The Influence of Anti-ETAR and Anti-CXCR3 Antibody Levels on the Course of Specific Glomerulonephritis Types
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
- -
- Trend evaluation: Spearman’s correlation between ETAR and CXCR3 levels and time (months);
- -
- Statistical range evaluation based on Spearman’s correlation;
- -
- Standard deviation evaluation based on Spearman’s correlation;
- -
- Coefficient of variation evaluation based on Spearman’s correlation.
3. Results
4. Discussion
4.1. Study Limitations
- -
- Our results require confirmation in bigger groups of patients.
- -
- The molecular activity of anti-ETAR and anti-CXCR3 antibodies in specific glomerular diseases should be evaluated with molecular models.
- -
- The influence of treatment on the course of the disease in prospective observations must be accounted for.
4.2. Future Perspectives
5. Conclusions
6. Disclosures
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | angiotensin II converting enzyme |
ANA | antinuclear antibodies |
ANOVA | analysis of variance |
AT1R | angiotensin II type 1 receptor |
cANCA | anti-neutrophil cytoplasmic antibodies |
CD | cluster of differentiation |
cGAMP | cyclic guanosine monophosphate–adenosine monophosphate |
CXCR3 | C-X-C motif chemokine receptor 3 |
ETAR | endothelin A receptor |
FSGS | focal and segmental glomerulosclerosis |
HLA | human leukocyte antigens |
IgA | immunoglobulin A |
IgG | immunoglobulin G |
MHC | major histocompatibility complex |
MPO | ANCA-myeloperoxidase anti-neutrophil cytoplasmic antibodies |
pANCA | perinuclear anti-neutrophil cytoplasmic antibodies |
POD | horseradish peroxidase |
References
- Beck, L.H., Jr.; Bonegio, R.G.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D.J. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef]
- Carnabuci, G.J.; Luscombe, H.A.; Stoloff, I.L. ANA titers in lupus erythematosus and certain chronic dermatoses. Arch. Dermatol. 1967, 95, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Lüdemann, J.; Utecht, B.; Gross, W.L. Detection and quantitation of anti-neutrophil cytoplasm antibodies in Wegener’s granulomatosis by ELISA using affinity-purified antigen. J. Immunol. Methods 1988, 114, 167–174. [Google Scholar] [CrossRef]
- Kallenberg, C.G.; Tervaert, J.W.; Huitema, M.G.; van der Giessen, M. Towards standard sera for the determination of anti-neutrophil cytoplasmic (ANCA) and anti-myeloperoxidase (aMPO) antibodies. APMIS Suppl. 1989, 6, 14–15. [Google Scholar] [PubMed]
- Lou, H.; Ling, G.S.; Cao, X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J. Autoimmun. 2022, 132, 102861. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, J.R.; Joysey, V.C. Influence of HL-A incompatibility on cadaveric renal transplantation. Lancet 1969, 1, 790–792. [Google Scholar] [CrossRef]
- Pearl, M.H.; Chen, L.; ElChaki, R.; Elashoff, D.; Gjertson, D.W.; Rossetti, M.; Weng, P.L.; Zhang, Q.; Reed, E.F.; Chambers, E.T. Endothelin Type A Receptor Antibodies Are Associated with Angiotensin II Type 1 Receptor Antibodies, Vascular Inflammation, and Decline in Renal Function in Pediatric Kidney Transplantation. Kidney Int. Rep. 2020, 6, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, P.C.; Arroyave, I.H.; Mejía, G.; García, L.F. Detection of alloantibodies against non-HLA antigens in kidney transplantation by flow cytometry. Clin. Transplant. 