Clinical Implication of HIF-PH Inhibitor in Patients with Heart Failure, Chronic Kidney Disease, and Renal Anemia
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Study Design
2.3. HIF-PH Inhibitor Treatment
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Hemoglobin Level Trajectory
3.3. Other Clinical Parameters
3.4. Variables Associated with Hemoglobin Increase During HIF-PH Inhibitor Therapy
4. Discussion
4.1. Rationale for Study Design
4.2. Feasibility of HIF-PH Inhibitors in Heart Failure Patients
4.3. Impact of HIF-PH Inhibitors on Renal Anemia in Heart Failure Patients
4.4. Impact of HIF-PH Inhibitors on Other Clinical Parameters
4.5. Future Concerns
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsutsui, H.; Ide, T.; Ito, H.; Kihara, Y.; Kinugawa, K.; Kinugawa, S.; Makaya, M.; Murohara, T.; Node, K.; Saito, Y.; et al. JCS/JHFS 2021 Guideline Focused Update on Diagnosis and Treatment of Acute and Chronic Heart Failure. J. Card Fail. 2021, 27, 1404–1444. [Google Scholar] [CrossRef] [PubMed]
- Anand, I.S.; Gupta, P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation 2018, 138, 80–98. [Google Scholar] [PubMed]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, S.; Tsuchihashi-Makaya, M.; Kinugawa, S.; Yokota, T.; Takeshita, A.; Yokoshiki, H.; Tsutsui, H.; Investigators, J.-C. Anemia is an independent predictor of long-term adverse outcomes in patients hospitalized with heart failure in Japan. A report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ. J. 2009, 73, 1901–1908. [Google Scholar] [CrossRef]
- Anand, I.S. Anemia and chronic heart failure implications and treatment options. J. Am. Coll. Cardiol. 2008, 52, 501–511. [Google Scholar] [CrossRef]
- Silverberg, D.; Wexler, D.; Blum, M.; Wollman, Y.; Iaina, A. The cardio-renal anaemia syndrome: Does it exist? Nephrol. Dial. Transplant. 2003, 18 (Suppl. 8), viii7–viii12. [Google Scholar] [CrossRef]
- Al-Jarallah, M.; Rajan, R.; Al-Zakwani, I.; Dashti, R.; Bulbanat, B.; Sulaiman, K.; Alsheikh-Ali, A.A.; Panduranga, P.; AlHabib, K.F.; Al Suwaidi, J.; et al. Incidence and impact of cardiorenal anaemia syndrome on all-cause mortality in acute heart failure patients stratified by left ventricular ejection fraction in the Middle East. ESC Heart Fail. 2019, 6, 103–110. [Google Scholar] [CrossRef]
- Aoun, M.; Jadoul, M.; Anders, H.J. Erythrocytosis and CKD: A Review. Am. J. Kidney Dis. 2024, 84, 495–506. [Google Scholar] [CrossRef]
- Swedberg, K.; Young, J.B.; Anand, I.S.; Cheng, S.; Desai, A.S.; Diaz, R.; Maggioni, A.P.; McMurray, J.J.; O’Connor, C.; Pfeffer, M.A.; et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J. Med. 2013, 368, 1210–1219. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Isobe, M.; Ito, H.; Ito, H.; Okumura, K.; Ono, M.; Kitakaze, M.; Kinugawa, K.; Kihara, Y.; Goto, Y.; et al. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure—Digest Version. Circ. J. 2019, 83, 2084–2184. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Wish, J.B. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors: A Potential New Treatment for Anemia in Patients With CKD. Am. J. Kidney Dis. 2017, 69, 815–826. [Google Scholar] [CrossRef]
