Usefulness of Intraoperative Neurophysiological Monitoring in Intradural Spinal Tumor Surgeries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intraoperative Neurophysiological Monitoring (IONM)
2.1.1. Motor Pathway Monitoring: Motor-Evoked Potentials (MEPs) Elicited via Transcranial Electrical Stimulation (tES)
- Muscle motor-evoked potentials (mMEPs): Stimulation was performed using ‘corkscrew’ electrodes at C3–C4 (according to the international 10/20 electrode placement system). A stimulus protocol consisted of 5-pulse trains (pulse duration of 0.5 ms and interstimulus interval (ISI) of 2 ms) and a maximum current intensity of 200 mA, according to the technical specifications of the equipment. Recording parameters were a 500 Hz low-pass filter and a 5 kHz high-pass filter, with recordings taken from the intercostal muscles (T3–T5), anterior rectus abdominis, vastus lateralis quadriceps, anterior tibialis, and both abductor hallucis and abductor pollicis brevis using paired monopolar needles.
- Epidural motor-evoked potentials (D-wave): Single 0.2 ms pulses were delivered using ‘corkscrew’ electrodes placed at C3–C4. Recordings were obtained using two epidural electrodes, positioned cranially and caudally relative to the surgical site, with a low-pass filter set to 20 Hz and a high-pass filter set to 2 kHz.
2.1.2. Sensory Pathway Monitoring: Somatosensory-Evoked Potentials (SSEPs)
- Lower-limb SSEPs: elicited by stimulating the posterior tibial nerve at the internal malleolus using repetitive electrical pulses (0.2 ms duration, trigger rate of 4.690 Hz).
- Recordings were performed in the popliteal fossa with monopolar needle electrodes and on the scalp at the Cz’-Fz lead using ‘corkscrew’ electrodes. Data were processed with a low-pass filter set to 20 Hz and a high-pass filter set to 2 kHz, averaging 200 sweeps.
- Upper-limb SSEPs: elicited by stimulating the median nerve at the wrist using similar parameters as above, with recordings from the Erb’s point and the scalp at the Cc’-Fz lead. An additional recording channel for spinal cord somatosensory responses with epidural electrodes was used in some cases.
2.1.3. Specific Monitoring Techniques for Tumors Located in Lower Spinal Segments
- Bulbocavernous reflex (BCR): elicited using a stimulation protocol consisting of 5-pulse trains (0.5 ms pulse duration and ISI of 2 ms) of the dorsal nerve of the penis (in male patients) or dorsal nerve of the clitoris (in female patients). Reflex responses were recorded from the external anal sphincter bilaterally using monopolar needles (bulboanal reflex).
- Motor root mapping: we used a monopolar stimulator delivering 0.1 ms cathodal pulses at 1 Hz frequency, referred to a distant anode (a needle placed near the surgical site). Recordings were obtained from the quadriceps, anterior tibialis, gastrocnemius, abductor hallucis, and bilateral external anal sphincter muscles.
- Free-run EMG: responses were recorded from the muscle groups mentioned above, with a low-pass filter set to 20 Hz and a high-pass filter to 10 kHz.