2000, 14, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Dragun, D.; Müller, D.N.; Bräsen, J.H.; Fritsche, L.; Nieminen-Kelhä, M.; Dechend, R.; Kintscher, U.; Rudolph, B.; Hoebeke, J.; Eckert, D.; et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med. 2005, 352, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Liles, C.; Li, H.; Veitla, V.; Liles, J.T.; Murphy, T.A.; Cunningham, M.W.; Yu, X.; Kem, D.C. AT2R autoantibodies block angiotensin II and AT1R autoantibody-induced vasoconstriction. Hypertension 2015, 66, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Riemekasten, G.; Philippe, A.; Näther, M.; Slowinski, T.; Müller, D.N.; Heidecke, H.; Matucci-Cerinic, M.; Czirják, L.; Lukitsch, I.; Becker, M.; et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann. Rheum. Dis. 2011, 70, 530–536. [Google Scholar] [CrossRef]
- Tang, W.H.W. Targeting anti-CXCR3 autoantibodies as potential cardioprotective therapy: Promises and challenges. Eur. Heart J. 2023, 44, 4950–4952. [Google Scholar] [CrossRef] [PubMed]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Krajewska, M.; Mazanowska, O.; Kamińska, D.; Bartoszek, D.; Żabińska, M.; Myszka, M.; Nowakowska, B.; et al. The impact of non-HLA antibodies directed against endothelin-1 type A receptors (ETAR) on early renal transplant outcomes. Transpl. Immunol. 2014, 30, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Rakotoarison, A.; Kepinska, M.; Konieczny, A.; Władyczak, K.; Janczak, D.; Hałoń, A.; Donizy, P.; Banasik, M. Endothelin Inhibitors in Chronic Kidney Disease: New Treatment Prospects. J. Clin. Med. 2024, 13, 6056. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Zheng, L.; Li, J.; Xu, M.; Rong, R.; Zhu, T.; Jia, Y. Downregulation of endothelin A receptor (ETaR) ameliorates renal ischemia reperfusion injury by increasing nitric oxide production. Life Sci. 2019, 228, 295–304. [Google Scholar] [CrossRef]
- Nowańska, K.; Donizy, P.; Kościelska-Kasprzak, K.; Kamińska, D.; Krajewska, M.; Mazanowska, O.; Madziarska, K.; Zmonarski, S.; Chudoba, P.; Małkiewicz, B.; et al. Endothelin A Receptors Expressed in Renal Blood Vessels of Renal Transplant Patients Are Connected With Acute Tubular Necrosis or Antibody-Mediated Rejection. Transplant. Proc. 2018, 50, 1760–1764. [Google Scholar] [CrossRef] [PubMed]
- van de Lest, N.A.; Bakker, A.E.; Dijkstra, K.L.; Zandbergen, M.; Heemskerk, S.A.C.; Wolterbeek, R.; Bruijn, J.A.; Scharpfenecker, M. Endothelial Endothelin Receptor A Expression Is Associated with Podocyte Injury and Oxidative Stress in Patients with Focal Segmental Glomerulosclerosis. Kidney Int. Rep. 2021, 6, 1939–1948. [Google Scholar] [CrossRef]
- Yoshimura, A.; Iwasaki, S.; Inui, K.; Ideura, T.; Koshikawa, S.; Yanagisawa, M.; Masaki, T. Endothelin-1 and endothelin B type receptor are induced in mesangial proliferative nephritis in the rat. Kidney Int. 1995, 48, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Hegner, B.; Kretzschmar, T.; Zhu, N.; Kleinau, G.; Zhao, H.; Kamhieh-Milz, J.; Hilger, J.; Schindler, R.; Scheerer, P.; Riemekasten, G.; et al. Autoimmune activation and hypersensitization of the AT1 and ETA receptors contributes to vascular injury in scleroderma renal crisis. Rheumatology 2023, 62, 2284–2293. [Google Scholar] [CrossRef]
- Kohan, D.E.; Barratt, J.; Heerspink, H.J.L.; Campbell, K.N.; Camargo, M.; Ogbaa, I.; Haile-Meskale, R.; Rizk, D.V.; King, A. Targeting the Endothelin A Receptor in IgA Nephropathy. Kidney Int. Rep. 2023, 8, 2198–2210. [Google Scholar] [CrossRef]