- Provenzano, R.; Szczech, L.; Leong, R.; Saikali, K.G.; Zhong, M.; Lee, T.T.; Little, D.J.; Houser, M.T.; Frison, L.; Houghton, J.; et al. Efficacy and Cardiovascular Safety of Roxadustat for Treatment of Anemia in Patients with Non-Dialysis-Dependent CKD: Pooled Results of Three Randomized Clinical Trials. Clin. J. Am. Soc. Nephrol. 2021, 16, 1190–1200. [Google Scholar] [CrossRef]
- Singh, A.K.; Carroll, K.; McMurray, J.J.V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for the Treatment of Anemia in Patients Not Undergoing Dialysis. N. Engl. J. Med. 2021, 385, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Kambara, T.; Shibata, R.; Sakamoto, Y.; Sakaguchi, T.; Osanai, H.; Nakashima, Y.; Asano, H.; Murohara, T.; Ajioka, M. Impact of HIF prolyl hydroxylase inhibitors in heart failure patients with renal anemia. BMC Res. Notes 2024, 17, 60. [Google Scholar] [CrossRef]
- Yazaki, M.; Nabeta, T.; Takigami, Y.; Eda, Y.; Fujita, T.; Iida, Y.; Ikeda, Y.; Ishii, S.; Ako, J. Efficacy of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor on Clinical Parameters in Patients with Heart Failure. Medicina 2024, 60, 84. [Google Scholar] [CrossRef]
- Iso, T.; Matsue, Y.; Mizukami, A.; Tokano, T.; Isoda, K.; Suwa, S.; Miyauchi, K.; Yanagisawa, N.; Okumura, Y.; Minamino, T. Daprodustat for anaemia in patients with heart failure and chronic kidney disease: A randomized controlled study. ESC Heart Fail. 2022, 9, 4291–4297. [Google Scholar] [CrossRef]
- Kido, M.; Du, L.; Sullivan, C.C.; Li, X.; Deutsch, R.; Jamieson, S.W.; Thistlethwaite, P.A. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J. Am. Coll. Cardiol. 2005, 46, 2116–2124. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Bohm, M.; Butler, J.; et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card Fail. 2021, 27, 387–413. [Google Scholar]
- Tsubakihara, Y.; Nishi, S.; Akiba, T.; Hirakata, H.; Iseki, K.; Kubota, M.; Kuriyama, S.; Komatsu, Y.; Suzuki, M.; Nakai, S.; et al. 2008 Japanese Society for Dialysis Therapy: Guidelines for renal anemia in chronic kidney disease. Ther. Apher. Dial. 2010, 14, 240–275. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Cobitz, A.R.; Singh, A.K.; Macdougall, I.C.; Lopes, R.D.; Obrador, G.T.; Kovesdy, C.P.; Israni, R.; Jha, V.; Okoro, T.; et al. The ASCEND-NHQ randomized trial found positive effects of daprodustat on hemoglobin and quality of life in patients with non-dialysis chronic kidney disease. Kidney Int. 2023, 103, 1180–1192. [Google Scholar] [CrossRef] [PubMed]
- Krapf, R.; Hulter, H.N. Arterial hypertension induced by erythropoietin and erythropoiesis-stimulating agents (ESA). Clin. J. Am. Soc. Nephrol. 2009, 4, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Wojtaszek, E.; Glogowski, T.; Malyszko, J. Iron and Chronic Kidney Disease: Still a Challenge. Front. Med. 2020, 7, 565135. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Imamura, T.; Sobajima, M.; Kinugawa, K. Initial experience of hypoxia-inducible factor prolyl hydroxylase inhibitors in patients with heart failure and renal anemia. Heart Vessels. 2023, 38, 284–290. [Google Scholar] [CrossRef]
- Sato, Y.; Mizuguchi, T.; Shigenaga, S.; Yoshikawa, E.; Chujo, K.; Minakuchi, J.; Kawashima, S. Shortened red blood cell lifespan is related to the dose of erythropoiesis-stimulating agents requirement in patients on hemodialysis. Ther. Apher. Dial. 2012, 16, 522–528. [Google Scholar] [CrossRef]
- Shah, H.H.; Uppal, N.N.; Fishbane, S. Inflammation and Erythropoiesis-Stimulating Agent Hyporesponsiveness: A Critical Connection. Kidney Med. 2020, 2, 245–247. [Google Scholar] [CrossRef]
