosis and Treatment of DIC from Harmonization of the Recommendations from Three Guidelines. J. Thromb. Haemost. 2013, 11, 761–767. [Google Scholar] [CrossRef]
- Tallman, M.S.; Lefèbvre, P.; Baine, R.M.; Shoji, M.; Cohen, I.; Green, D.; Kwaan, H.C.; Paietta, E.; Rickles, F.R. Effects of All-Trans Retinoic Acid or Chemotherapy on the Molecular Regulation of Systemic Blood Coagulation and Fibrinolysis in Patients with Acute Promyelocytic Leukemia. J. Thromb. Haemost. 2004, 2, 1341–1350. [Google Scholar] [CrossRef]
- Sakuragawa, N.; Hasegawa, H.; Maki, M.; Nakagawa, M.; Nakashima, M. Clinical Evaluation of Low-Molecular-Weight Heparin (FR-860) on Disseminated Intravascular Coagulation (DIC)--a Multicenter Co-Operative Double-Blind Trial in Comparison with Heparin. Thromb. Res. 1993, 72, 475–500. [Google Scholar] [CrossRef] [PubMed]
- Orvain, C.; Balsat, M.; Tavernier, E.; Marolleau, J.-P.; Pabst, T.; Chevallier, P.; de Gunzburg, N.; Cacheux, V.; Rigal-Huguet, F.; Chantepie, S.P.; et al. Thromboembolism Prophylaxis in Adult Patients with Acute Lymphoblastic Leukemia Treated in the GRAALL-2005 Study. Blood 2020, 136, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Joly, B.S.; Coppo, P.; Veyradier, A. Thrombotic Thrombocytopenic Purpura. Blood 2017, 129, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- Froehlich-Zahnd, R.; George, J.N.; Vesely, S.K.; Terrell, D.R.; Aboulfatova, K.; Dong, J.F.; Luken, B.M.; Voorberg, J.; Budde, U.; Sulzer, I.; et al. Evidence for a Role of Anti-ADAMTS13 Autoantibodies despite Normal ADAMTS13 Activity in Recurrent Thrombotic Thrombocytopenic Purpura. Haematologica 2012, 97, 297. [Google Scholar] [CrossRef]
- Giuffrida, G.; Markovic, U.; Condorelli, A.; Calagna, M.; Grasso, S.; Duminuco, A.; Riccobene, C.; Pelle, A.C.; Zanghi, G.; Raimondo, F. Di Relapse of Immune-Mediated Thrombotic Thrombocytopenic Purpura Following MRNA COVID-19 Vaccination: A Prospective Cohort Study. Haematologica 2022, 107, 2661–2666. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.; Hunt, B.J.; Benjamin, S.; Liesner, R.; Rose, P.; Peyvandi, F.; Cheung, B.; Machin, S.J. Guidelines on the Diagnosis and Management of Thrombotic Thrombocytopenic Purpura and Other Thrombotic Microangiopathies. Br. J. Haematol. 2012, 158, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Thejeel, B.; Garg, A.X.; Clark, W.F.; Liu, A.R.; Iansavichus, A.V.; Hildebrand, A.M. Long-Term Outcomes of Thrombotic Microangiopathy Treated with Plasma Exchange: A Systematic Review. Am. J. Hematol. 2016, 91, 623–630. [Google Scholar] [CrossRef]
- Peyvandi, F.; Scully, M.; Kremer Hovinga, J.A.; Cataland, S.; Knöbl, P.; Wu, H.; Artoni, A.; Westwood, J.-P.; Mansouri Taleghani, M.; Jilma, B.; et al. Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2016, 374, 511–522. [Google Scholar] [CrossRef]
- Scully, M.; Cataland, S.R.; Peyvandi, F.; Coppo, P.; Knöbl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.; Pavenski, K.; Callewaert, F.; et al. Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2019, 380, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Khurana, K.; Mahajan, S.; Acharya, S.; Kumar, S.; Toshniwal, S. Clinical Biomarkers of Acute Vaso-Occlusive Sickle Cell Crisis. Cureus 2024, 16, e56389. [Google Scholar] [CrossRef] [PubMed]