- Rowaiye, O.O.; Kusztal, M.; Zabinska, M.; Bartoszek, D.; Myszka, M.; Kościelska-Kasprzak, K.; Banasik, M.; Mazanowska, O.; Klinger, M.; Krajewska, M. Anti-ETAR and suPAR as markers of disease activity in renal ANCA-associated vasculitis. Adv. Med. Sci. 2022, 67, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Philogene, M.C.; Johnson, T.; Vaught, A.J.; Zakaria, S.; Fedarko, N. Antibodies against angiotensin II type 1 and endothelin A receptors: Elevance and pathogenicity. Hum. Immunol. 2019, 80, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Shin, K.H.; Kim, I.Y.; Choi, B.H.; Kim, H.H. Association between anti-endothelial antigen antibodies and allograft rejection in kidney transplantation. J. Clin. Lab. Anal. 2023, 37, e24961. [Google Scholar] [CrossRef]
- Rubinstein, A.; Kudryavtsev, I.; Arsentieva, N.; Korobova, Z.R.; Isakov, D.; Totolian, A.A. CXCR3-Expressing T Cells in Infections and Autoimmunity. Front. Biosci. Landmark 2024, 29, 301. [Google Scholar] [CrossRef] [PubMed]
- Karin, N. CXCR3 Ligands in Cancer and Autoimmunity, Chemoattraction of Effector T Cells, and Beyond. Front. Immunol. 2020, 11, 976. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, Z.; Wang, Y.; Dai, X.; Zhang, J.; Xue, D. Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration. Diagn. Pathol. 2015, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.H.; Sun, G.H.; Wu, Y.C.; Ko, B.J.; Hsu, H.T.; Wu, S.T. TNF-α augments CXCR2 and CXCR3 to promote progression of renal cell carcinoma. J. Cell. Mol. Med. 2016, 20, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Tang, J.; Luo, L.; Deng, S.; Luo, L.; Wang, F.; Yuan, X.; Hu, X.; Feng, J.; Li, X. Altered circulating CCR6+ and CXCR3+ T cell subsets are associated with poor renal prognosis in MPO-ANCA-associated vasculitis. Arthritis Res. Ther. 2021, 23, 194. [Google Scholar] [CrossRef]
- Sundararaj, K.P.; Thiyagarajan, T.; Molano, I.; Basher, F.; Powers, T.W.; Drake, R.R.; Nowling, T.K. FLI1 Levels Impact CXCR3 Expression and Renal Infiltration of T Cells and Renal Glycosphingolipid Metabolism in the MRL/lpr Lupus Mouse Strain. J. Immunol. 2015, 195, 5551–5560. [Google Scholar] [CrossRef]
- Audemard-Verger, A.; Pillebout, E.; Jamin, A.; Berthelot, L.; Aufray, C.; Martin, B.; Sannier, A.; Daugas, E.; Déchanet-Merville, J.; Richard, Y.; et al. Recruitment of CXCR3+ T cells into injured tissues in adult IgA vasculitis patients correlates with disease activity. J. Autoimmun. 2019, 99, 73–80. [Google Scholar] [CrossRef]
- Romagnani, P.; Beltrame, C.; Annunziato, F.; Lasagni, L.; Luconi, M.; Galli, G.; Cosmi, L.; Maggi, E.; Salvadori, M.; Pupilli, C.; et al. Role for interactions between IP-10/Mig and CXCR3 in proliferative glomerulonephritis. J. Am. Soc. Nephrol. 1999, 10, 2518–2526. [Google Scholar] [CrossRef]
- Segerer, S.; Banas, B.; Wörnle, M.; Schmid, H.; Cohen, C.D.; Kretzler, M.; Mack, M.; Kiss, E.; Nelson, P.J.; Schlöndorff, D.; et al. CXCR3 is involved in tubulointerstitial injury in human glomerulonephritis. Am. J. Pathol. 2004, 164, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Xian, W.; Wu, J.; Li, Q.; Du, X.; Wang, N.; Chen, D.; Gao, W.; Cao, J. CXCR3 alleviates renal ischemia-reperfusion injury via increase of Tregs. Mol. Med. Rep. 2021, 24, 541. [Google Scholar] [CrossRef]
- Yue, X.; Deng, F.; Chen, J.; Yin, J.; Zheng, J.; Chen, Y.; Huang, Q.; Gao, X.; Liu, Z.; Luo, J.; et al. Autoantibodies against C5aR1, C3aR1, CXCR3, and CXCR4 are decreased in primary Sjogren’s syndrome. Mol. Immunol. 2021, 131, 112–120. [Google Scholar] [CrossRef]