2.2. Clinical-Functional Evaluation
2.3. Statistical Analysis
3. Results
3.1. Prolo Scale
3.2. Brice and McKissock Scale
3.3. McCormick Scale
3.4. Clinical Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duong, L.M.; McCarthy, B.J.; McLendon, R.E.; Dolecek, T.A.; Kruchko, C.; Douglas, L.L.; Ajani, U.A. Descriptive epidemiology of malignant and nonmalignant primary spinal cord, spinal meninges, and cauda equina tumors, United States, 2004–2007. Cancer 2012, 118, 4220–4227. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Gulati, S.; Jakola, A.S.; Habiba, S.; Nygaard, Ø.P.; Johannesen, T.B.; Solheim, O. Incidence rates and surgery of primary intraspinal tumors in the era of modern neuroimaging: A national population-based study. Spine 2014, 39, E967–E973. [Google Scholar] [CrossRef]
- Singh, P.R.; Pandey, T.K.; Sharma, R.K.; Ahmad, F.; Kumar, A.; Agarwal, A. Tumor Occupancy Ratio-An Imaging Characteristic Prognosticating the Surgical Outcome of Benign Intradural Extramedullary Spinal Cord Tumors. Int. J. Spine Surg. 2021, 15, 570. [Google Scholar] [CrossRef] [PubMed]
- Sala, F.; Bricolo, A.; Faccioli, F.; Lanteri, P.; Gerosa, M. Surgery for intramedullary spinal cord tumors: The role of intraoperative (neurophysiological) monitoring. Eur. Spine J. 2007, 16, S130–S139. [Google Scholar] [CrossRef] [PubMed]
- Sala, F. Intraoperative neurophysiology is here to stay. Childs. Nerv. Syst. 2010, 26, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Prolo, D.J.; Oklund, S.A.; Butcher, M. Toward uniformity in evaluating results of lumbar spine operations. A paradigm applied to posterior lumbar interbody fusions. Spine 1986, 11, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Vanti, C.; Prosperi, D.; Boschi, M. The Prolo Scale: History, evolution and psychometric properties. J. Orthop. Traumatol. 2013, 14, 235–245. [Google Scholar] [CrossRef]
- Brice, J.; Mckissock, W. Surgical treatment of malignant extradural spinal tumours. Br. Med. J. 1965, 1, 1341–1344. [Google Scholar] [CrossRef]
- Bellut, D.; Burkhardt, J.-K.; Mannion, A.F.; Porchet, F. Assessment of outcome in patients undergoing surgery for intradural spinal tumor using the multidimensional patient-rated Core Outcome Measures Index and the modified McCormick Scale. Neurosurg. Focus 2015, 39, E2. [Google Scholar] [CrossRef]
- McCormick, P.C.; Stein, B.M. Intramedullary tumors in adults. Neurosurg. Clin. N. Am. 1990, 1, 609–630. [Google Scholar] [CrossRef] [PubMed]
- McCormick, P.C.; Torres, R.; Post, K.D.; Stein, B.M. Intramedullary ependymoma of the spinal cord. J. Neurosurg. 1990, 72, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Ghadirpour, R.; Nasi, D.; Iaccarino, C.; Giraldi, D.; Sabadini, R.; Motti, L.; Sala, F.; Servadei, F. Intraoperative neurophysiological monitoring for intradural extramedullary tumors: Why not? Clin. Neurol. Neurosurg. 2015, 130, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Sala, F.; Palandri, G.; Basso, E.; Lanteri, P.; Deletis, V.; Faccioli, F.; Bricolo, A. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: A historical control study. Neurosurgery 2006, 58, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Constantini, S.; Miller, D.C.; Allen, J.C.; Rorke, L.B.; Freed, D.; Epstein, F.J. Radical excision of intramedullary spinal cord tumors: Surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J. Neurosurg. 2000, 93, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Jallo, G.I.; Freed, D.; Epstein, F. Intramedullary spinal cord tumors in children. Child’s Nerv. Syst. 2003, 19, 641–649. [Google Scholar] [CrossRef]
