Navigating Heart–Lung Interactions in Mechanical Ventilation: Pathophysiology, Diagnosis, and Advanced Management Strategies in Acute Respiratory Distress Syndrome and Beyond
Abstract
:1. Introduction
2. Pathophysiology
2.1. Right Ventricular Dynamics and Preload Influences
2.2. Right Ventricular Function, Lung Capacities, and Factors Influencing RV Afterload
2.3. Left Ventricular Function and Factors Influencing Afterload
2.4. The Interconnected Dynamics of the Right and Left Ventricles: A Relationship of Interdependence
2.5. Clinical Applications
3. Monitoring
3.1. Key Indicators and Diagnostic Approaches for Acute Right Heart Syndrome
3.2. Arterial Catheter—Central Venous Catheter (Hemodynamic Monitoring)
3.3. Evaluation of Heart Function in Critical Illness Using Echocardiography
3.4. Monitoring Esophageal Pressure for Cardiac Function
4. Management
4.1. Fluid Therapy
4.2. Pharmaceutical Treatment
4.2.1. Vasopressors
- Norepinephrine and Epinephrine:
- 2.
- Vasopressin:
4.2.2. Inotropes
- Dobutamine:
- 2.
- Phosphodiesterase (PDE) III Inhibitors:
- 3.
- Levosimendan:
4.2.3. Vasodilators
4.2.4. Diuretics
4.3. Rhythm Control
4.4. Optimizing Ventilation Strategies for ARDS: Balancing Lung and Heart Protection
4.5. Mechanical Circulatory Support (MCS)
4.5.1. Extracorporeal Membrane Oxygenation (ECMO)
4.5.2. Right Ventricular Assist Devices (RVADs)
4.5.3. Impella RP
4.5.4. TandemHeart RVAD
4.5.5. Protek Duo and Veno-Pulmonary ECMO (V-P ECMO)
4.6. Machine Learning
5. Key Points
- Positive-pressure mechanical ventilation alters pleural and transpulmonary pressures, affecting ventricular preload and afterload, which can lead to mainly right but also left ventricular dysfunction, especially in critical conditions.
- The interconnected dynamics of the right and left ventricles necessitate the careful management of ventilation settings to prevent hemodynamic instability in critically ill patients.
- Echocardiography is crucial for diagnosing and monitoring right ventricular function in critically ill patients, providing insights into RV dysfunction and its coupling with the pulmonary artery to inform clinical management.
- A hemodynamic assessment with arterial, central venous, and pulmonary artery catheters is essential for evaluating fluid responsiveness and right ventricular function in RHF, while effective RV failure management requires a multifaceted approach that includes fluid management, vasopressors, inotropes, and rhythm control.
- Optimizing mechanical ventilation for ARDS involves tailoring the PEEP and tidal volume to enhance both lung protection and right ventricular function. Our findings suggest that lower PEEP levels than recommended can improve hemodynamics, underscoring the need for individualized ventilation strategies.
- ECMO, particularly VA-ECMO and VV-ECMO, is essential for supporting patients with RHF and severe respiratory issues like ARDS, effectively improving right ventricular function and managing circulatory collapse.
- Managing RHF requires personalized approaches using devices like Impella RP for rapid unloading, TandemHeart for manageable pulmonary hypertension, and Protek Duo for combined oxygenation and RV support, with ongoing research to refine these interventions.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Magder, S. Bench-to-bedside review: Ventilatory abnormalities in sepsis. Crit. Care. 2009, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Ashbaugh, D.G.; Bigelow, D.B.; Petty, T.L.; Levine, B.E. Acute respiratory distress in adults. Lancet 1967, 2, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Jardin, F.; Farcot, J.C.; Boisante, L.; Curien, N.; Margairaz, A.; Bourdarias, J.P. Influence of positive end-expiratory pressure on left ventricular performance. N. Engl. J. Med. 1981, 304, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.J. Effects of positive end-expiratory pressure on the right ventricle. J. Appl. Physiol. 1986, 61, 819–826. [Google Scholar] [CrossRef]
- Van Hook, C.J.; Carilli, A.D.; Haponik, E.F. Hemodynamic effects of positive end-expiratory pressure. Historical perspective. Am. J. Med. 1986, 81, 307–310. [Google Scholar] [CrossRef]
- Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial I; Cavalcanti, A.B.; Suzumura, E.A.; Laranjeira, L.N.; Paisani, D.M.; Damiani, L.P.; Guimaraes, H.P.; Romano, E.R.; Regenga, M.D.; Taniguchi, L.N.T.; et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2017, 318, 1335–1345. [Google Scholar] [CrossRef]
- Zochios, V.; Jones, N. Acute right heart syndrome in the critically ill patient. Heart Lung Vessel. 2014, 6, 157–170. [Google Scholar]
- Magder, S.; Guerard, B. Heart-lung interactions and pulmonary buffering: Lessons from a computational modeling study. Respir. Physiol. Neurobiol. 2012, 182, 60–70. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Pinsky, M.R. Heart-lung interactions during mechanical ventilation: The basics. Ann. Transl. Med. 2018, 6, 349. [Google Scholar] [CrossRef]
- Shah, N.; Katira, B.H. Role of cardiopulmonary interactions in development of ventilator-induced lung injury—Experimental evidence and clinical Implications. Front. Physiol. 2023, 14, 1228476. [Google Scholar] [CrossRef]
- Joseph, A.; Petit, M.; Vieillard-Baron, A. Hemodynamic effects of positive end-expiratory pressure. Curr. Opin. Crit. Care 2024, 30, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Petit, M.; Vieillard-Baron, A. Ventricular interdependence in critically ill patients: From physiology to bedside. Front. Physiol. 2023, 14, 1232340. [Google Scholar] [CrossRef] [PubMed]
- Grubler, M.R.; Wigger, O.; Berger, D.; Blchlinger, S. Basic concepts of heart-lung interactions during mechanical ventilation. Swiss Med. Wkly. 2017, 147, w14491. [Google Scholar] [CrossRef] [PubMed]
- Lumb, A.B.; Slinger, P. Hypoxic Pulmonary Vasoconstriction. Anesthesiology 2015, 122, 932–946. [Google Scholar] [CrossRef]
