His108Arg Transthyretin Amyloidosis—Shedding Light on a Distinctively Malignant Variant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Diagnosis of Cardiac Amyloidosis
2.3. Genetic Testing and Family Screening
2.4. Clinical Work-Up and Standard of Care
2.5. Definition of Outcomes
2.6. Statistical Analysis
3. Results
3.1. Patient Population and Mode of Diagnosis
3.2. Patient Characteristics at the Time of Clinical Diagnosis
3.3. Manifestations of Heart Failure and Structural Cardiac Changes at Baseline and Follow-Up
3.4. Follow-Up of Arrhythmias
3.5. Medical Management and TTR-Specific Treatment Regimens
3.6. Patient Outcomes
3.7. Phenotype-Negative His108Arg Mutation Carriers
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhen, D.B.; Swiecicki, P.L.; Zeldenrust, S.R.; Dispenzieri, A.; Mauermann, M.L.; Gertz, M.A. Frequencies and geographic distributions of genetic mutations in transthyretin- and non-transthyretin-related familial amyloidosis. Clin. Genet. 2015, 88, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.; Coelho, T.; Dispenzieri, A.; Conceição, I.; Waddington-Cruz, M.; Kristen, A.; Wixner, J.; Diemberger, I.; Gonzalez-Moreno, J.; Cariou, E.; et al. A 15-year consolidated overview of data in over 6000 patients from the Transthyretin Amyloidosis Outcomes Survey (THAOS). Orphanet J. Rare Dis. 2023, 18, 350. [Google Scholar] [CrossRef] [PubMed]
- Auer-Grumbach, M.; Rettl, R.; Ablasser, K.; Agis, H.; Beetz, C.; Duca, F.; Gattermeier, M.; Glaser, F.; Hacker, M.; Kain, R.; et al. Hereditary ATTR Amyloidosis in Austria: Prevalence and Epidemiological Hot Spots. J. Clin. Med. 2020, 9, 2234. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Koh, J.S.; Saini, M.; Tay, K.S.S.; Jayne Tan, Y.; Chai, J.Y.H.; Fam, S.R.; Juraidah, A.; Lim, P.K.; Ng, A.S.L.; et al. Hereditary Transthyretin Amyloidosis- Clinical and Genetic Characteristics of a Multiracial South-East Asian Cohort in Singapore. J. Neuromuscul. Dis. 2021, 8, 723–733. [Google Scholar] [CrossRef]
- Hellman, U.; Lundgren, H.-E.; Westermark, P.; Stafberg, C.; Nahi, H.; Tachlinski, S.; Guggi, M.; Flogegård, M.; Hamid, M.; Escher, S.A.; et al. A genealogical and clinical study of the phenotypical variation within the Swedish transthyretin His88Arg (p. His108Arg) amyloidosis family. Eur. J. Med. Genet. 2015, 58, 211–215. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Ruberg, F.L.; Ambardekar, A.V.; Brannagan, T.H.; Cheng, R.K.; Clarke, J.O.; Dember, L.M.; Frantz, J.G.; Hershberger, R.E.; Maurer, M.S.; et al. 2023 ACC Expert Consensus Decision Pathway on Comprehensive Multidisciplinary Care for the Patient with Cardiac Amyloidosis. Circ. 2023, 81, 1076–1126. [Google Scholar] [CrossRef]
- Dorbala, S. Expanding indications for non-biopsy diagnosis of transthyretin amyloid cardiomyopathy. Eur. Heart J. 2023, 44, 2199–2201. [Google Scholar] [CrossRef]
- Nitsche, C.; Aschauer, S.; Kammerlander, A.A.; Schneider, M.; Poschner, T.; Duca, F.; Binder, C.; Koschutnik, M.; Stiftinger, J.; Goliasch, G.; et al. Light-chain and transthyretin cardiac amyloidosis in severe aortic stenosis: Prevalence, screening possibilities, and outcome. Eur. J. Heart Fail. 2020, 22, 1852–1862. [Google Scholar] [CrossRef]