- Sutter, M.; Eggspuehler, A.; Grob, D.; Jeszenszky, D.; Benini, A.; Porchet, F.; Mueller, A.; Dvorak, J. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors. Eur. Spine J. 2007, 16, S197–S208. [Google Scholar] [CrossRef]
- Sutter, M.; Eggspuehler, A.; Muller, A.; Dvorak, J. Multimodal intraoperative monitoring: An overview and proposal of methodology based on 1,017 cases. Eur. Spine J. 2007, 16, S153–S161. [Google Scholar] [CrossRef] [PubMed]
- Nuwer, M.R.; Packwood, J.W. Monitoring during the surgical treatment of scoliosis. In Intraoperative Monitoring of Neural Function; Elsevier: Amsterdam, The Netherlands, 2008; Volume 8, pp. 608–617. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Brodke, D.S.; Norvell, D.C.; Dettori, J.R. The evidence for intraoperative neurophysiological monitoring in spine surgery: Does it make a difference? Spine 2010, 35, S37–S46. [Google Scholar] [CrossRef] [PubMed]
- Scibilia, A.; Terranova, C.; Rizzo, V.; Raffa, G.; Morelli, A.; Esposito, F.; Mallamace, R.; Buda, G.; Conti, A.; Quartarone, A.; et al. Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: Sirens or indispensable tools? Neurosurg. Focus 2016, 41, E18. [Google Scholar] [CrossRef] [PubMed]
- Velayutham, P.; Rajshekhar, V.; Chacko, A.G.; Krothapalli Babu, S. Influence of tumor location and other variables on predictive value of intraoperative myogenic motor-evoked potentials in spinal cord tumor surgery. World Neurosurg. 2016, 92, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Tropeano, M.P.; Rossini, Z.; Franzini, A.; Capo, G.; Olei, S.; De Robertis, M.; Milani, D.; Fornari, M.; Pessina, F. Multimodal Intraoperative Neurophysiological Monitoring in Intramedullary Spinal Cord Tumors: A 10-Year Single Center Experience. Cancers 2024, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Wiedemayer, H.; Fauser, B.; Sandalcioglu, I.E.; Schäfer, H.; Stolke, D. The impact of neurophysiological intraoperative monitoring on surgical decisions: A critical analysis of 423 cases. J. Neurosurg. 2002, 96, 255–262. [Google Scholar] [CrossRef]
- Kothbauer, K.F. Intraoperative neurophysiologic monitoring for intramedullary spinal-cord tumor surgery. Clin. Neurophysiol. 2007, 37, 407–414. [Google Scholar] [CrossRef]
- Ando, M.; Tamaki, T.; Yoshida, M.; Kawakami, M.; Kubota, S.; Nakagawa, Y.; Iwasaki, H.; Tsutsui, S.; Yamada, H. Intraoperative spinal cord monitoring using combined motor and sensory evoked potentials recorded from the spinal cord during surgery for intramedullary spinal cord tumor. Clin. Neurol. Neurosurg. 2015, 133, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-H.; Chung, C.K.; Kim, C.H.; Choi, Y.D.; Kwak, G.; Kim, B.E. Multimodal intraoperative monitoring during intramedullary spinal cord tumor surgery. Acta Neurochir. 2015, 157, 2149–2155. [Google Scholar] [CrossRef]