- Dorrington, K.L.; Talbot, N.P. Human pulmonary vascular responses to hypoxia and hypercapnia. Pflug. Arch. 2004, 449, 1–15. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Jardin, F. Right level of positive end-expiratory pressure in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2003, 167, 1576–1577. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Matthay, M.; Teboul, J.L.; Bein, T.; Schultz, M.; Magder, S.; Marini, J.J. Experts’ opinion on management of hemodynamics in ARDS patients: Focus on the effects of mechanical ventilation. Intensive Care Med. 2016, 42, 739–749. [Google Scholar] [CrossRef]
- Berger, D.; Moller, P.W.; Weber, A.; Bloch, A.; Bloechlinger, S.; Haenggi, M.; Sondergaard, S.; Jakob, S.M.M.; Magder, S.; Takala, J. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H794–H806. [Google Scholar] [CrossRef]
- Bloch, A.; Berger, D.; Takala, J. Understanding circulatory failure in sepsis. Intensive Care Med. 2016, 42, 2077–2079. [Google Scholar] [CrossRef]
- Magder, S. Volume and its relationship to cardiac output and venous return. Crit. Care 2016, 20, 271. [Google Scholar] [CrossRef]
- Moller, P.W.; Winkler, B.; Hurni, S.; Heinisch, P.P.; Bloch, A.; Sondergaard, S.; Jakob, S.M.; Takala, J.; Berger, D. Right atrial pressure and venous return during cardiopulmonary bypass. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H408–H420. [Google Scholar] [CrossRef] [PubMed]
- Nanas, S.; Magder, S. Adaptations of the peripheral circulation to PEEP. Am. Rev. Respir. Dis. 1992, 146, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Fessler, H.E.; Brower, R.G.; Wise, R.A.; Permutt, S. Effects of Positive End-expiratory Pressure on the Canine Venous Return Curve. Am. Rev. Respir. Dis. 1992, 146, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Morimont, P.; Lambermont, B.; Ghuysen, A.; Gerard, P.; Kolh, P.; Lancellotti, P.; Tchana-Sato, V.; Desaive, T.; D’Orio, V. Effective arterial elastance as an index of pulmonary vascular load. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H2736–H2742. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Loubieres, Y.; Schmitt, J.-M.; Page, B.; Dubourg, O.; Jardin, F. Cyclic changes in right ventricular output impedance during mechanical ventilation. J. Appl. Physiol. 1999, 87, 1644–1650. [Google Scholar] [CrossRef]
- West, J.B. Understanding pulmonary gas exchange: Ventilation-perfusion relationships. J. Appl. Physiol. 2004, 97, 1603–1604. [Google Scholar] [CrossRef]
- Permutt, S.; Bromberger-Barnea, B.; Bane, H.N. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 1962, 19, 239–260. [Google Scholar] [CrossRef]
- Walley, K.R. Left ventricular function: Time-varying elastance and left ventricular aortic coupling. Crit. Care 2016, 20, 270. [Google Scholar] [CrossRef]
- Cozanitis, D.A.; Leijala, M.; Pesonen, E.; Zaki, H.A. Acute pulmonary oedema due to laryngeal spasm. Anaesthesia 2007, 37, 1198–1199. [Google Scholar] [CrossRef]
- Pinsky, M.R. Cardiovascular issues in respiratory care. Chest 2005, 128 (Suppl. S2), 592S–597S. [Google Scholar] [CrossRef]
- Maestroni, A.; Aliberti, S.; Amir, O.; Milani, G.; Brambilla, A.M.; Piffer, F.; Tardini, F.; Cosentini, R. Acute effects of positive end-expiratory pressure on left ventricle diastolic function in healthy subjects. Intern. Emerg. Med. 2009, 4, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Magder, S. The left heart can only be as good as the right heart: Determinants of function and dysfunction of the right ventricle. Crit. Care Resusc. 2007, 9, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.R.; Whitelaw, W.A.; Sas, R.; Smith, E.R.; Tyberg, J.V.; Belenkie, I. RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H549–H557. [Google Scholar] [CrossRef] [PubMed]
- Jardin, F.; Delorme, G.; Hardy, A.; Auvert, B.; Beauchet, A.; Bourdarias, J.-P. Reevaluation of Hemodynamic Consequences of Positive Pressure Ventilation. Anesthesiology 1990, 72, 966–970. [Google Scholar] [CrossRef]
- Tsolaki, V.; Zakynthinos, G.E.; Papanikolaou, J.; Karavidas, N.; Vazgiourakis, V.; Papadonta, M.E.; Zygoulis, P.; Pantazopoulos, I.; Makris, D.; Zakynthinos, E. Positive End-Expiratory Pressure Deescalation in COVID-19-induced Acute Respiratory Distress Syndrome Unloads the Right Ventricle, Improving Hemodynamics and Oxygenation. Am. J. Respir. Crit. Care Med. 2023, 208, 205–208. [Google Scholar] [CrossRef]
- Alviar, C.L.; Miller, P.E.; McAreavey, D.; Katz, J.N.; Lee, B.; Moriyama, B.; Soble, J.; van Diepen, S.; Solomon, M.A.; Morrow, D.A. Positive Pressure Ventilation in the Cardiac Intensive Care Unit. J. Am. Coll. Cardiol. 2018, 72, 1532–1553. [Google Scholar] [CrossRef]
- Shahu, A.; Banna, S.; Applefeld, W.; Rampersad, P.; Alviar, C.L.; Ali, T.; Luk, A.; Fajardo, E.; van Diepen, S.; Miller, P.E. Liberation From Mechanical Ventilation in the Cardiac Intensive Care Unit. JACC Adv. 2023, 2, 100173. [Google Scholar] [CrossRef]
- Katira, B.H.; Giesinger, R.E.; Engelberts, D.; Zabini, D.; Kornecki, A.; Otulakowski, G.; Yoshida, T.; Kuebler, W.M.; McNamara, P.J.; Connelly, A.; et al. Adverse Heart-Lung Interactions in Ventilator-induced Lung Injury. Am. J. Respir. Crit. Care Med. 2017, 196, 1411–1421. [Google Scholar] [CrossRef]
- Katira, B.H.; Kuebler, W.M.; Kavanagh, B.P. Inspiratory preload obliteration may injure lungs via cyclical “on–off” vascular flow. Intensive Care Med. 2017, 44, 1521–1523. [Google Scholar] [CrossRef]
- Katira, B.H.; Engelberts, D.; Otulakowski, G.; Giesinger, R.E.; Yoshida, T.; Post, M.; Kuebler, W.M.; Connelly, K.A.; Kavanagh, B.P. Abrupt Deflation after Sustained Inflation Causes Lung Injury. Am. J. Respir. Crit. Care Med. 2018, 198, 1165–1176. [Google Scholar] [CrossRef]