- Weigold, F.; Günther, J.; Pfeiffenberger, M.; Cabral-Marques, O.; Siegert, E.; Dragun, D.; Philippe, A.; Regensburger, A.K.; Recke, A.; Yu, X.; et al. Antibodies against chemokine receptors CXCR3 and CXCR4 predict progressive deterioration of lung function in patients with systemic sclerosis. Arthritis Res. Ther. 2018, 20, 52. [Google Scholar] [CrossRef]
- Müller, F.S.; Aherrahrou, Z.; Grasshoff, H.; Heidorn, M.W.; Humrich, J.Y.; Johanson, L.; Aherrahrou, R.; Reinberger, T.; Schulz, A.; Ten Cate, V.; et al. Autoantibodies against the chemokine receptor 3 predict cardiovascular risk. Eur. Heart J. 2023, 44, 4935–4949. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, D.; Kamińska, D.; Catar, R.; Banasik, M.; Heidecke, H.; Schulze-Forster, K.; Korybalska, K.; Rutkowski, R.; Łuczak, J.; Jabłecki, J.; et al. Non-HLA Antibodies in Hand Transplant Recipients Are Connected to Multiple Acute Rejection Episodes and Endothelial Activation. J. Clin. Med. 2022, 11, 833. [Google Scholar] [CrossRef]
- Birukov, A.; Muijsers, H.E.C.; Heidecke, H.; Drost, J.T.; Cunnigham, M.W.; Kraker, K.; Haase, N.; Frolova, A.; Müller, D.N.; Herse, F.; et al. Regulatory antibodies against GPCR in women ten years after early-onset preeclampsia. Front. Biosci. Landmark 2019, 24, 1462–1476. [Google Scholar]
- Bruschi, M.; Angeletti, A.; Prunotto, M.; Meroni, P.L.; Ghiggeri, G.M.; Moroni, G.; Sinico, R.A.; Franceschini, F.; Fredi, M.; Vaglio, A.; et al. A critical view on autoantibodies in lupus nephritis: Concrete knowledge based on evidence. Autoimmun. Rev. 2024, 23, 103535. [Google Scholar] [CrossRef] [PubMed]
- Tomas, N.M. Therapeutic targets in membranous nephropathy: Plasma cells and complement. Clin. Kidney J. 2024, 17, sfae243. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Kwan, B.C.; Lai, F.M.; Choi, P.C.; Tam, L.S.; Li, E.K.; Chow, K.M.; Wang, G.; Li, P.K.; Szeto, C.C. Gene expression of TWEAK/Fn14 and IP-10/CXCR3 in glomerulus and tubulointerstitium of patients with lupus nephritis. Nephrology 2011, 16, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.; Debrevi, L. Effect of enalapril treatment on progression of the nephrotoxic serum nephritis model of renal failure in the rat. Clin. Exp. Pharmacol. Physiol. 1988, 15, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, D.A.; Snaith, M.L.; Morrow, W.J.; Al-Khader, A.A.; Cohen, S.L.; Fisher, C.; Mowbray, J. Cyclosporin A for the treatment of systemic lupus erythematosus. Int. J. Immunopharmacol. 1981, 3, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yu, Q. Disruption of CXCR3 function impedes the development of Sjogren’s syndrome-like xerostomia in non-obese diabetic mice. Lab. Investig. 2018, 98, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.Q.; Han, L.; Zhang, J.Y.; Yu, J.; Wu, N.; Hu, W.P.; Xu, Z.; Liu, W.; Huang, W.F. Abdominal imaging and endoscopic characteristics of adult abdominal IgA vasculitis: A multicenter retrospective study. Ann. Med. 2024, 56, 2408467. [Google Scholar] [CrossRef]
- Ghiggeri, G.M.; Seitz-Polski, B.; Justino, J.; Zaghrini, C.; Payre, C.; Brglez, V.; Dolla, G.; Sinico, A.; Scolari, F.; Vaglio, A.; et al. Multi-autoantibody signature and clinical outcome in membranous nephropathy. Clin. J. Am. Soc. Nephrol. 2020, 15, 1762–1776. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Chen, X.; Song, X.; Chen, X.; Ma, W.; Lin, J.; Wu, H.; Hu, X.; Zhou, Y.; Zhang, H.; et al. Immunotherapy of Endothelin-1 Receptor Type A for Pulmonary Arterial Hypertension. J. Am. Coll. Cardiol. 2019, 73, 2567–2580. [Google Scholar] [CrossRef] [PubMed]