- Tanaka, S.; Hirao, J.; Oka, H.; Akimoto, J.; Takanashi, J.; Yamada, J. Intraoperative monitoring during decompression of the spinal cord and spinal nerves using transcranial motor-evoked potentials: The law of twenty percent. J. Clin. Neurosci. 2015, 22, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Son, Y.R.; Park, Y.S.; Hyun, S.J.; Kim, K.J.; Jahng, T.A.; Kim, H.J.; Park, K.S. Differences in Multimodality Intraoperative Neurophysiological Monitoring Changes Between Spinal Intramedullary Ependymoma and Hemangioblastoma. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2016, 33, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Forster, M.-T.; Marquardt, G.; Seifert, V.; Szelényi, A. Spinal cord tumor surgery—Importance of continuous intraoperative neurophysiological monitoring after tumor resection. Spine 2012, 37, E1001–E1008. [Google Scholar] [CrossRef]
- Costa, P.; Peretta, P.; Faccani, G. Relevance of intraoperative D wave in spine and spinal cord surgeries. Eur. Spine. J. 2013, 22, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Ma, C.; Li, D.; Li, H.; Dong, X.; Liu, B.; Yu, Y.; Fan, Y.; Song, H. The role of intraoperative neurophysiological monitoring in intramedullary spinal cord tumor surgery. Chin. Neurosurg. J. 2023, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Siller, S. Multimodal intraoperative neurophysiological monitoring may better predict postoperative distal upper extremities’ complex-functional outcome than spinal and muscular motor evoked potentials alone in high-cervical intramedullary spinal cord tumor surgery. Clin. Neurophysiol. 2024, 168, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Asazuma, T.; Toyama, Y.; Suzuki, N.; Fujimura, Y.; Hirabayshi, K. Ependymomas of the spinal cord and cauda equina: An analysis of 26 cases and a review of the literature. Spinal Cord. 1999, 37, 753–759. [Google Scholar] [CrossRef]
- Deletis, V.; Sala, F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: A review focus on the corticospinal tracts. Clin. Neurophysiol. 2008, 119, 248–264. [Google Scholar] [CrossRef]
- Deletis, V. Intraoperative Neurophysiology and Methodologies Used to Monitor the Functional Integrity of the Motor System. In Neurophysiology in Neurosurgery; Elsevier: Amsterdam, The Netherlands, 2002; pp. 25–51. [Google Scholar]
- Kothbauer, K.F. Motor Evoked Potential Monitoring for Intramedullary Spinal Cord Tumor Surgery. In Neurophysiology in Neurosurgery; Deletis, V., Shils, J., Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 73–92. [Google Scholar] [CrossRef]
- MacDonald, D.B.; Dong, C.C.J. Spinal cord monitoring during descending aortic procedures. In Intraoperative Monitoring of Neural Function; Elsevier: Amsterdam, The Netherlands, 2008; Volume 8, pp. 815–828. [Google Scholar]
- Avila, E.K.; Elder, J.B.; Singh, P.; Chen, X.; Bilsky, M.H. Intraoperative neurophysiological monitoring and neurologic outcomes in patients with epidural spine tumors. Clin. Neurol. Neurosurg. 2013, 115, 2147–2152. [Google Scholar] [CrossRef] [PubMed]