- Nagai, T.; Nishimura, K.; Honma, T.; Higashiyama, A.; Sugano, Y.; Nakai, M.; Honda, S.; Iwakami, N.; Okada, A.; Kawakami, S.; et al. Prognostic significance of endogenous erythropoietin in long-term outcome of patients with acute decompensated heart failure. Eur. J. Heart Fail. 2016, 18, 803–813. [Google Scholar] [CrossRef]
- Maxwell, P.H.; Eckardt, K.U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol. 2016, 12, 157–168. [Google Scholar] [CrossRef]
- Bishop, T.; Ratcliffe, P.J. Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: A historical overview and future perspectives. Hypoxia 2014, 2, 197–213. [Google Scholar]
- Sezai, A.; Abe, M.; Maruyama, T.; Taoka, M.; Sekino, H.; Tanaka, M. A Prospective Randomized Controlled Clinical Study to Investigate the Efficacy and Safety of Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitors in Non-Dialysis Patients with Chronic Heart Failure and Renal Anemia Switched from Continuous Erythropoietin Receptor Activator Treatment. J. Clin. Med. 2024, 13, 2764. [Google Scholar] [CrossRef]
N = 69 | |
---|---|
Demographics | |
Age, years | 82 (78–85) |
Men sex | 27 (39%) |
Body mass index, kg/m2 | 22.8 (19.9–24.2) |
Vital sign | |
Systolic blood pressure, mmHg | 119 (93–125) |
Pulse rate, rpm | 69 (65–83) |
Comorbidity | |
Heart failure | 69 (100%) |
Diabetes mellitus | 17 (25%) |
Atrial fibrillation | 25 (36%) |
History of stroke | 14 (20%) |
Coronary artery disease | 21 (30%) |
Laboratory data | |
Hemoglobin, g/dL | 9.2 (8.4–10.5) |
Serum albumin, g/dL | 3.7 (3.2–3.8) |
eGFR, mL/min/1.73 m2 | 29.1 (19.0–35.1) |
Plasma B-type natriuretic peptide, pg/mL | 264 (156–372) |
Serum C-reactive protein, mg/dL | 0.31 (0.03–1.20) |
Serum iron, μg/dL | 45.5 (27.0–72.0) |
Ferritin, ng/mL | 59.5 (44.0–137.0) |
Total iron binding capacity, μg/dL | 283 (207–318) |
Transferrin saturation, % | 25.0 (17.1–31.6) |
Thyroid stimulating hormone, μIU/mL | 2.5 (1.3–3.4) |
Free T3, pg/mL | 2.1 (1.8–2.7) |
Free T4, ng/mL | 1.1 (0.8–1.3) |
Echocardiography data (N = 49) | |
Left ventricular end-diastolic diameter, mm | 49 (41–59) |
Left ventricular ejection fraction, % | 60 (51–64) |
E/e’ ratio | 12.6 (7.5–22.3) |
TRPG, mmHg | 22 (20–32) |
Moderate or greater mitral regurgitation | 13 (27%) |
Moderate or greater tricuspid regurgitation | 12 (25%) |
Left ventricular ejection fraction <40% | 11 (22%) |
Medication | |
Beta-blocker | 53 (77%) |
Renin-angiotensin system inhibitor | 63 (91%) |
Mineralocorticoid receptor antagonist | 34 (49%) |
SGLT2 inhibitor | 18 (26%) |
Furosemide | 50 (73%) |
Furosemide equivalent dose, mg/day | 20 (0, 20) |
Tolvaptan | 37 (54%) |
Tolvaptan dose, mg/dL | 3.75 (0, 7.5) |
Iron supplementation | 53 (77%) |
Before 6 Months | Baseline | p-Value vs. Before 6 Months | After 6 Months | p-Value vs. Baseline | |
---|---|---|---|---|---|
Serum albumin, g/dL | 3.6 (3.1–3.8) | 3.7 (3.2–3.8) | - | 3.7 (3.5–4.0) | - |
eGFR, mL/min/1.73 m2 | 35.5 (25.6–41.5) | 29.1 (19.0–35.1) | <0.001 * | 34.6 (28.6–38.7) | <0.001 * |
Plasma BNP, pg/mL | 238 (163–305) | 264 (156–372) | 0.43 | 172 (105–350) | 0.018 * |
Serum C-reactive protein, mg/dL | 0.14 (0.03–0.72) | 0.31 (0.03–1.20) | 0.82 | 0.05 (0.04–0.06) | <0.001 * |
Serum iron, μg/dL | 56.0 (45.5–85.5) | 45.5 (27.0–72.0) | - | 79.0 (75.0–81.5) | - |