- Duca, F.; Kammerlander, A.A.; Zotter-Tufaro, C.; Aschauer, S.; Schwaiger, M.L.; Marzluf, B.A.; Bonderman, D.; Mascherbauer, J. Interstitial Fibrosis, Functional Status, and Outcomes in Heart Failure with Preserved Ejection Fraction: Insights from a Prospective Cardiac Magnetic Resonance Imaging Study. Circ. Cardiovasc. Imaging 2016, 9, e005277. [Google Scholar] [CrossRef]
- Duca, F.; Rettl, R.; Kronberger, C.; Binder, C.; Mann, C.; Dusik, F.; Schrutka, L.; Dalos, D.; Öztürk, B.; Dachs, T.M.; et al. Myocardial structural and functional changes in cardiac amyloidosis: Insights from a prospective observational patient registry. Eur. Heart J.-Cardiovasc. Imaging 2023, 25, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Holt, M.F.; Flø, A.; Ravnestad, H.; Bjørnø, V.; Gullestad, L.; Andreassen, A.K.; Broch, K.; Gude, E. Invasive haemodynamics at rest and exercise in cardiac amyloidosis. ESC Heart Fail. 2023, 11, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Nakamura, K.; Ito, H. Molecular Mechanisms of Cardiac Amyloidosis. Int. J. Mol. Sci. 2021, 23, 25. [Google Scholar] [CrossRef]
- Nicol, M.; Deney, A.; Lairez, O.; Vergaro, G.; Emdin, M.; Carecci, A.; Inamo, J.; Montfort, A.; Neviere, R.; Damy, T.; et al. Prognostic value of cardiopulmonary exercise testing in cardiac amyloidosis. Eur. J. Heart Fail. 2020, 23, 231–239. [Google Scholar] [CrossRef]
- Bhutani, D.; Pan, S.; Latif, F.; Goldsmith, R.L.; Saith, S.E.; Mapara, M.Y.; Chakraborty, R.; Lentzsch, S.; Maurer, M.S. Cardiopulmonary exercise testing in patients with Cardiac Amyloidosis. Clin. Lymphoma Myeloma Leuk. 2021, 21, 545–548. [Google Scholar] [CrossRef]
- Binder, C.; Duca, F.; Stelzer, P.D.; Nitsche, C.; Rettl, R.; Aschauer, S.; A Kammerlander, A.; Binder, T.; Agis, H.; Kain, R.; et al. Mechanisms of heart failure in transthyretin vs. light chain amyloidosis. Eur. Heart J.-Cardiovasc. Imaging 2019, 20, 512–524. [Google Scholar] [CrossRef]
- Arvidsson, S.; Henein, M.Y.; Wikström, G.; Suhr, O.B.; Lindqvist, P. Right ventricular involvement in transthyretin amyloidosis. Amyloid 2018, 25, 160–166. [Google Scholar] [CrossRef]
- Tana, M.; Tana, C.; Palmiero, G.; Mantini, C.; Coppola, M.G.; Limongelli, G.; Schiavone, C.; Porreca, E. Imaging findings of right cardiac amyloidosis: Impact on prognosis and clinical course. J. Ultrasound 2023, 26, 605–614. [Google Scholar] [CrossRef]
- Sanchis, K.; Cariou, E.; Colombat, M.; Ribes, D.; Huart, A.; Cintas, P.; Fournier, P.; Rollin, A.; Carrié, D.; Galinier, M.; et al. Atrial fibrillation and subtype of atrial fibrillation in cardiac amyloidosis: Clinical and echocardiographic features, impact on mortality. Amyloid 2019, 26, 128–138. [Google Scholar] [CrossRef]
- Longhi, S.; Quarta, C.C.; Milandri, A.; Lorenzini, M.; Gagliardi, C.; Manuzzi, L.; Bacchi-Reggiani, M.L.; Leone, O.; Ferlini, A.; Russo, A.; et al. Atrial fibrillation in amyloidotic cardiomyopathy: Prevalence, incidence, risk factors and prognostic role. Amyloid 2015, 22, 147–155. [Google Scholar] [CrossRef]