- Darbari, D.S.; Sheehan, V.A.; Ballas, S.K. The Vaso-Occlusive Pain Crisis in Sickle Cell Disease: Definition, Pathophysiology, and Management. Eur. J. Haematol. 2020, 105, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Nnagha, E.M.; Ademola, M.K.; Izevbizua, E.A.; Uwishema, O.; Nazir, A.; Wellington, J. Tackling Sickle Cell Crisis in Nigeria: The Need for Newer Therapeutic Solutions in Sickle Cell Crisis Management—Short Communication. Ann. Med. Surg. 2023, 85, 2282. [Google Scholar] [CrossRef]
- Chou, S.T.; Fasano, R.M. Management of Patients with Sickle Cell Disease Using Transfusion Therapy: Guidelines and Complications. Hematol. Oncol. Clin. N. AM. 2016, 30, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Khurshid, F.; Khan, M.H.; Dilshad, A.; Zain, A.; Rasool, W.; Jawaid, A.; Kunwar, D.; Khanduja, S.; Akbar, A. CRISPR/Cas9 in the Treatment of Sickle Cell Disease (SCD) and Its Comparison with Traditional Treatment Approaches: A Review. Ann. Med. Surg. 2024, 86, 5938. [Google Scholar] [CrossRef]
- Bradshaw, H.; Woolridge, D. Sickle Cell Crisis. In Emergency Department Analgesia: An Evidence-Based Guide; Cambridge University Press: Cambridge, UK, 2024; pp. 365–379. [Google Scholar] [CrossRef]
- Novelli, E.M.; Gladwin, M.T. Crises in Sickle Cell Disease. Chest 2015, 149, 1082. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.S.; Odipe, O.G.; Owoseni, O. Improving the Emergency Department Management of Sickle Cell Vaso-Occlusive Pain Crisis: The Role and Options of Sublingual and Intranasally Administered Analgesia. J. Clin. Med. Res. 2023, 15, 10. [Google Scholar] [CrossRef]
- Mousa, S.A.; Al Momen, A.; Al Sayegh, F.; Al Jaouni, S.; Nasrullah, Z.; Al Saeed, H.; Alabdullatif, A.; Al Sayegh, M.; Al Zahrani, H.; Hegazi, M.; et al. Review: Management of Painful Vaso-Occlusive Crisis of Sickle-Cell Anemia: Consensus Opinion. Clin. Appl. Thromb./Hemost. 2010, 16, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Cheng, M.C.J.; Ge, X.; Berger, A.; Xu, D.; Kato, G.J.; Minniti, C.P. A Retrospective Review of Acupuncture Use for the Treatment of Pain in Sickle Cell Disease Patients: Descriptive Analysis from a Single Institution. Clin. J. Pain 2014, 30, 825–830. [Google Scholar] [CrossRef] [PubMed]
- McGann, P.T.; Ware, R.E. Hydroxyurea for Sickle Cell Anemia: What Have We Learned and What Questions Still Remain? Curr. Opin. Hematol. 2011, 18, 158. [Google Scholar] [CrossRef]
- Mitra, A.; Barua, A.; Huang, L.; Ganguly, S.; Feng, Q.; He, B. From Bench to Bedside: The History and Progress of CAR T Cell Therapy. Front. Immunol. 2023, 14, 1188049. [Google Scholar] [CrossRef]
- Leotta, S.; Markovic, U.; Duminuco, A.; Mulè, A.; Porretto, F.; Federico, V.; Gentile, M.; Pastore, D.; Nigro, L.L.; Selleri, C.; et al. Impact of Minimal Residual Disease Response and of Status of Disease on Survival after Blinatumomab in B-Cell Acute Lymphoblastic Leukemia: Results from a Real-Life Study. Ann. Hematol. 2024, 103, 3701–3712. [Google Scholar] [CrossRef]
- Klein, C.; Brinkmann, U.; Reichert, J.M.; Kontermann, R.E. The Present and Future of Bispecific Antibodies for Cancer Therapy. Nat. Rev. Drug Discov. 2024, 23, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Markovic, U.; Parrinello, N.L.; Lo Nigro, L.; Mauro, E.; Vetro, C.; Parisi, M.; Maugeri, C.; Fiumara, P.F.; Milone, G.; et al. Potential Clinical Impact of T-Cell Lymphocyte Kinetics Monitoring in Patients with B Cell Precursors Acute Lymphoblastic Leukemia Treated with Blinatumomab: A Single-Center Experience. Front. Immunol. 2023, 14, 1195734. [Google Scholar] [CrossRef]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine Release Syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine Release Syndrome and Associated Neurotoxicity in Cancer Immunotherapy. Nat. Rev. Immunol. 2021, 22, 85–96. [Google Scholar] [CrossRef]