- Katira, B.H.; Engelberts, D.; Bouch, S.; Fliss, J.; Bastia, L.; Osada, K.; Connelly, K.A.; Amato, M.B.P.; Ferguson, N.D.; Kuebler, W.M.; et al. Repeated endo-tracheal tube disconnection generates pulmonary edema in a model of volume overload: An experimental study. Crit. Care 2022, 26, 47. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, J.; Makris, D.; Saranteas, T.; Karakitsos, D.; Zintzaras, E.; Karabinis, A.; Kostopanagiotou, G.; Zakynthinos, E. New insights into weaning from mechanical ventilation: Left ventricular diastolic dysfunction is a key player. Intensive Care Med. 2011, 37, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.; Hunt, S.A.; Rosenthal, D.N.; Murphy, D.J. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 2008, 117, 1436–1448. [Google Scholar] [CrossRef] [PubMed]
- Methvin, A.B.; Owens, A.T.; Emmi, A.G.; Allen, M.; Wiegers, S.E.; Dries, D.L.; Margulies, K.B.; Forfia, P.R. Ventilatory inefficiency reflects right ventricular dysfunction in systolic heart failure. Chest 2011, 139, 617–625. [Google Scholar] [CrossRef]
- Kucher, N. QR in V1—An ECG sign associated with right ventricular strain and adverse clinical outcome in pulmonary embolism. Eur. Heart J. 2003, 24, 1113–1119. [Google Scholar] [CrossRef]
- Price, L.C.; Wort, S.J.; Finney, S.J.; Marino, P.S.; Brett, S.J. Pulmonary vascular and right ventricular dysfunction in adult critical care: Current and emerging options for management: A systematic literature review. Crit. Care 2010, 14, R169. [Google Scholar] [CrossRef]
- Lahm, T.; McCaslin, C.A.; Wozniak, T.C.; Ghumman, W.; Fadl, Y.Y.; Obeidat, O.S.; Schwab, K.; Meldrum, D.R. Medical and Surgical Treatment of Acute Right Ventricular Failure. J. Am. Coll. Cardiol. 2010, 56, 1435–1446. [Google Scholar] [CrossRef]
- Yang, X.; Du, B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit. Care 2014, 18, 650. [Google Scholar] [CrossRef]
- Michard, F.; Boussat, S.; Chemla, D.; Anguel, N.; Mercat, A.; Lecarpentier, Y.; Richard, C.; Pinsky, M.R.; Teboul, J.-L. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am. J. Respir. Crit. Care Med. 2000, 162, 134–138. [Google Scholar] [CrossRef]
- Chen, Y.H.; Lai, Y.J.; Huang, C.Y.; Lin, H.L.; Huang, C.C. Effects of positive end-expiratory pressure on the predictability of fluid responsiveness in acute respiratory distress syndrome patients. Sci. Rep. 2021, 11, 10186. [Google Scholar] [CrossRef]
- Myatra, S.N.; Prabu, N.R.; Divatia, J.V.; Monnet, X.; Kulkarni, A.P.; Teboul, J.L. The Changes in Pulse Pressure Variation or Stroke Volume Variation After a “Tidal Volume Challenge” Reliably Predict Fluid Responsiveness During Low Tidal Volume Ventilation. Crit. Care Med. 2017, 45, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Shi, R.; Beurton, A.; Moretto, F.; Ayed, S.; Fage, N.; Gavelli, F.; Pavot, A.; Dres, M.; Teboul, J.-L.; et al. The increase in cardiac output induced by a decrease in positive end-expiratory pressure reliably detects volume responsiveness: The PEEP-test study. Crit. Care 2023, 27, 136. [Google Scholar] [CrossRef] [PubMed]
- Gavelli, F.; Teboul, J.L.; Monnet, X. The end-expiratory occlusion test: Please, let me hold your breath! Crit. Care 2019, 23, 274. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak, M.; Depret, F.; Teboul, J.L.; Alphonsine, J.E.; Lai, C.; Richard, C.; Monnet, X. Predicting Fluid Responsiveness in Critically Ill Patients by Using Combined End-Expiratory and End-Inspiratory Occlusions With Echocardiography. Crit. Care Med. 2017, 45, e1131–e1138. [Google Scholar] [CrossRef]
- Slobod, D.; Assanangkornchai, N.; Alhazza, M.; Mettasittigorn, P.; Magder, S. Right Ventricular Loading by Lung Inflation during Controlled Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2022, 205, 1311–1319. [Google Scholar] [CrossRef]
- Berger, D.; Werner Moller, P.; Bachmann, K.F. Cardiopulmonary interactions-which monitoring tools to use? Front. Physiol. 2023, 14, 1234915. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Repessé, X.; Charron, C. Heart-Lung Interactions. Crit. Care Med. 2015, 43, e52. [Google Scholar] [CrossRef]
- Valenti, E.; Moller, P.W.; Takala, J.; Berger, D. Collapsibility of caval vessels and right ventricular afterload: Decoupling of stroke volume variation from preload during mechanical ventilation. J. Appl. Physiol. 2021, 130, 1562–1572. [Google Scholar] [CrossRef]
- Pinsky, M.R. Heart-lung interactions. Curr. Opin. Crit. Care 2007, 13, 528–531. [Google Scholar] [CrossRef]
- Magder, S. Right Atrial Pressure in the Critically Ill: How to Measure, What Is the Value, What Are the Limitations? Chest 2017, 151, 908–916. [Google Scholar] [CrossRef]
- Parker, M.M.; Pinsky, M.R.; Takala, J.; Vincent, J.L. The Story of the Pulmonary Artery Catheter: Five Decades in Critical Care Medicine. Crit. Care Med. 2023, 51, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, M.; De Backer, D.; Antonelli, M.; Beale, R.; Bakker, J.; Hofer, C.; Jaeschke, R.; Mebazaa, A.; Pinsky, M.R.; Teboul, J.L.; et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014, 40, 1795–1815. [Google Scholar] [CrossRef] [PubMed]
- Jardin, F.; Genevray, B.; Brun-Ney, D.; Bourdarias, J.P. Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 1985, 88, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Teboul, J.L.; Pinsky, M.R.; Mercat, A.; Anguel, N.; Bernardin, G.; Achard, J.M.; Boulain, T.; Richard, C. Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit. Care Med. 2000, 28, 3631–3636. [Google Scholar] [CrossRef]
- Bunge, J.J.H.; Caliskan, K.; Gommers, D.; Reis Miranda, D. Right ventricular dysfunction during acute respiratory distress syndrome and veno-venous extracorporeal membrane oxygenation. J. Thorac. Dis. 2018, 10 (Suppl. S5), S674–S682. [Google Scholar] [CrossRef]
- Bootsma, I.T.; Boerma, E.C.; Scheeren, T.W.L.; de Lange, F. The contemporary pulmonary artery catheter. Part 2: Measurements, limitations, and clinical applications. J. Clin. Monit. Comput. 2022, 36, 17–31. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Barzilai, B.; Rosamond, T.L.; Eisenberg, P.R.; Jaffe, A.S. Determinants of hemodynamic compromise with severe right ventricular infarction. Circulation 1990, 82, 359–368. [Google Scholar] [CrossRef]
- Greyson, C.R. Right heart failure in the intensive care unit. Curr. Opin. Crit. Care 2012, 18, 424–431. [Google Scholar] [CrossRef]