- Philippe, A.; Arns, W.; Ditt, V.; Hauser, I.A.; Thaiss, F.; Sommerer, C.; Suwelack, B.; Dragun, D.; Hillen, J.; Schiedel, C.; et al. Impact of everolimus plus calcineurin inhibitor on formation of non-HLA antibodies and graft outcomes in kidney transplant recipients: 12-month results from the ATHENA substudy. Front. Transplant. 2023, 2, 1273890. [Google Scholar] [CrossRef]
- Piotrowska, A.; Rojewska, E.; Pawlik, K.; Kreiner, G.; Ciechanowska, A.; Makuch, W.; Mika, J. Dataset of (±)-NBI-74330 (CXCR3 antagonist) influence on chemokines under neuropathic pain. Data Brief 2018, 21, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
Disease | Creatinine (Serum) (mg/dL) | Proteinuria (g/24 h) | Total Protein (Serum) (g/dL) | Albumin (Serum) (g/dL) | Age (Years) | Sex (Percent of Males) |
---|---|---|---|---|---|---|
membranous nephropathy (n = 18) | 1.25 (Range: 0.8–3.3) | 2.64 (Range: 0.1–15.8) | 4.8 (Range: 3.7–5.9) | 2.8 (Range: 1.7–3.9) | 51.5 (Range: 28–69) | 55% |
focal and segmental glomerulosclerosis (n = 25) | 1.21 (Range: 0.73–3.19) | 2.3 (Range: 0.07–13.99) | 5 (Range: 3–7.3) | 2.9 (Range: 1.3–4.8) | 48 (Range: 19–74) | 56% |
lupus nephritis (n = 17) | 1.06 (Range: 0.77–2.19) | 1.59 (Range: 0.18–5.95) | 5.5 (Range: 3.8–7.3) | 3.1 (Range: 2–4) | 34 (Range: 19–66) | 47% |
IgA nephropathy (n = 14) | 1.06 (Range: 0.71–1.82) | 0.94 (Range: 0.09–4.54) | 5.65 (Range: 4.4–6.5) | 3.4 (Range: 2.2–4) | 45.5(Range: 20–60) | 50% |
mesangial proliferative (non-IgA) glomerulonephritis (n = 6) | 0.93 (Range: 0.59–1.55) | 2.58 (Range: 0.62–7.13) | 4.8 (Range: 3.9–5.2) | 2.8 (Range: 1.6–3.2) | 28 (Range: 20–52) | 50% |
control group (n = 22) | 1.2 (Range:0.9–1.3) | 0 (Range:0–0) | 7.4 (Range: 6.6–8.2) | 4.4 (Range: 3.5–5.2) | 44 (Range: 26–80) | 50% |
c-ANCA vasculitis (n = 40) | 1.81 (Range: 0.69–7.78) | 0.64 (Range: 0.06–19) | 6.3 (Range: 5.3–7.1) | 3.6 (Range: 2.4–4.6) | 58 (Range: 21–81) | 45% |
p-ANCA vasculitis (n = 16) | 3.13 (Range: 0.79–9.04) | 1.73 (Range: 0.14–12.3) | 5.95 (Range: 4.8–8.3) | 3.5 (Range: 2.8–4.3) | 62 (Range: 37–87) | 56% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymczak, M.; Heidecke, H.; Żabińska, M.; Janek, Ł.; Wronowicz, J.; Kujawa, K.; Bukowiec-Marek, K.; Gołębiowski, T.; Skalec, K.; Schulze-Forster, K.; et al. The Influence of Anti-ETAR and Anti-CXCR3 Antibody Levels on the Course of Specific Glomerulonephritis Types. J. Clin. Med. 2024, 13, 7752. https://doi.org/10.3390/jcm13247752
Szymczak M, Heidecke H, Żabińska M, Janek Ł, Wronowicz J, Kujawa K, Bukowiec-Marek K, Gołębiowski T, Skalec K, Schulze-Forster K, et al. The Influence of Anti-ETAR and Anti-CXCR3 Antibody Levels on the Course of Specific Glomerulonephritis Types. Journal of Clinical Medicine. 2024; 13(24):7752. https://doi.org/10.3390/jcm13247752
Chicago/Turabian StyleSzymczak, Maciej, Harald Heidecke, Marcelina Żabińska, Łucja Janek, Jakub Wronowicz, Krzysztof Kujawa, Karolina Bukowiec-Marek, Tomasz Gołębiowski, Karolina Skalec, Kai Schulze-Forster, and et al. 2024. "The Influence of Anti-ETAR and Anti-CXCR3 Antibody Levels on the Course of Specific Glomerulonephritis Types" Journal of Clinical Medicine 13, no. 24: 7752. https://doi.org/10.3390/jcm13247752
APA StyleSzymczak, M., Heidecke, H., Żabińska, M., Janek, Ł., Wronowicz, J., Kujawa, K., Bukowiec-Marek, K., Gołębiowski, T., Skalec, K., Schulze-Forster, K., Konieczny, A., & Banasik, M. (2024). The Influence of Anti-ETAR and Anti-CXCR3 Antibody Levels on the Course of Specific Glomerulonephritis Types. Journal of Clinical Medicine, 13(24), 7752. https://doi.org/10.3390/jcm13247752