- Lambert, N.; Forte, F.; El Moussaoui, M.; Monseur, J.; Raus, N.; Polushin, A.; Michonneau, D.; Shultz, C.; Hogan, W.J.; Balaguer-Roselló, A.; et al. Central Nervous System Manifestations in Acute and Chronic Graft-versus-Host Disease. Brain 2024, 139, 16–17. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H.; Cao, J.; Zhang, C.; Liu, H.; Huang, H.; Cheng, H.; Qiao, J.; Wang, Y.; Wang, Y.; et al. Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment. Front. Immunol. 2021, 12, 611366. [Google Scholar] [CrossRef]
- Grant, S.J.; Grimshaw, A.A.; Silberstein, J.; Murdaugh, D.; Wildes, T.M.; Rosko, A.E.; Giri, S. Clinical Presentation, Risk Factors, and Outcomes of Immune Effector Cell-Associated Neurotoxicity Syndrome Following Chimeric Antigen Receptor T Cell Therapy: A Systematic Review. Transpl. Transplant. Cell Ther. 2022, 28, 294–302. [Google Scholar] [CrossRef]
- Herr, M.M.; Chen, G.L.; Ross, M.; Jacobson, H.; McKenzie, R.; Markel, L.; Balderman, S.R.; Ho, C.M.; Hahn, T.; McCarthy, P.L. Identification of Neurotoxicity after Chimeric Antigen Receptor (CAR) T Cell Infusion without Deterioration in the Immune Effector Cell-Associated Encephalopathy (ICE) Score. Biol. Blood Marrow Transplant. 2020, 26, e271–e274. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, L.; Alarcón, A.; Sánchez-Escamilla, M.; Perales, M.A. How I Treat Adverse Effects of CAR-T Cell Therapy. ESMO Open 2020, 4, e000746. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Torre, E.; Palumbo, G.A.; Harrison, C. A Journey Through JAK Inhibitors for the Treatment of Myeloproliferative Diseases. Curr. Hematol. Malig. Rep. 2023, 18, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Harrington, P.; Harrison, C.; Curto-Garcia, N. Polycythemia Vera: Barriers to and Strategies for Optimal Management. Blood Lymphat. Cancer 2023, 13, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.D.; Smith, M.; Shah, N.N. How I Treat Refractory CRS and ICANS after CAR T-Cell Therapy. Blood 2023, 141, 2430–2442. [Google Scholar] [CrossRef]
- Gozzo, L.; Leotta, S.; Romano, G.L.; Vetro, C.; Duminuco, A.; Milone, G.; Cupri, A.; Palumbo, F.E.; Brancati, S.; Ruscica, R.; et al. Early Access for Medicines in ITALY: The Case of Ruxolitinib for Patients with Graft-Versus-Host Disease. J. Clin. Med. 2024, 13, 4273. [Google Scholar] [CrossRef]
- Duminuco, A.; Vetro, C.; Giallongo, C.; Palumbo, G.A. The Pharmacotherapeutic Management of Patients with Myelofibrosis: Looking beyond JAK Inhibitors. Expert Opin. Pharmacother. 2023, 24, 1449–1461. [Google Scholar] [CrossRef]
- Duminuco, A.; Chifotides, H.T.; Giallongo, S.; Giallongo, C.; Tibullo, D.; Palumbo, G.A. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers 2023, 16, 154. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Mancarella, M.; Cassinerio, E.; Marcon, A.; Giacinto Ambrogio, A.; Motta, I. Adrenal Insufficiency: An Emerging Challenge in Thalassemia? Am. J. Hematol. 2017, 92, E119–E121. [Google Scholar] [CrossRef] [PubMed]
- Pazderska, A.; Pearce, S.H.S. Adrenal Insufficiency—Recognition and Management. Clin. Med. 2017, 17, 258. [Google Scholar] [CrossRef]