- Dandel, M. Heart-lung interactions in COVID-19: Prognostic impact and usefulness of bedside echocardiography for monitoring of the right ventricle involvement. Heart Fail. Rev. 2022, 27, 1325–1339. [Google Scholar] [CrossRef]
- Tsolaki, V.; Zakynthinos, G.E. Heart(-COVID-19) Lung Interactions: More Common Cause for Right Ventricular Dysfunction Than We Thought. JACC Cardiovasc. Imaging 2020, 13, 1856–1857. [Google Scholar] [CrossRef]
- Lhéritier, G.; Legras, A.; Caille, A.; Lherm, T.; Mathonnet, A.; Frat, J.-P.; Courte, A.; Martin-Lefèvre, L.; Gouëllo, J.-P.; Amiel, J.-B.; et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: A multicenter study. Intensive Care Med. 2013, 39, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Prin, S.; Chergui, K.; Dubourg, O.; Jardin, F. Echo–Doppler Demonstration of Acute Cor Pulmonale at the Bedside in the Medical Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2002, 166, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Jardin, F.; Dubourg, O.; Gueret, P.; Delorme, G.; Bourdarias, J.P. Quantitative two-dimensional echocardiography in massive pulmonary embolism: Emphasis on ventricular interdependence and leftward septal displacement. J. Am. Coll. Cardiol. 1987, 10, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, V.; Zakynthinos, G.E.; Karavidas, N.; Vazgiourakis, V.; Papanikolaou, J.; Parisi, K.; Zygoulis, P.; Makris, D.; Zakynthinos, E. Comprehensive temporal analysis of right ventricular function and pulmonary haemodynamics in mechanically ventilated COVID-19 ARDS patients. Ann. Intensive Care 2024, 14, 25. [Google Scholar] [CrossRef]
- McErlane, J.; McCall, P.; Willder, J.; Berry, C.; Shelley, B. Right ventricular free wall longitudinal strain is independently associated with mortality in mechanically ventilated patients with COVID-19. Ann. Intensive Care. 2022, 12, 104. [Google Scholar] [CrossRef]
- Bleakley, C.; Singh, S.; Garfield, B.; Morosin, M.; Surkova, E.; Mandalia, M.S.; Dias, B.; Androulakis, E.; Price, L.C.; McCabe, C.; et al. Right ventricular dysfunction in critically ill COVID-19 ARDS. Int. J. Cardiol. 2021, 327, 251–258. [Google Scholar] [CrossRef]
- Guazzi, M. TAPSE/PASP use in heart failure: Implementing the evidence for simplicity. Monaldi Arch. Chest Dis. 2020, 90, 397–398. [Google Scholar] [CrossRef]
- Dandel, M.; Hetzer, R. Evaluation of the right ventricle by echocardiography: Particularities and major challenges. Expert Rev. Cardiovasc. Ther. 2018, 16, 259–275. [Google Scholar] [CrossRef]
- D’Alto, M.; Marra, A.M.; Severino, S.; Salzano, A.; Romeo, E.; De Rosa, R.; Stagnaro, F.M.; Pagnano, G.; Verde, R.; Murino, P.; et al. Right ventricular-arterial uncoupling independently predicts survival in COVID-19 ARDS. Crit. Care 2020, 24, 670. [Google Scholar] [CrossRef]
- Amsallem, M.; Aymami, M.; Hiesinger, W.; Zeigler, S.; Moneghetti, K.; Marques, M.; Teuteberg, J.; Ha, R.; Banerjee, D.; Haddad, F. Right ventricular load adaptability metrics in patients undergoing left ventricular assist device implantation. J. Thorac. Cardiovasc. Surg. 2019, 157, 1023–1033.e4. [Google Scholar] [CrossRef]
- Dandel, M.; Knosalla, C.; Kemper, D.; Stein, J.; Hetzer, R. Assessment of right ventricular adaptability to loading conditions can improve the timing of listing to transplantation in patients with pulmonary arterial hypertension. J. Heart Lung Transplant. 2015, 34, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Spathoulas, K.; Tsolaki, V.; Zakynthinos, G.E.; Karelas, D.; Makris, D.; Zakynthinos, E.; Papanikolaou, J. The Role of Left Ventricular Ejection Fraction and Left Ventricular Outflow Tract Velocity-Time Integral in Assessing Cardiovascular Impairment in Septic Shock. J. Pers. Med. 2022, 12, 1786. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; E Tonna, J.; Hyslop, R.; Fanning, J.J.; et al. Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the Extracorporeal Life Support Organization registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Argaiz, E.R.; Rola, P.; Haycock, K.H.; Verbrugge, F.H. Fluid management in acute kidney injury: From evaluating fluid responsiveness towards assessment of fluid tolerance. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 786–793. [Google Scholar] [CrossRef]
- Longino, A.; Martin, K.; Leyba, K.; Siegel, G.; Gill, E.; Douglas, I.S.; Burke, J. Correlation between the VExUS score and right atrial pressure: A pilot prospective observational study. Crit. Care 2023, 27, 205. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Chergui, K.; Rabiller, A.; Peyrouset, O.; Page, B.; Beauchet, A.; Jardin, F. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004, 30, 1734–1739. [Google Scholar] [CrossRef]
- Feissel, M.; Michard, F.; Faller, J.P.; Teboul, J.L. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004, 30, 1834–1837. [Google Scholar] [CrossRef]
- Spinelli, E.; Scaramuzzo, G.; Slobod, D.; Mauri, T. Understanding cardiopulmonary interactions through esophageal pressure monitoring. Front. Physiol. 2023, 14, 1221829. [Google Scholar] [CrossRef]
- Dam Lyhne, M.; Schmidt Mortensen, C.; Valentin Hansen, J.; Juel Dragsbaek, S.; Nielsen-Kudsk, J.E.; Andersen, A. Effects of mechanical ventilation versus apnea on bi-ventricular pressure-volume loop recording. Physiol. Res. 2022, 71, 103–111. [Google Scholar] [CrossRef]
- Magder, S.; Slobod, D.; Assanangkornchai, N. Right Ventricular Limitation: A Tale of Two Elastances. Am. J. Respir. Crit. Care Med. 2023, 207, 678–692. [Google Scholar] [CrossRef]
- Green, E.M.; Givertz, M.M. Management of acute right ventricular failure in the intensive care unit. Curr. Heart Fail. Rep. 2012, 9, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, M.R. My paper 20 years later: Effect of positive end-expiratory pressure on right ventricular function in humans. Intensive Care Med. 2014, 40, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G.; Goldhaber, S.Z. The Acutely Decompensated Right Ventricle. Chest 2005, 128, 1836–1852. [Google Scholar] [CrossRef] [PubMed]