- Azad, T.D.; Pendharkar, A.V.; Nguyen, V.; Pan, J.; Connolly, I.D.; Veeravagu, A.; Popat, R.; Ratliff, J.K.; Grant, G.A. Diagnostic utility of intraoperative neurophysiological monitoring for intramedullary spinal cord tumors: Systematic review and meta-analysis. Clin. Spine Surg. 2018, 31, 112–119. [Google Scholar] [CrossRef] [PubMed]
N° | Gender | Age | PreOP BMK | PostOP BMK | PreOP MC | PostOP MC | PreOP P | PostOP P | PostOP Deficit | Tumor Location | Type of Tumor | Medullar Level |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | F | 52 | 2 | 4 | 3 | 4 | 12 | 5 | Yes | Intramedullary | Ependymoma | C7 |
2 | M | 50 | 1 | 1 | 1 | 1 | 17 | 18 | No | Intramedullary | Ependymoma | Cauda equina |
3 | F | 56 | 1 | 1 | 2 | 2 | 15 | 16 | No | Extramedullary | Meningioma | D5 |
4 | F | 55 | 1 | 1 | 2 | 2 | 18 | 19 | No | Extramedullary | Meningioma | D2-D3 |
5 | F | 47 | 1 | 1 | 1 | 1 | 18 | 19 | No | Extramedullary | Meningioma | D10-D11 |
6 | F | 36 | 1 | 1 | 2 | 2 | 19 | 20 | No | Extramedullary | Meningothelial meningioma | D2 |
7 | F | 56 | 2 | 2 | 3 | 2 | 13 | 15 | No | Extramedullary | Meningioma | D5 |
8 | F | 74 | 1 | 1 | 2 | 2 | 15 | 17 | No | Extramedullary | Schwannoma | D12-L1 |
9 | M | 48 | 1 | 1 | 2 | 1 | 12 | 15 | No | Intramedullary | PNET | C1-C5 |
10 | F | 52 | 1 | 2 | 2 | 3 | 16 | 17 | No | Extramedullary | Meningioma | Foramen magnum |
11 | F | 22 | 1 | 1 | 1 | 1 | 18 | 20 | No | Extramedullary | Clear cell meningioma | L1-L2 |
12 | F | 71 | 1 | 2 | 2 | 3 | 14 | 16 | No | Extramedullary | Psammomatous meningioma | C2 |
13 | M | 20 | 2 | 3 | 3 | 4 | 15 | 11 | Yes | Intramedullary | Cavernous angioma | Medullary cone |
14 | M | 39 | 1 | 1 | 2 | 1 | 17 | 18 | No | Intramedullary | Swchannoma | L5-S1 |
15 | M | 46 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Ependymoma | D12-L1 |
16 | F | 53 | 2 | 1 | 3 | 1 | 18 | 19 | No | Extramedullary | Neurofibroma | C7 |
17 | F | 20 | 1 | 1 | 1 | 1 | 20 | 20 | No | Intramedullary | Hemangioblastoma | C2-C7 |
18 | M | 27 | 1 | 3 | 1 | 4 | 17 | 11 | Yes | Intramedullary | Pilocytic astrocytoma | D4-D7 |
19 | M | 54 | 1 | 1 | 2 | 1 | 15 | 17 | No | Extramedullary | Schwannoma | D11 |
20 | F | 36 | 1 | 1 | 2 | 2 | 16 | 17 | No | Extramedullary | Psammomatous meningioma | D7-D8 |
21 | M | 60 | 1 | 1 | 2 | 1 | 18 | 19 | No | Extramedullary | Schwannoma | L1 |
22 | F | 61 | 1 | 3 | 2 | 3 | 18 | 13 | Yes | Extramedullary | Schwannoma | L4-L5 |
23 | F | 68 | 1 | 1 | 1 | 1 | 19 | 20 | No | Extramedullary | Meningioma | D9 |
24 | M | 57 | 1 | 1 | 1 | 1 | 20 | 18 | No | Extramedullary | Neurinoma | C2 |
25 | F | 79 | 1 | 1 | 2 | 1 | 17 | 18 | No | Extramedullary | Neuroendocrine tumor | D12 |
26 | F | 26 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Neurinoma | L3 |
27 | M | 76 | 1 | 1 | 2 | 2 | 20 | 20 | No | Extramedullary | Neurinoma | L1-L4 |
28 | M | 34 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Neurinoma | L2 |
29 | F | 48 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Neurinoma | L3 |
30 | F | 61 | 1 | 1 | 2 | 1 | 17 | 18 | No | Extramedullary | Meningioma | C1 |