- Vergaro, G.; Aimo, A.; Rapezzi, C.; Castiglione, V.; Fabiani, I.; Pucci, A.; Buda, G.; Passino, C.; Lupón, J.; Bayes-Genis, A.; et al. Atrial amyloidosis: Mechanisms and clinical manifestations. Eur. J. Heart Fail. 2022, 24, 2019–2028. [Google Scholar] [CrossRef] [PubMed]
- Bandera, F.; Martone, R.; Chacko, L.; Ganesananthan, S.; Gilbertson, J.A.; Ponticos, M.; Lane, T.; Martinez-Naharro, A.; Whelan, C.; Quarta, C.; et al. Clinical Importance of Left Atrial Infiltration in Cardiac Transthyretin Amyloidosis. JACC Cardiovasc. Imaging 2022, 15, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.P.; Sperry, B.W.; Gabrovsek, A.; Ikram, A.; Tang, W.W.; Estep, J.; Hanna, M. Digoxin Use in Cardiac Amyloidosis. Am. J. Cardiol. 2020, 133, 134–138. [Google Scholar] [CrossRef]
- Rubinow, A.; Skinner, M.; Cohen, A.S. Digoxin sensitivity in amyloid cardiomyopathy. Circulation 1981, 63, 1285–1288. [Google Scholar] [CrossRef]
- Donnellan, E.; Wazni, O.M.; Hanna, M.; Elshazly, M.B.; Puri, R.; Saliba, W.; Kanj, M.; Vakamudi, S.; Patel, D.R.; Baranowski, B.; et al. Atrial Fibrillation in Transthyretin Cardiac Amyloidosis. JACC Clin. Electrophysiol. 2020, 6, 1118–1127. [Google Scholar] [CrossRef]
- Dale, Z.; Al-Rashdan, L.; Elman, M.; Chandrashekar, P.; Heitner, S.B.; Nazer, B.; Masri, A. Mode of death and outcomes of implantable cardioverter defibrillators in transthyretin amyloid cardiomyopathy. Int. J. Cardiol. 2021, 349, 99–102. [Google Scholar] [CrossRef]
- Donnellan, E.; Wazni, O.M.; Hanna, M.; Saliba, W.; Jaber, W.; Kanj, M. Primary prevention implantable cardioverter-defibrillators in transthyretin cardiac amyloidosis. Pacing Clin. Electrophysiol. 2020, 43, 1401–1403. [Google Scholar] [CrossRef]
- Ericzon, B.G.; Wilczek, H.E.; Larsson, M.; Wijayatunga, P.; Stangou, A.; Pena, J.R.; Furtado, E.; Barroso, E.; Daniel, J.; Samuel, D.; et al. Liver Transplantation for Hereditary Transthyretin Amyloidosis: After 20 Years Still the Best Therapeutic Alternative? Transplantation 2015, 99, 1847–1854. [Google Scholar] [CrossRef]
- El Helou, M.C.; Jacob, M.; James, K.; Martyn, T.; Mountis, M.; Taimeh, Z.; Tang, W.; Brozzi, N.; Sheffield, C.; Soltesz, E.; et al. Heart Transplant in Transthyretin Cardiac Amyloidosis: A Single-Center Experience. J. Heart Lung Transplant. 2024, 43, S225. [Google Scholar] [CrossRef]
- Sabatino, M.; Potena, L.; Longhi, S.; Masetti, M.; Gagliardi, C.; Milandri, A.; Manfredini, V.; Cinelli, M.; Marinelli, G.; Pinna, A.; et al. Outcomes of Heart Transplantation for Transthyretin-Related Amyloid Cardiomyopathy. J. Heart Lung Transplant. 2016, 35, S63–S64. [Google Scholar] [CrossRef]
- Rocha, A.; Lobato, L. Reply: Liver transplantation in transthyretin amyloidosis: Issues and challenges. Liver Transplant. 2015; online ahead of print. [Google Scholar] [CrossRef]
- Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018, 379, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Judge, D.P.; Cappelli, F.; Fontana, M.; Garcia-Pavia, P.; Gibbs, S.; Grogan, M.; Hanna, M.; Hoffman, J.; Masri, A.; et al. Efficacy and Safety of Acoramidis in Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2024, 390, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Kale, P.; Fontana, M.; Berk, J.L.; Grogan, M.; Gustafsson, F.; Hung, R.R.; Gottlieb, R.L.; Damy, T.; González-Duarte, A.; et al. Patisiran Treatment in Patients with Transthyretin Cardiac Amyloidosis. N. Engl. J. Med. 2023, 389, 1553–1565. [Google Scholar] [CrossRef]
- Dasgupta, N.R.; Rissing, S.M.; Smith, J.; Jung, J.; Benson, M.D. Inotersen therapy of transthyretin amyloid cardiomyopathy. Amyloid 2019, 27, 52–58. [Google Scholar] [CrossRef]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef]
- Coelho, T.; Conceição, I.; Waddington-Cruz, M.; Keohane, D.; Sultan, M.B.; Chapman, D.; Amass, L.; On behalf of the THAOS investigators. A natural history analysis of asymptomatic TTR gene carriers as they develop symptomatic transthyretin amyloidosis in the Transthyretin Amyloidosis Outcomes Survey (THAOS). Amyloid 2022, 29, 228–236. [Google Scholar] [CrossRef]
Demographic Variables and Clinical History | |
Female | 4 (33.3) |
Age at time of diagnosis, years | 62.3 (58.6–65.5) |
Non-biopsy diagnosis | 8 (66.7) |
Comorbidities | |
Arterial hypertension | 9 (75.0) |
Diabetes mellitus | 1 (8.3) |
Atrial fibrillation | 4 (36.4) |
Coronary artery disease | 1 (8.3) |
Polyneuropathy | 5 (41.7) |
Concomitant medication | |
Betablockers | 4 (33.3) |
ACEi/ARB/ARNI | 7 (58.3) |
MRA | 8 (66.7) |
SGLT-2 inhibitor | 2 (16.7) |
Baseline (V1) (n = 12) | 1-Year Follow-Up (V3) (n = 8) | 2-Year Follow-Up (V4) (n = 7) | 3-Year Follow-Up (V5) (n = 5) | 4-Year Follow-Up (V6) (n = 7) | Z-Score ** | p-Value ** | |
---|---|---|---|---|---|---|---|
Time from diagnosis to baseline visit, months | 0.0 (0.0–2.4) | 15.2 (14.1–17.8) | 25.2 (20.6–26.8) | 39.1 (38.1–39.7) | 46.4 (43.2–52.0) | - | - |
Body weight, kg | 79.0 (70.0–122.0) | 78.0 (75.0–110.0) | 73.5 (66.0–118.0) | 77.0 (63.0–125.0) | 75.0 (64.0–101.0) | −1.40 | 0.161 |
NYHA class | |||||||
Class I | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | - | - |
Class II | 6 (54.5) | 4 (50.0) | 4 (57.1) | 1 (20.0) | 3 (42.9) | - | - |
Class III | 5 (45.5) | 3 (37.5) | 3 (42.9) | 3 (60.0) | 4 (57.1) | - | - |
Class IV | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (20.0) | 0 (0.0) | - | - |
6-MWD, m | 407 (357–425) | 441 (269–561) | 398 (287–550) | 360 (164–475) | 475 (268–507) | −1.60 | 0.109 |
Systolic BP, mmHg | 115 (110–120) | 123 (114–135) | 125 (105–130) | 115 (108–125) | 110 (97–120) | −1.19 | 0.236 |
Diastolic BP, mmHg | 77 (70–80) | 76 (74–80) | 80 (70–85) | 73 (65–78) | 70 (65–80) | −1.07 | 0.286 |
Heart rate, bpm | 75 (72–87) | 90 (85–99) | 83 (80–86) | 65 (63–76) | 69 (66–71) | −0.27 | 0.786 |
Loop diuretic dose/d, mg | 30 (0–80) | 20 (0–160) | 60 (40–80) | 60 (40–160 | 40 (40–160) | 1.80 | 0.073 |
Laboratory parameters | |||||||
NT-pro BNP pg/mL | 2033 (1278–3572) | 1695 (1343–3676) | 2366 (1979–3967) | 3523 (3232–3606) | 3183 (2136–5702) | 2.76 | 0.006 |
Troponin T, ng/L | 53 (28–82) | 71 (45–79) | 60 (40–80) | 67 (49–68) | 69 (40–102) | 1.21 | 0.225 |