- Zochios, V.; Wilkinson, J.N. Assessment of Intravascular Fluid Status and Fluid Responsiveness during Mechanical Ventilation in Surgical and Intensive Care Patients. J. Intensive Care Soc. 2011, 12, 295–300. [Google Scholar] [CrossRef]
- Marik, P.E.; Baram, M.; Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008, 134, 172–178. [Google Scholar] [CrossRef]
- Marik, P.E.; Cavallazzi, R. Does the Central Venous Pressure Predict Fluid Responsiveness? An Updated Meta-Analysis and a Plea for Some Common Sense. Crit. Care Med. 2013, 41, 1774–1781. [Google Scholar] [CrossRef]
- Pesenti, A.; Slobod, D.; Magder, S. The forgotten relevance of central venous pressure monitoring. Intensive Care Med. 2023, 49, 868–870. [Google Scholar] [CrossRef]
- National Heart, Lung, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network; Wiedemann, H.P.; Wheeler, A.P.; Bernard, G.R.; Thompson, B.T.; Hayden, D.; de Boisblanc, B.; R Duncan Hite, A.F.C., Jr.; Harabin, A.L. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 2006, 354, 2564–2575. [Google Scholar]
- Mekontso Dessap, A.; Boissier, F.; Charron, C.; Begot, E.; Repesse, X.; Legras, A.; Brun-Buisson, C.; Vignon, P.; Vieillard-Baron, A. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: Prevalence, predictors, and clinical impact. Intensive Care Med. 2016, 42, 862–870. [Google Scholar] [CrossRef]
- Chan, C.M.; Klinger, J.R. The Right Ventricle in Sepsis. Clin. Chest Med. 2008, 29, 661–676. [Google Scholar] [CrossRef]
- Wanner, P.M.; Filipovic, M. The Right Ventricle-You May Forget it, but It Will Not Forget You. J. Clin. Med. 2020, 9, 432. [Google Scholar] [CrossRef] [PubMed]
- Luckner, G.; Mayr, V.D.; Jochberger, S.; Wenzel, V.; Ulmer, H.; Hasibeder, W.R.; Dünser, M.W. Comparison of two dose regimens of arginine vasopressin in advanced vasodilatory shock. Crit. Care Med. 2007, 35, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Ventetuolo, C.E.; Klinger, J.R. Management of acute right ventricular failure in the intensive care unit. Ann. Am. Thorac. Soc. 2014, 11, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.; Doyle, R.; Murphy, D.J.; Hunt, S.A. Right ventricular function in cardiovascular disease, part II: Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008, 117, 1717–1731. [Google Scholar] [CrossRef]
- Tsolaki, V.; Zakynthinos, G.E.; Papanikolaou, J.; Vazgiourakis, V.; Parisi, K.; Fotakopoulos, G.; Makris, D.; Zakynthinos, E. Levosimendan in the Treatment of Patients with Severe Septic Cardiomyopathy. Life 2023, 13, 1346. [Google Scholar] [CrossRef]
- Routsi, C.; Stanopoulos, I.; Kokkoris, S.; Sideris, A.; Zakynthinos, S. Weaning failure of cardiovascular origin: How to suspect, detect and treat-a review of the literature. Ann. Intensive Care 2019, 9, 6. [Google Scholar] [CrossRef]
- Boost, K.A.; Hoegl, S.; Dolfen, A.; Czerwonka, H.; Scheiermann, P.; Zwissler, B.; Hofstetter, C. Inhaled levosimendan reduces mortality and release of proinflammatory mediators in a rat model of experimental ventilator-induced lung injury. Crit. Care Med. 2008, 36, 1873–1879. [Google Scholar] [CrossRef]
- Dzierba, A.L.; Abel, E.E.; Buckley, M.S.; Lat, I. A review of inhaled nitric oxide and aerosolized epoprostenol in acute lung injury or acute respiratory distress syndrome. Pharmacotherapy 2014, 34, 279–290. [Google Scholar] [CrossRef]
- Summerfield, D.T.; Desai, H.; Levitov, A.; Grooms, D.A.; Marik, P.E. Inhaled nitric oxide as salvage therapy in massive pulmonary embolism: A case series. Respir Care 2012, 57, 444–448. [Google Scholar] [CrossRef]
- Sastry, B.K.; Narasimhan, C.; Reddy, N.K.; Raju, B.S. Clinical efficacy of sildenafil in primary pulmonary hypertension: A randomized, placebo-controlled, double-blind, crossover study. J. Am. Coll. Cardiol. 2004, 43, 1149–1153. [Google Scholar] [CrossRef]
- Bhorade, S.; Christenson, J.; O’Connor, M.; Lavoie, A.; Pohlman, A.; Hall, J.B. Response to inhaled nitric oxide in patients with acute right heart syndrome. Am. J. Respir. Crit. Care Med. 1999, 159, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Giglioli, C.; Landi, D.; Cecchi, E.; Chiostri, M.; Gensini, G.F.; Valente, S.; Ciaccheri, M.; Castelli, G.; Romano, S.M. Effects of ULTRAfiltration vs. DIureticS on clinical, biohumoral and haemodynamic variables in patients with deCOmpensated heart failure: The ULTRADISCO study. Eur. J. Heart. Fail. 2011, 13, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, V.; Zakynthinos, G.E.; Mantzarlis, K.; Makris, D. Increased mortality among hypertensive COVID-19 patients: Pay a closer look on diuretics in mechanically ventilated patients. Heart Lung 2020, 49, 894–895. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.M.; Feinstein, J.A.; Reddy, V.M.; Hanley, F.L.; Van Hare, G.F.; Rosenthal, D.N. Electrical resynchronization: A novel therapy for the failing right ventricle. Circulation 2003, 107, 2287–2289. [Google Scholar] [CrossRef]
- Davis, K.; Jr Branson, R.D.; Campbell, R.S.; Porembka, D.T. Comparison of volume control and pressure control ventilation: Is flow waveform the difference? J. Trauma. 1996, 41, 808–814. [Google Scholar] [CrossRef]
- Schmitt, J.M.; Vieillard-Baron, A.; Augarde, R.; Prin, S.; Page, B.; Jardin, F. Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: Impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit. Care Med. 2001, 29, 1154–1158. [Google Scholar] [CrossRef]
- Abraham, E.; Yoshihara, G. Cardiorespiratory effects of pressure controlled ventilation in severe respiratory failure. Chest 1990, 98, 1445–1449. [Google Scholar] [CrossRef]
- Singer, M.; Vermaat, J.; Hall, G.; Latter, G.; Patel, M. Hemodynamic effects of manual hyperinflation in critically ill mechanically ventilated patients. Chest 1994, 106, 1182–1187. [Google Scholar] [CrossRef]