- Simpson, H.; Tomlinson, J.; Wass, J.; Dean, J.; Arlt, W. Guidance for the Prevention and Emergency Management of Adult Patients with Adrenal Insufficiency. Clin. Med. 2020, 20, 371–378. [Google Scholar] [CrossRef]
- Bellotto, F.; Fagiuoli, S.; Pavei, A.; Gregory, S.A.; Cati, A.; Silverj, E.; Plebani, M.; Zaninotto, M.; Mancuso, T.; Iliceto, S. Anemia and Ischemia: Myocardial Injury in Patients with Gastrointestinal Bleeding. Am. J. Med. 2005, 118, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Au Yeung, J.; Vaghela, R.; Virdee, S.; Woodley, C.; Asirvatham, S.; Curto-Garcia, N.; Sriskandarajah, P.; O’Sullivan, J.; de Lavallade, H.; et al. Development of a Natural Language Processing Pipeline for Assessment of Cardiovascular Risk in Myeloproliferative Neoplasms. Hemasphere 2024, 8, e143. [Google Scholar] [CrossRef]
Grade of Hypercalcemia | Approach |
---|---|
Mild hypercalcemia (Ca2+ < 12 mg/dL) |
|
Moderate hypercalcemia (12–13.9 mg/dL) |
|
Severe hypercalcemia (>14 mg/dL) |
|
Grade | Probability of Leukostasis Syndrome | Symptoms |
---|---|---|
0 | Not present | No respiratory or neurological symptoms |
1 | Low | Mild symptoms, moderate fatigue, headache, dizziness |
2 | Intermediate | Marked fatigue, shortness of breath, vision impairment, marked headache, tinnitus |
3 | High | Dyspnea, acute distress respiratory syndrome, focal neurological signs, coma or symptoms related to microvascular occlusion |
Grade | Symptoms | Signs |
---|---|---|
CNS | Confusion, lethargy, tinnitus, headache | Intracranial hemorrhage and hypertension |
Lungs | Shortness of breath, cough, tachypnea, dyspnea | Acute pulmonary edema, ARDS |
Heart | Chest pain, peripheral ischemia, ECG abnormalities | Congestive heart failure, infarction |
Eyes | Blurred vision, diplopia, hemianopia | Papilledema, retinal hemorrhage |
GI tract | Diarrhea, anorexia, nausea, and vomiting | Acute appendicitis |
Spleen | Abdominal pain, fever, hypotension | Rupture of spleen |
Kidney | Acute kidney injury, renal vein thrombosis, | |
Vessels |
deep venous thrombosis, bowel ischemia, priapism, avascular necrosis of the femoral head |
Acute Transfusion Reactions | Delayed Transfusion Reactions |
---|---|
Acute hemolytic reactions | Delayed hemolytic reactions |
Febrile nonhemolytic transfusion reactions | Post-transfusion purpura |
Allergic transfusion reactions | |
Transfusion-related acute lung injury | |
Transfusion-associated circulatory overload | |
Transfusion-related sepsis |
ISTH | JMHV | JAAM | SCORE | |
---|---|---|---|---|
Clinical symptoms | NC | Organ failure | NC | 1 |
SIRS criteria | NC | NC | 0–2 criteria | 1 |
≥3 criteria | 1 | |||
Platelet count | >100 × 109/L | NC | ≥120 × 109/L | 0 |
50–100 × 109/L | 80–120 × 109/L | 1 | ||
<50 × 109/L | / | 2 | ||
<80 × 109/L | 3 | |||
D-dimers or FDPS | No increase | FDPS (≥)20 | ≤10 µg/mL | 0 |
Moderate increase | 10–25 µg/mL | 1 | ||
Severe increase | / | 2 | ||
≥25 µg/mL | 3 | |||
PT increase or PT ratio | <3 s | 1.25–1.67 | <1.2 | 0 |
3–6 s | >1.67 | ≥1.2 | 1 | |
>6 s | 2 | |||
Fibrinogen | ≥1 g/L | NC | >1.5 g/L | 0 |
<1 g/L | 1.0–≤1.5 g/L | 1 | ||
<1.0 g/L | 2 | |||
Diagnosis of DIC | ≥5 points | ≥4 points | ≥4 points |
Toxicity | Parameter | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|---|---|
CRS | Fever | Temp ≥ 38 °C | Temp ≥ 38 °C | Temp ≥ 38 °C | Temp ≥ 38 °C |