31 | M | 51 | 1 | 1 | 2 | 2 | 16 | 17 | No | Extramedullary | Meningioma | C2-C3 |
32 | M | 32 | 1 | 1 | 1 | 1 | 19 | 20 | No | Extramedullary | Neurofibroma | C1-C2 |
33 | M | 75 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Neurinoma | L1-L2 |
34 | F | 62 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Meningioma | D5-D6 |
35 | F | 63 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Meningioma | D7-D8 |
36 | F | 83 | 1 | 1 | 2 | 1 | 18 | 19 | No | Extramedullary | Neurinoma | D2-D3 |
37 | F | 58 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Meningioma | D3-D4 |
38 | F | 76 | 1 | 1 | 2 | 2 | 17 | 18 | No | Extramedullary | Osseous Metaplastic meningioma | D3 |
39 | F | 46 | 1 | 2 | 3 | 2 | 14 | 16 | No | Extramedullary | Meningioma | D8 |
40 | F | 51 | 1 | 1 | 2 | 2 | 16 | 17 | No | Extramedullary | Meningioma | D5-D9 |
41 | F | 22 | 1 | 3 | 2 | 4 | 18 | 12 | Yes | Intramedullary | Glioblastoma | C3 |
42 | M | 76 | 1 | 2 | 2 | 2 | 13 | 15 | No | Extramedullary | Osseous Metaplastic meningioma | D3 |
43 | M | 78 | 1 | 1 | 1 | 1 | 19 | 20 | No | Extramedullary | Schwannoma | C2-C3 |
44 | M | 74 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Schwannoma | D11 |
45 | M | 35 | 1 | 3 | 1 | 4 | 19 | 13 | Yes | Extramedullary | Fibrolipoma | D1-D3 |
46 | F | 75 | 2 | 2 | 3 | 2 | 11 | 14 | No | Extramedullary | Neurinoma | D5-D6 |
47 | F | 78 | 1 | 1 | 2 | 1 | 17 | 19 | No | Extramedullary | Meningioma | D5 |
48 | F | 71 | 1 | 1 | 1 | 1 | 19 | 19 | No | Extramedullary | Meningioma | C2 |
49 | F | 56 | 1 | 1 | 1 | 1 | 20 | 20 | No | Extramedullary | Psammomatous meningioma | D4 |
50 | F | 69 | 1 | 1 | 1 | 2 | 17 | 15 | No | Extramedullary | Meningioma | D4-D5 |
51 | F | 42 | 1 | 1 | 2 | 2 | 16 | 16 | No | Extramedullary | Psammomatous meningioma | D3-D5 |
52 | M | 59 | 1 | 1 | 1 | 1 | 16 | 17 | No | Extramedullary | Arachnoid cyst | L1-L2 |
53 | M | 67 | 2 | 4 | 3 | 4 | 12 | 7 | Yes | Extramedullary | Psammomatous meningioma | D10 |
54 | F | 53 | 1 | 1 | 2 | 2 | 16 | 17 | No | Extramedullary | Metastatic breast cancer | L1 |
55 | F | 61 | 2 | 4 | 2 | 4 | 13 | 7 | Yes | Extramedullary | Ependymoma | C6 |
N° | Gender | Age | PreOP BMK | PostOP BMK | PreOP MC | PostOP MC | PreOP P | PostOP P | IONM Event | PostOP Deficit | Tumor Location | Type of Tumor | Medullar Level |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | 46 | 1 | 1 | 1 | 1 | 9 | 20 | No | No | Extramedullary | Schwannoma | D12-L1 |
2 | M | 44 | 1 | 1 | 2 | 1 | 17 | 19 | No | No | Extramedullary | Neurinoma | L2 |
3 | F | 48 | 3 | 1 | 4 | 2 | 8 | 17 | No | No | Extramedullary | Myxopapillary ependymoma | L5-S1 |
4 | F | 43 | 1 | 1 | 2 | 1 | 17 | 20 | No | No | Intramedullary | Ependymoma | L3-L5 |
5 | F | 48 | 1 | 1 | 2 | 1 | 18 | 20 | No | No | Extramedullary | Neurinoma | L3 |
6 | M | 23 | 1 | 1 | 1 | 1 | 20 | 20 | No | No | Extramedullary | Neurinoma | C4-C5 |
7 | F | 48 | 2 | 1 | 3 | 1 | 13 | 19 | No | No | Extramedullary | Neurinoma | L3 |
8 | M | 50 | 1 | 1 | 1 | 1 | 19 | 20 | No | No | Extramedullary | Myxopapillary ependymoma | L1-L2 |
9 | M | 39 | 2 | 1 | 2 | 1 | 17 | 20 | No | Yes | Extramedullary | Ependymoma | D10-D12 |