- Duggan, M.; McCaul, C.L.; McNamara, P.J.; Engelberts, D.; Ackerley, C.; Kavanagh, B.P. Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs. Am. J. Respir. Crit. Care Med. 2003, 167, 1633–1640. [Google Scholar] [CrossRef]
- Mekontso Dessap, A.; Voiriot, G.; Zhou, T.; Marcos, E.; Dudek, S.M.; Jacobson, J.R.; Machado, R.; Adnot, S.; Brochard, L.; Maitre, B.; et al. Conflicting physiological and genomic cardiopulmonary effects of recruitment maneuvers in murine acute lung injury. Am. J. Respir. Cell Mol. Biol. 2012, 46, 541–550. [Google Scholar] [CrossRef]
- Mekontso Dessap, A.; Charron, C.; Devaquet, J.; Aboab, J.; Jardin, F.; Brochard, L.; Vieillard-Baron, A. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009, 35, 1850–1858. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Prin, S.; Augarde, R.; Desfonds, P.; Page, B.; Beauchet, A.; Jardin, F. Increasing respiratory rate to improve CO2 clearance during mechanical ventilation is not a panacea in acute respiratory failure. Crit. Care Med. 2002, 30, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
- Vazgiourakis, V.; Zakynthinos, G.E.; Tsolaki, V. Letter by Vazgiourakis et al Regarding Article, “Spectrum of Cardiac Manifestations in COVID-19: A Systematic Echocardiographic Study”. Circulation 2021, 143, e749–e750. [Google Scholar] [CrossRef] [PubMed]
- Orde, S.R.; Behfar, A.; Stalboerger, P.G.; Barros-Gomes, S.; Kane, G.C.; Oh, J.K. Effect of positive end-expiratory pressure on porcine right ventricle function assessed by speckle tracking echocardiography. BMC Anesthesiol. 2015, 15, 49. [Google Scholar] [CrossRef]
- Tsolaki, V.; Zakynthinos, G.E.; Makris, D. The ARDSnet protocol may be detrimental in COVID-19. Crit. Care 2020, 24, 351. [Google Scholar] [CrossRef]
- Tsolaki, V.; Siempos, I.; Magira, E.; Kokkoris, S.; Zakynthinos, G.E.; Zakynthinos, S. PEEP levels in COVID-19 pneumonia. Crit. Care 2020, 24, 303. [Google Scholar] [CrossRef]
- Tsolaki, V.; Zakynthinos, G.E.; Mantzarlis, K. Right ventricular dilation: The additive effect of mechanical ventilation on pulmonary embolism in COVID-19 patients. Thromb. Res. 2020, 196, 25–26. [Google Scholar] [CrossRef]
- Acute Respiratory Distress Syndrome, N.; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar]
- Balanos, G.M.; Talbot, N.P.; Dorrington, K.L.; Robbins, P.A. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J. Appl. Physiol. 2003, 94, 1543–1551. [Google Scholar] [CrossRef]
- Maggiore, S.M.; Lellouche, F.; Pignataro, C.; Girou, E.; Maitre, B.; Richard, J.C.; Lemaire, F.; Brun-Buisson, C.; Brochard, L. Decreasing the adverse effects of endotracheal suctioning during mechanical ventilation by changing practice. Respir. Care 2013, 58, 1588–1597. [Google Scholar] [CrossRef]
- Mentzelopoulos, S.D.; Anninos, H.; Malachias, S.; Zakynthinos, S.G. “Low-” versus “high”-frequency oscillation and right ventricular function in ARDS. A randomized crossover study. J. Intensive Care 2018, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Charron, C.; Caille, V.; Belliard, G.; Page, B.; Jardin, F. Prone positioning unloads the right ventricle in severe ARDS. Chest 2007, 132, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak, M.; Teboul, J.L.; Anguel, N.; Persichini, R.; Silva, S.; Chemla, D.; Richard, C.; Monnet, X. Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2013, 188, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Baka, M.; Bagka, D.; Tsolaki, V.; Zakynthinos, G.E.; Diakaki, C.; Mantzarlis, K.; Makris, D. Hemodynamic and Respiratory Changes following Prone Position in Acute Respiratory Distress Syndrome Patients: A Clinical Study. J. Clin. Med. 2023, 12, 760. [Google Scholar] [CrossRef]
- Rehder, K.J.; Alibrahim, O.S. Mechanical Ventilation during ECMO: Best Practices. Respir Care 2023, 68, 838–845. [Google Scholar] [CrossRef]
- Cammarota, G.; Simonte, R.; Longhini, F.; Spadaro, S.; Vetrugno, L.; De Robertis, E. Advanced Point-of-care Bedside Monitoring for Acute Respiratory Failure. Anesthesiology 2023, 138, 317–334. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; DeVore, A.D.; Sun, J.L.; Barnett, A.S.; Samsky, M.D.; Shaw, L.K.; Chiswell, K.; Patel, C.B.; Patel, M.R. The impact of a failing right heart in patients supported by intra-aortic balloon counterpulsation. Eur. Heart J. Acute Cardiovasc. Care. 2017, 6, 709–718. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- Del Sorbo, L.; Cypel, M.; Fan, E. Extracorporeal life support for adults with severe acute respiratory failure. Lancet Respir. Med. 2014, 2, 154–164. [Google Scholar] [CrossRef]
- Reis Miranda, D.; van Thiel, R.; Brodie, D.; Bakker, J. Right ventricular unloading after initiation of venovenous extracorporeal membrane oxygenation. Am. J. Respir. Crit. Care Med. 2015, 191, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, V.; Hockings, L.E.; Davies, A. Veno-arterial extracorporeal membrane oxygenation for adult cardiovascular failure. Curr. Opin. Crit. Care 2014, 20, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, V.; Zakynthinos, G.E. RV dysfunction in COVID-19 ARDS: Is there a difference in the impact of mechanical ventilation and ECMO? Int. J. Cardiol. 2021, 330, 273. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Bailey, M.; Kelly, J.; Hodgson, C.; Cooper, D.J.; Scheinkestel, C.; Pellegrino, V.; Bellomo, R.; Pilcher, D. Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation. Intensive Care Med. 2014, 40, 1256–1266. [Google Scholar] [CrossRef]
- Choi, S.W.; Nam, K.W. Venous pressure regulation during pulsatile extracorporeal life support. Artif. Organs 2008, 32, 822–827. [Google Scholar] [CrossRef]
- Bhatia, M.; Jia, S.; Smeltz, A.; Kumar, P.A. Right Heart Failure Management: Focus on Mechanical Support Options. J. Cardiothorac. Vasc. Anesth. 2022, 36, 3278–3288. [Google Scholar] [CrossRef]
- Spinelli, E.; Giani, M.; Slobod, D.; Pavlovsky, B.; di Pierro, M.; Crotti, S.; Lissoni, A.; Foti, G.; Grasselli, G.; Mauri, T. Physiologic Effects of Extracorporeal Membrane Oxygenation in Patients with Severe Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2024, 210, 629–638. [Google Scholar] [CrossRef]