Hypotension | None | No pressor requirement | Pressor requirement with or without vasopressin | Multiple pressors excluding vasopressin | |
None | O2 by low-flow NC (≤6 L/min) or blow-by | O2 by HFNC, facemask, nonrebreather mask or Venturi mask | Positive pressure ventilatory support * | None | |
ICANS | ICE SCORE † | 7–9 | 3–6 | 0–2 | 0 |
Depressed consciousness | Awakens spontaneously | Awakens to voice | Awakens only to tactile stimulus | Arousable with vigorous tactile stimuli, unarousable, stupor, or coma | |
Seizures | NA | NA | Any seizure with rapid clinical resolution | Prolonged (>5 min), non-self resolving | |
Motor findings | NA | NA | NA | Significant focal motor weakness | |
Elevated ICP/ cerebral edema ‡ | NA | NA | Focal edema on brain imaging | Diffuse edema on imaging, or decerebrate/decorticate posturing, CN VI palsy, or Cushing’s triad |
CRS Grade | Management |
---|---|
GRADE 1 | Supportive care including analgesics and antipyretics. If fever, treat for neutropenic infections protocol. Consider tocilizumab for persistent (lasting > 3 days) and refractory fever |
GRADE 2 | IV fluid bolus 500–1000 mL to maintain SBP > 90 mmHg. Administer tocilizumab early if persistent fever of ≥39 °C, hypotension after initial fluid bolus, or initiation of oxygen supplementation If persistent hypotension after two fluid bolus and tocilizumab, transfer to ICU for consideration of low-dose vasopressor therapy Add dexamethasone 10 mg IV 6 hourly if hypotension persists after anti-IL-6 therapy, high risk for severe CRS, worsening hypoxia, or clinical concern |
GRADE 3 | Intensive care should be considered Administer tocilizumab Add steroids if unresponsive within 24 h dexamethasone 10 mg IV every 6 h If refractory, increase to 20 mg IV every 6 h If unresponsive CRS, add anakinra Consider anti-tumor necrosis factor (TNF) antibodies as clinically appropriate. Perform echocardiogram if persistent hypotension |
GRADE 4 | Intensive care. Administer tocilizumab High-dose methylprednisolone 1 g/day IV If unresponsive CRS, add anakinra If unresponsive, consider alternative agents such as anti-TNF and other agents |
GRADE 5 | Death |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duminuco, A.; Del Fabro, V.; De Luca, P.; Leotta, D.; Limoli, M.C.; Longo, E.; Nardo, A.; Santuccio, G.; Petronaci, A.; Stanzione, G.; et al. Emergencies in Hematology: Why, When and How I Treat? J. Clin. Med. 2024, 13, 7572. https://doi.org/10.3390/jcm13247572
Duminuco A, Del Fabro V, De Luca P, Leotta D, Limoli MC, Longo E, Nardo A, Santuccio G, Petronaci A, Stanzione G, et al. Emergencies in Hematology: Why, When and How I Treat? Journal of Clinical Medicine. 2024; 13(24):7572. https://doi.org/10.3390/jcm13247572
Chicago/Turabian StyleDuminuco, Andrea, Vittorio Del Fabro, Paola De Luca, Dario Leotta, Miriana Carmela Limoli, Ermelinda Longo, Antonella Nardo, Gabriella Santuccio, Alessandro Petronaci, Gaia Stanzione, and et al. 2024. "Emergencies in Hematology: Why, When and How I Treat?" Journal of Clinical Medicine 13, no. 24: 7572. https://doi.org/10.3390/jcm13247572
APA StyleDuminuco, A., Del Fabro, V., De Luca, P., Leotta, D., Limoli, M. C., Longo, E., Nardo, A., Santuccio, G., Petronaci, A., Stanzione, G., Di Raimondo, F., & Palumbo, G. A. (2024). Emergencies in Hematology: Why, When and How I Treat? Journal of Clinical Medicine, 13(24), 7572. https://doi.org/10.3390/jcm13247572