10 | M | 40 | 2 | 1 | 3 | 1 | 15 | 19 | No | Yes | Extramedullary | Hemangioblastoma | D4-D7 |
11 | M | 26 | 1 | 2 | 1 | 2 | 20 | 15 | Yes | Yes | Intramedullary | Fibrolipoma | D1-D3 |
12 | F | 59 | 1 | 1 | 1 | 1 | 19 | 20 | No | No | Extramedullary | Paraganglioma | L4 |
13 | M | 71 | 2 | 1 | 3 | 1 | 14 | 20 | Yes | No | Extramedullary | Meningioma | D3 |
14 | M | 39 | 1 | 1 | 1 | 1 | 20 | 20 | No | No | Extramedullary | Schwannoma | L5-S1 |
15 | M | 41 | 1 | 1 | 2 | 1 | 18 | 20 | No | No | Extramedullary | Neurinoma | L1 |
16 | F | 75 | 1 | 1 | 2 | 1 | 17 | 20 | No | No | Extramedullary | Meningioma | D5-D6 |
17 | M | 58 | 1 | 1 | 1 | 1 | 20 | 20 | No | No | Extramedullary | Schwannoma | D7 |
18 | M | 33 | 1 | 1 | 1 | 1 | 19 | 20 | No | No | Intramedullary | Schwannoma | L2-L3 |
19 | M | 32 | 1 | 1 | 1 | 1 | 18 | 20 | No | No | Extramedullary | Neurinoma | C6-C7 |
20 | M | 66 | 2 | 1 | 3 | 2 | 12 | 17 | Yes | No | Extramedullary | Angiomatous meningioma | D4 |
21 | M | 68 | 1 | 1 | 1 | 1 | 19 | 20 | No | No | Extramedullary | Meningioma | C1-C2 |
22 | F | 79 | 1 | 1 | 2 | 1 | 17 | 20 | No | No | Extramedullary | Psammomatous meningioma | D9 |
23 | F | 34 | 1 | 1 | 2 | 1 | 17 | 19 | Yes | No | Extramedullary | Neurinoma | D9-D10 |
24 | M | 75 | 2 | 1 | 4 | 2 | 11 | 18 | No | No | Extramedullary | Schwannoma | L2 |
25 | M | 52 | 3 | 1 | 4 | 2 | 8 | 17 | No | No | Extramedullary | Dural fistula | D10 |
26 | F | 62 | 1 | 1 | 2 | 1 | 15 | 19 | No | No | Extramedullary | Schwannoma | L1 |
27 | M | 49 | 1 | 1 | 1 | 1 | 18 | 20 | No | No | Extramedullary | Paraganglioma | L1-L2 |
28 | F | 78 | 1 | 1 | 1 | 1 | 19 | 20 | Yes | No | Extramedullary | Meningioma | D5 |
29 | F | 22 | 1 | 1 | 1 | 1 | 20 | 20 | No | No | Extramedullary | Ependymoma | C3-D1 |
30 | M | 41 | 1 | 1 | 1 | 1 | 18 | 20 | No | No | Extramedullary | Neurinoma | L3-L5 |
31 | F | 37 | 3 | 2 | 4 | 2 | 6 | 14 | No | No | Extramedullary | Fusocellular sarcoma | L2-L3 |
32 | F | 76 | 1 | 1 | 2 | 1 | 16 | 19 | No | No | Extramedullary | Psammomatous meningioma | D8-D9 |
33 | M | 57 | 1 | 1 | 1 | 1 | 18 | 20 | Yes | No | Intramedullary | Ependymoma | D11-D12 |
34 | M | 81 | 1 | 1 | 2 | 1 | 16 | 19 | Yes | No | Extramedullary | Paranganglioma | D3-D4 |
35 | F | 64 | 1 | 1 | 1 | 1 | 20 | 20 | No | No | Extramedullary | Filum terminale cyst | D10-D12 |
36 | M | 20 | 1 | 1 | 1 | 1 | 20 | 20 | No | No | Extramedullary | Cavernous angioma | Medullary cone |
Prolo Scale | ||||
---|---|---|---|---|
Pain | Function | Economic | Medication | |
1 | Unbearable | Total incapacity | Unable to do tasks around home | Parenteral strong opioids |
2 | Severe | Can do activities at home | Able to do tasks around home but unable to perform paid work | Regular use of parenteral strong opioids |
3 | Moderate | Activities outside home w/limitation | Able to work at sedentary capacity | Regular use of parenteral weak opioids |
4 | Mild | Limitation w/strenuous activities | Able to work at moderate capacity | Regular use of NSAIDs or occasional opioids |
5 | None | Able to do everything | Able to work at heavy capacity or previous job | None or occasional NSAIDs |