Ferritin, ng/mL | 56.0 (45.5–85.5) | 59.5 (42.0–137.0) | - | 76.0 (71.0–86.5) | - |
Total iron binding capacity, μg/dL | 269 (224–322) | 283 (207–318) | - | 280 (255–325) | - |
Thyroid stimulating hormone, μIU/mL | 2.6 (1.4–3.7) | 2.5 (1.3–3.4) | - | 2.4 (1.4–3.7) | - |
Free T3, pg/mL | 2.0 (1.7–2.9) | 2.1 (1.8–2.7) | - | 2.0 (1.8–2.9) | - |
Free T4, ng/mL | 1.0 (0.7–1.4) | 1.1 (0.8–1.3) | - | 1.0 (0.9–1.2) | - |
Before 6 Months (N = 48) | Baseline (N = 49) | p-Value vs. Before 6 Months | After 6 Months (N = 62) | p-Value vs. Baseline | |
---|---|---|---|---|---|
LVDD, mm | 48 (44–52) | 49 (41–59) | - | 48 (45–49) | - |
LVEF, % | 64 (50–72) | 60 (51–64) | - | 62 (59–67) | - |
E/e’ ratio | 12.7 (10.5–18.7) | 12.6 (7.5–22.3) | - | 13.6 (7.7–20.1) | - |
TRPG, mmHg | 27 (20–38) | 22 (20–32) | - | 25 (20–32) | - |
Moderate or greater MR | 16 (33%) | 13 (27%) | - | 15 (24%) | - |
Moderate or greater TR | 5 (10%) | 12 (25%) | 0.021 * | 4 (7%) | 0.008 * |
LVEF <b 40% | 9 (19%) | 11 (22%) | - | 12 (19%) | - |
Before 6 Months | Baseline | p-Value vs. Before 6 Months | After 6 Months | p-Value vs. Baseline | |
---|---|---|---|---|---|
Beta-blocker | 51 (74%) | 53 (77%) | - | 53 (77%) | - |
Renin-angiotensin system inhibitor | 62 (90%) | 63 (91%) | - | 63 (91%) | - |
Mineralocorticoid receptor antagonist | 32 (46%) | 34 (49%) | - | 33 (48%) | - |
SGLT2 inhibitor | 18 (26%) | 18 (26%) | - | 23 (33%) | - |
Furosemide | 48 (70%) | 50 (73%) | - | 51 (74%) | - |
Furosemide equivalent dose, mg/day | 20 (20, 40) | 20 (0, 20) | - | 20 (0, 40) | - |
Tolvaptan | 26 (38%) | 37 (54%) | - | 35 (51%) | - |
Tolvaptan dose, mg/dL | 0 (0–3.75) | 3.75 (0–7.5) | 0.074 | 0 (0–3.75) | 0.12 |
Iron supplementation | 50 (72%) | 53 (77%) | - | 56 (81%) | - |
Univariable Analyses | Multivariable Analyses | |||
---|---|---|---|---|
Beta-Value | p-Value | Beta-Value | p-Value | |
Age, years | 0.012 | 0.5 | ||
Diabetes mellitus | −0.353 | 0.5 | ||
Hemoglobin, g/dL | −0.891 | <0.001 * | −0.947 | <0.001 * |
Serum albumin, g/dL | −0.942 | 0.008 * | −0.056 | 0.89 |
eGFR, mL/min/1.73 m2 | −0.181 | 0.35 | ||
Plasma BNP, pg/mL | 0.001 | 0.52 | ||
Serum C−reactive protein, mg/dL | 0.211 | 0.15 | ||
Ferritin, ng/mL | −0.002 | 0.38 | ||
LVEF, % | 0.008 | 0.6 | ||
E/e’ ratio | −0.108 | 0.045 * | −0.132 | 0.002 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hida, Y.; Imamura, T.; Kinugawa, K. Clinical Implication of HIF-PH Inhibitor in Patients with Heart Failure, Chronic Kidney Disease, and Renal Anemia. J. Clin. Med. 2024, 13, 7619. https://doi.org/10.3390/jcm13247619
Hida Y, Imamura T, Kinugawa K. Clinical Implication of HIF-PH Inhibitor in Patients with Heart Failure, Chronic Kidney Disease, and Renal Anemia. Journal of Clinical Medicine. 2024; 13(24):7619. https://doi.org/10.3390/jcm13247619
Chicago/Turabian StyleHida, Yuki, Teruhiko Imamura, and Koichiro Kinugawa. 2024. "Clinical Implication of HIF-PH Inhibitor in Patients with Heart Failure, Chronic Kidney Disease, and Renal Anemia" Journal of Clinical Medicine 13, no. 24: 7619. https://doi.org/10.3390/jcm13247619
APA StyleHida, Y., Imamura, T., & Kinugawa, K. (2024). Clinical Implication of HIF-PH Inhibitor in Patients with Heart Failure, Chronic Kidney Disease, and Renal Anemia. Journal of Clinical Medicine, 13(24), 7619. https://doi.org/10.3390/jcm13247619