Serum creatinine, mg/dl | 0.99 (0.72–1.12) | 1.26 (0.76–1.50) | 0.98 (0.79–1.21) | 1.48 (1.01–1.83) | 1.29 (0.88–1.59) | 2.85 | 0.004 |
Echocardiography | |||||||
LVEDD, mm | 44 (40–47) | 41 (39–43) | 39 (39–47) | 48 (42–54) | 40 (31–45) | −1.96 | 0.050 |
LVEDV, ml | 79 (70–105) | 75 (59–115) | 81 (69–128) | 75 (65–97) | 75 (41–112) | −1.02 | 0.307 |
IVS, mm | 21 (18–26) | 22 (19–23) | 21 (16–21) | 23 (21–23) | 22 (18–25) | 2.02 | 0.043 |
PWT, mm | 18 (17–22) | 19 (19–22) | 18 (16–20) | 20 (16–22) | 18 (17–25) | 0.211 | 0.833 |
LV mass, g | 410 (356–490) | 373 (345–427) | 361 (265–462) | 523 (388–600) | 418 (249–524) | −0.420 | 0.674 |
LVEF, % | 48 (37–61) | 58 (41–63) | 44 (42–48) | 52 (28–56) | 40 (38–67) | −0.45 | 0.656 |
LV-GLS, -% | 11.7 (13.5–10.0) | 10.9 (14.0–7.0) | 11.0 (11.0–8.0) | 10.6 (13.7–8.7) | 6.8 (8.0–5.6) | 2.94 | 0.003 |
LA volume, mL | 74 (55–124) | 95 (49–115) | 103 (69–119) | 100 (91–101) | 75 (63–113) | −5.3 | 0.594 |
Max. E-velocity, m/s | 0.99 (0.90–1.2) | 1.17 (1.00–1.35) | 0.95 (0.79–1.2) | 0.90 (0.71–1.28) | 0.88 (0.70–1.09) | −0.561 | 0.575 |
Lateral e’, m/s | 0.06 (0.05–0.09) | 0.05 (0.05–0.05) | 0.07 (0.06–0.07) | 0.10 (0.10–0.10) | 0.04 (0.04–0.04) | 0.447 | 0.655 |
E/e’ | 18.4 (9.6–21.5) | 21.5 (20.0–23.0) | 13.4 (13.2–18.0) | 7.6 (7.6–7.6)) | 27.3 (27.3–27.3) | −0.54 | 0.593 |
RVEDD, mm | 35 (28–37) | 36 (32–40) | 36 (34–37) | 38 (34–42) | 36 (32–37) | 0.05 | 0.959 |
TAPSE, mm | 16 (11–21) | 17 (12–20) | 14 (13.19) | 17 (16–19) | 16 (13–19) | −2.28 | 0.201 |
RV-TDI, m/s | 0.12 (0.08–0.13) | 0.05 (0.08–0.12) | 0.09 (0.08–0.14) | 0.10 (0.09–0.11) | 0.12 (0.07–0.14) | −0.635 | 0.526 |
MR-grade * | 1.3 (1.0–2.0) | 1.5 (1.0–2.0) | 1.5 (1.5–2.0) | 1.5 (1.0–2.0) | 1.5 (1.0–3.0) | −0.14 | 0.890 |
TR-grade * | 0.8 (0.5–1.8) | 1.0 (1.0–1.5) | 2.0 (1.5–2.0) | 3.0 (1.5–3.0) | 2.0 (1.0–3.0) | 2.39 | 0.017 |
sPAP, mmHg | 45 (33–52) | 48 (37–53) | 43 (30–53) | 48 (37–48) | 42 (35–58) | −0.24 | 0.799 |
Cardiac magnetic resonance | |||||||
LVEDV, mL | 176 (157–241) | 128 (81–174) | 174 (166–181) | --- | 199 (199–199) | 1.00 | 0.317 |
LVEF, % | 53 (47–59) | 46 (32–60) | 52 (35–69) | --- | 34 (34–34) | −1.00 | 0.317 |
RVEDV, mL | 200 (155–264) | 202 (174–230) | 217 (193–241) | --- | 241 (241–241) | 1.00 | 0.317 |
RVEF, % | 49 (43–51) | 44 (31–56) | 47 (33–61) | --- | 34 (34–34) | −1.00 | 0.317 |
ECV, % | 68.4 (43.5–69.9) | 68.4 (57.8–79.0) | 62.9 (47.0–78.8) | --- | 78.2 (78.2–78.2) | 1.34 | 0.180 |
Type of CIED | Indication | Time from Diagnosis to Implantation | Number of ICD Shocks | Follow-Up Time | |
---|---|---|---|---|---|
Patient 1 | Single-chamber ICD | Primary prophylaxis | 22 months | Appropriate: 3 Inappropriate: 1 | 102 months |
Patient 2 | Dual-chamber PM | Third-degree AV-Block after cardiac transplant | 93 months | --- | 100 months |
Patient 3 | Subcutaneous ICD | Primary prophylaxis | 20 months | Appropriate: 3 Inappropriate: 0 | 49 months |
Patient 4 | CRT-D | Sick-sinus syndrome and primary prophylaxis (LVEF < 35% and LBBB) | 7 months prior to ATTR diagnosis | Appropriate: 0 Inappropriate: 0 | 76 months |