- Zochios, V.; Nasa, P.; Yusuff, H.; Schultz, M.J.; Antonini, M.V.; Duggal, A.; Dugar, S.; Ramanathan, K.; Shekar, K.; Schmidt, M. Definition and management of right ventricular injury in adult patients receiving extracorporeal membrane oxygenation for respiratory support using the Delphi method: A PRORVnet study. Expert position statements. Intensive Care Med. 2024, 50, 1411–1425. [Google Scholar] [CrossRef]
- Villablanca, P.A.; Fadel, R.A.; Giustino, G.; Jabri, A.; Basir, M.B.; Cowger, J.; Alaswad, K.; O’Neill, B.; Gonzalez, P.E.; Gyzm, G.G.; et al. Hemodynamic Effects and Clinical Outcomes of Left Atrial Veno-Arterial Extracorporeal Membrane Oxygenation (LAVA-ECMO) in Cardiogenic Shock. Am. J. Cardiol. 2024, 236, 79–85. [Google Scholar] [CrossRef]
- Kapur, N.K.; Esposito, M.L.; Bader, Y.; Morine, K.J.; Kiernan, M.S.; Pham, D.T.; Burkhoff, D. Mechanical Circulatory Support Devices for Acute Right Ventricular Failure. Circulation 2017, 136, 314–326. [Google Scholar] [CrossRef]
- Coromilas, E.J.; Takeda, K.; Ando, M.; Cevasco, M.; Green, P.; Karmpaliotis, D.; Kirtane, A.; Topkara, V.K.; Yuzefpolskaya, M.; Takayama, H.; et al. Comparison of Percutaneous and Surgical Right Ventricular Assist Device Support After Durable Left Ventricular Assist Device Insertion. J. Card. Fail. 2019, 25, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.B.; Goldstein, J.; Milano, C.; Morris, L.D.; Kormos, R.L.; Bhama, J.; Kapur, N.K.; Bansal, A.; Garcia, J.; Baker, J.N.; et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J. Heart Lung Transplant. 2015, 34, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Kumar Bhatia, N.; Dickert, N.W.; Samady, H.; Babaliaros, V. The use of hemodynamic support in massive pulmonary embolism. Catheter. Cardiovasc. Interv. 2017, 90, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Shokr, M.; Rashed, A.; Mostafa, A.; Mohamad, T.; Schreiber, T.; Elder, M.; Kaki, A. Impella RP Support and Catheter-Directed Thrombolysis to Treat Right Ventricular Failure Caused by Pulmonary Embolism in 2 Patients. Tex. Heart Inst. J. 2018, 45, 182–185. [Google Scholar] [CrossRef]
- Jahngir, M.U.; Nabizadeh-Eraghi, P. Use of Right Ventricular Assisted Device for Right Heart Failure in a Patient with Acute Respiratory Distress Syndrome. Cureus 2021, 13, e17671. [Google Scholar] [CrossRef]
- Kapur, N.K.; Paruchuri, V.; Jagannathan, A.; Steinberg, D.; Chakrabarti, A.K.; Pinto, D.; Aghili, N.; Najjar, S.; Finley, J.; Orr, N.M.; et al. Mechanical circulatory support for right ventricular failure. JACC Heart Fail. 2013, 1, 127–134. [Google Scholar] [CrossRef]
- Maybauer, M.O.; Capoccia, M.; Maybauer, D.M.; Lorusso, R.; Swol, J.; Brewer, J.M. The ProtekDuo in ECMO configuration for ARDS secondary to COVID-19: A systematic review. Int. J. Artif. Organs 2023, 46, 93–98. [Google Scholar] [CrossRef]
- Bagate, F.; Masi, P.; Boukantar, M.; Radu, C.; Saiydoun, G.; Fiore, A.; Chiaroni, P.-M.; Teiger, E.; Folliguet, T.; Gallet, R.; et al. Refractory cor pulmonale under extracorporeal membrane oxygenation for acute respiratory distress syndrome: The role of conversion to veno-pulmonary arterial assist-a case series. Front. Med. 2024, 11, 1348077. [Google Scholar] [CrossRef]
- Capoccia, M.; Brewer, J.M.; Rackauskas, M.; Becker, T.K.; Maybauer, D.M.; Stukov, Y.; Lorusso, R.; Maybauer, M.O. Outcome of Veno-Pulmonary Extracorporeal Life Support in Lung Transplantation Using ProtekDuo Cannula: A Systematic Review and Description of Configurations. J. Clin. Med. 2024, 13, 4111. [Google Scholar] [CrossRef]
- Volfson, B.; Balabanoff Acosta, C.S.; Louro, J. Use of single-cannula extracorporeal membrane oxygenation in the pulmonary artery to provide right heart support during respiratory failure in a drowning victim. Int. J. Crit. Illn. Inj. Sci. 2021, 11, 102–105. [Google Scholar] [CrossRef]
- Cain, M.T.; Smith, N.J.; Barash, M.; Simpson, P.; Durham, L.A.; Makker, H., 3rd; Roberts, C.; Falcucci, O.; Wang, D.; Walker, R.; et al. Extracorporeal Membrane Oxygenation with Right Ventricular Assist Device for COVID-19 ARDS. J. Surg. Res. 2021, 264, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Ogawa, K.; Nishimura, K.; Osawa, S.; Ohwada, H.; Yokobori, S. Machine learning for predicting successful extubation in patients receiving mechanical ventilation. Front. Med. 2022, 9, 961252. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.; Cheng, S. Revival and Revision of Right Ventricular Assessment by Machine Learning. JACC Cardiovasc. Imaging 2022, 15, 780–782. [Google Scholar] [CrossRef] [PubMed]
Pressure Type | Normal Ventilation (Negative Pressure Ventilation | Mechanical Ventilation (Possitive Pressure Ventilation) |
---|---|---|
Pleural Pressure (Ppl) | − | +/− |
Alveolar Pressure (Palv) | − | + |
Airway Pressure (Paw) | − | + |
Transpulmonary Pressure (TTP) | +/− | + |
ECHO Parameter | Easy to Calculate | Reflects RV Function Well | Sensitive for Early Detection | Independent of Geometric Assumption | Operator Dependent | Requires Good Image Quality | Non-Invasive | Useful in Emergency Settings | Applicability in Critical Illness | Load Dependence |
---|---|---|---|---|---|---|---|---|---|---|
RVEDA/LVEDA Ratio | + | − | − | − | − | + | + | + | + | − |
RV Fractional Area Change (RVFAC) | + | + | − | + | − | + | + | + | + | + |
TAPSE | + | + | − | − | + | + | + | + | + | + |
RV S′ | − | + | − | − | + | + | + | + | + | + |
RV Longitudinal Strain (RV-LS) | − | + | + | − | + | − | + | − | + | − |
RVOT Velocity–Time Integral (RVOTVTI) | − | + | + | − | − | + | + | + | + | − |
3D Echocardiography of RVEF | − | + | + | + | + | − | − | − | + | − |
Tricuspid Regurgitation (TR) Assessment | + | + | + | − | − | + | + | + | + | + |
Inferior Vena Cava (IVC) Size and Flow | + | − | − | + | − | + | + | + | + | + |
RV-PA Coupling (FACRV/RVSP, TAPSE/RVSP) | − | + | + | − | − | − | + | − | + | + |
RV Load–Adaptation Index (LAIRV) | + | + | + | + | − | + | + | + | + | + |