Brice and McKissock Scale | |
---|---|
Grade | Severity of the Neurological Lesion |
1 | Mild (able to walk) |
2 | Moderate (able to move legs, but not antigravity) |
3 | Severe (slight residual motor and sensory function) |
4 | Complete (no motor, sensory or sphincter function below level of lesion |
McCormick Scale | |
---|---|
I | Intact neurologically, normal ambulation, minimal dysesthesia |
II | Mild motor or sensory deficit, functional independence |
III | Moderate deficit, limitation of function, independent with external aid |
IV | Severe motor or sensory deficit, limited function, dependent |
V | Paraplegia or quadriplegia, even with flickering movement |
Without IONM | With IONM | |
---|---|---|
N (patients) | 36 | 55 |
Age (years) mean ± SD | 50.66 ± 17.48 | 54.49 ±17.06 |
Preoperative Prolo mean ± SD | 16.33 ± 3.83 | 17.09 ± 2.54 |
Postoperative Prolo mean ± SD | 19.19 ± 1.47 | 16.98 ± 3.57 |
Preoperative Brice McKissock (mean ± SD) | 1.33 ± 0.63 | 1.12 ± 0.33 |
Postoperative Brice McKissock (mean ± SD) | 1.05 ± 0.23 | 1.45 ± 0.87 |
Intramedullary tumors (observed freq., relative freq.) | 4 (0.11, 11%) | 8 (0.14, 14%) |
Extramedullary tumors (observed freq., relative freq.) | 32 (0.88, 88%) | 47 (0.85, 85%) |
Postoperative Neurological Deficits (observed freq., relative freq.) | 8 (0.22, 22%) | 3 (0.05, 5%) |
Differences (Mean) | p (Statistical Significance) | |
---|---|---|
Post-Pre Prolo score in patients with IONM | 2.95 | 0.002 |
Post-Pre Prolo score in patients without IONM | 1 | <0.001 |
Post-Pre Brice and McKissock in patients with IONM | −0.58 | <0.001 |
Post-Pre Brice and McKissock in patients without IONM | 1.6 | <0.001 |
Post-Pre McCormick in patients with IONM | −0.71 | <0.001 |
Post-Pre McCormick in patients without IONM | 0.55 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabañes-Martínez, L.; Fedirchyk-Tymchuk, O.; López Viñas, L.; Abreu-Calderón, F.; Carrasco Moro, R.; Del Álamo, M.; Regidor, I. Usefulness of Intraoperative Neurophysiological Monitoring in Intradural Spinal Tumor Surgeries. J. Clin. Med. 2024, 13, 7588. https://doi.org/10.3390/jcm13247588
Cabañes-Martínez L, Fedirchyk-Tymchuk O, López Viñas L, Abreu-Calderón F, Carrasco Moro R, Del Álamo M, Regidor I. Usefulness of Intraoperative Neurophysiological Monitoring in Intradural Spinal Tumor Surgeries. Journal of Clinical Medicine. 2024; 13(24):7588. https://doi.org/10.3390/jcm13247588
Chicago/Turabian StyleCabañes-Martínez, Lidia, Olga Fedirchyk-Tymchuk, Laura López Viñas, Federico Abreu-Calderón, Rodrigo Carrasco Moro, Marta Del Álamo, and Ignacio Regidor. 2024. "Usefulness of Intraoperative Neurophysiological Monitoring in Intradural Spinal Tumor Surgeries" Journal of Clinical Medicine 13, no. 24: 7588. https://doi.org/10.3390/jcm13247588
APA StyleCabañes-Martínez, L., Fedirchyk-Tymchuk, O., López Viñas, L., Abreu-Calderón, F., Carrasco Moro, R., Del Álamo, M., & Regidor, I. (2024). Usefulness of Intraoperative Neurophysiological Monitoring in Intradural Spinal Tumor Surgeries. Journal of Clinical Medicine, 13(24), 7588. https://doi.org/10.3390/jcm13247588