Patient 5 | CRT-D | Bradycardic AF and primary prophylaxis (LVEF < 35%, LBBB) | 65 months | Appropriate: 0 Inappropriate: 0 | 82 months |
Patient 6 | Single-chamber ICD --- CRT-D upgrade | Primary prophylaxis --- High-grade AV block and pacing dependency with progressive LV-dysfunction and symptoms | 8 months --- 54 months | Appropriate: 0 Inappropriate: 0 | 62 months |
Patient 7 | Dual-chamber ICD | Primary prophylaxis | 41 months | Appropriate: 0 Inappropriate: 0 | 60 months |
Patient 8 | Dual-chamber ICD | Secondary prophylaxis after survived SCD | 2 months prior to ATTR diagnosis | Appropriate: 0 Inappropriate: 0 | 20 months |
Patient 9 | Dual-chamber ICD | Primary prophylaxis | 12 months | Appropriate: 0 Inappropriate: 0 | 57 months |
Patient 10 | Single-chamber ICD | Primary prophylaxis | 21 months | Appropriate: 0 Inappropriate: 0 | 44 months |
Patient 11 | None | --- | --- | --- | 23 months |
Patient 12 | None | --- | --- | --- | 18 months |
Death | Cardiac Transplantation | Electric Cardioversions | Ablation Therapies | Worsening of Heart Failure | |
---|---|---|---|---|---|
Patient 1 | No | Yes | 3 | 3 | 2 |
Patient 2 | No | Yes | 1 | 0 | 2 |
Patient 3 | Yes, non-cardiac | No | 0 | 0 | 2 |
Patient 4 | No | No | 0 | 0 | 0 |
Patient 5 | Yes | No | 0 | 0 | 1 |
Patient 6 | No | No | 0 | 0 | 3 |
Patient 7 | No | No | 0 | 0 | 6 |
Patient 8 | Yes, cardiac | No | 1 | 0 | 5 |
Patient 9 | No | No | 1 | 1 | 1 |
Patient 10 | Yes, cardiac | Yes | 0 | 0 | 4 |
Patient 11 | No | No | 0 | 0 | 0 |
Patient 12 | No | No | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binder, C.; Schmid, L.M.; Kronberger, C.; Poledniczek, M.; Rettl, R.; Schlein, J.; Ermolaev, N.; Ligios, L.C.; Auer-Grumbach, M.; Hengstenberg, C.; et al. His108Arg Transthyretin Amyloidosis—Shedding Light on a Distinctively Malignant Variant. J. Clin. Med. 2024, 13, 7857. https://doi.org/10.3390/jcm13247857
Binder C, Schmid LM, Kronberger C, Poledniczek M, Rettl R, Schlein J, Ermolaev N, Ligios LC, Auer-Grumbach M, Hengstenberg C, et al. His108Arg Transthyretin Amyloidosis—Shedding Light on a Distinctively Malignant Variant. Journal of Clinical Medicine. 2024; 13(24):7857. https://doi.org/10.3390/jcm13247857
Chicago/Turabian StyleBinder, Christina, Lena Marie Schmid, Christina Kronberger, Michael Poledniczek, René Rettl, Johanna Schlein, Nikita Ermolaev, Luciana Camuz Ligios, Michaela Auer-Grumbach, Christian Hengstenberg, and et al. 2024. "His108Arg Transthyretin Amyloidosis—Shedding Light on a Distinctively Malignant Variant" Journal of Clinical Medicine 13, no. 24: 7857. https://doi.org/10.3390/jcm13247857
APA StyleBinder, C., Schmid, L. M., Kronberger, C., Poledniczek, M., Rettl, R., Schlein, J., Ermolaev, N., Ligios, L. C., Auer-Grumbach, M., Hengstenberg, C., Eslam, R. B., Kastner, J., Bergler-Klein, J., Kammerlander, A. A., & Duca, F. (2024). His108Arg Transthyretin Amyloidosis—Shedding Light on a Distinctively Malignant Variant. Journal of Clinical Medicine, 13(24), 7857. https://doi.org/10.3390/jcm13247857