Venous Excess Ultrasound Score (VEXUS) | + | + | - | - | - | + | + | + | + | - |
Aspect | Key Indicators/Diagnostic Approaches | Details |
---|---|---|
Clinical Presentation | Symptoms of Acute RHF | Increased oxygen demands, cardiovascular collapse, arrhythmias, elevated jugular venous pressure, gallop rhythm, systolic murmur, organomegaly, deep venous thrombosis (especially in venous thromboembolism-related RHF), persistent weaning failure from mechanical ventilation, mismatch between right ventricular dysfunction and ventilatory support, especially with left ventricular dysfunction |
Chest X-ray (CXR) | Radiological Findings | Enlarged main pulmonary artery, regional oligemia (in massive pulmonary embolism); CXR mainly used to exclude conditions mimicking RHF (e.g., pleural effusions, atelectasis, pulmonary edema, pneumothorax) |
Electrocardiogram (ECG) | ECG Indicators of RHF | Qr pattern in lead V1, right bundle branch block (R duration > 100 ms in V1), T wave inversions (V1–V4), S1Q3T3 pattern, acute Q waves in V1–V3 or right-sided Q waves in V3R–V6R (suggesting right ventricular infarction) Though specific, ECG has limited sensitivity for diagnosing RHF |
Hemodynamic Monitoring (Pulse Pressure Variation, PPV) | Monitoring Fluid Responsiveness | PPV helps assess preload dependence and fluid responsiveness, especially in ARDS; high PPV (>12–13%) suggests fluid responsiveness; tidal volume challenge and PEEP changes can enhance predictive accuracy; PPV is less reliable with low lung compliance or spontaneous breathing |
Central Venous Catheter (CVC) | CVP Monitoring for RV Function | CVP trends provide insights into RV function and fluid responsiveness; rapid rise in CVP during volume loading without stroke volume improvement suggests right heart dysfunction; limited accuracy in conditions like pulmonary hypertension and when pleural pressure is elevated |
Echocardiography (ECHO) | Evaluation of RV and LV Function | Non-invasive assessment of RV size, function, and pulmonary vascular resistance; key techniques include measuring RV end-diastolic area (RVEDA), right ventricular fractional area change (RVFAC), tricuspid annular plane systolic excursion (TAPSE), RV longitudinal strain (RV-LS), and RV-PA coupling (TAPSE/PASP ratio) |
Advanced Echocardiography | Advanced Imaging Techniques | 3D echocardiography provides volumetric assessment for LV systolic function; RV-LS via 2D speckle tracking echocardiography (STE) is sensitive for early detection of RV dysfunction, even with normal RV ejection fraction TAPSE/PASP ratio correlates with outcomes |
Fluid Responsiveness and Volume Status | Inferior and Superior Vena Cava (IVC/SVC) | SVC collapsibility > 36% and IVC collapsibility > 12% are useful for predicting fluid responsiveness in mechanically ventilated patients |
Pulmonary Artery Catheter (PAC) | Advanced Hemodynamic Monitoring | PAC helps estimate true LV filling pressures, pulmonary artery pressures (PAP), pulmonary vascular resistances, and mixed venous oxygen saturation (SvO2); valuable for monitoring RV dysfunction, particularly in severe ARDS, and evaluating responses to therapy |
Monitoring in ARDS and RV Dysfunction | Monitoring RV Function in ARDS | Use of PAC and CVC, alongside PPV, is essential for assessing fluid responsiveness and RV function in patients with ARDS; elevated CVP relative to PAOP may indicate RV failure |
Aspect | Details |
---|---|
Fluid Therapy |
|
Pharmaceutical Treatment | |
Vasopressors |
|
Inotropes |
|
Vasodilators |
|
Diuretics | Use in RV overload, but may cause cardio-renal syndrome; CVVH may be more beneficial than diuretics in patients resistant to them |
Ventilation Strategies | |
Rhythm Control |
|
PEEP and Lung Recruitment |
|
Pulmonary Vasoconstriction |
|
PEEP Optimization and RV Afterload |
|
Individualized PEEP Settings | PEEP settings should be personalized based on factors like lung compliance, functional residual capacity, PaCO2, RV function, and systolic pulmonary artery pressure (via tricuspid regurgitation)
|
Prone Positioning and RV Function |
|
PEEP and Left Ventricular Function |
|
Mechanical Circulatory Support (MCS) (Figure 3) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakynthinos, G.E.; Tsolaki, V.; Mantzarlis, K.; Xanthopoulos, A.; Oikonomou, E.; Kalogeras, K.; Siasos, G.; Vavuranakis, M.; Makris, D.; Zakynthinos, E. Navigating Heart–Lung Interactions in Mechanical Ventilation: Pathophysiology, Diagnosis, and Advanced Management Strategies in Acute Respiratory Distress Syndrome and Beyond. J. Clin. Med. 2024, 13, 7788. https://doi.org/10.3390/jcm13247788
Zakynthinos GE, Tsolaki V, Mantzarlis K, Xanthopoulos A, Oikonomou E, Kalogeras K, Siasos G, Vavuranakis M, Makris D, Zakynthinos E. Navigating Heart–Lung Interactions in Mechanical Ventilation: Pathophysiology, Diagnosis, and Advanced Management Strategies in Acute Respiratory Distress Syndrome and Beyond. Journal of Clinical Medicine. 2024; 13(24):7788. https://doi.org/10.3390/jcm13247788
Chicago/Turabian StyleZakynthinos, George E., Vasiliki Tsolaki, Kostantinos Mantzarlis, Andrew Xanthopoulos, Evangelos Oikonomou, Konstantinos Kalogeras, Gerasimos Siasos, Manolis Vavuranakis, Demosthenes Makris, and Epaminondas Zakynthinos. 2024. "Navigating Heart–Lung Interactions in Mechanical Ventilation: Pathophysiology, Diagnosis, and Advanced Management Strategies in Acute Respiratory Distress Syndrome and Beyond" Journal of Clinical Medicine 13, no. 24: 7788. https://doi.org/10.3390/jcm13247788
APA StyleZakynthinos, G. E., Tsolaki, V., Mantzarlis, K., Xanthopoulos, A., Oikonomou, E., Kalogeras, K., Siasos, G., Vavuranakis, M., Makris, D., & Zakynthinos, E. (2024). Navigating Heart–Lung Interactions in Mechanical Ventilation: Pathophysiology, Diagnosis, and Advanced Management Strategies in Acute Respiratory Distress Syndrome and Beyond. Journal of Clinical Medicine, 13(24), 7788. https://doi.org/10.3390/jcm13247788