Natural History of Dilated Cardiomyopathy Due to c.77T>C (p.Val26Ala) in Emerin Protein
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Genetic Analysis
2.3. Study Endpoints
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Baseline Characteristics
3.3. Phenotype Expression
3.4. Geographical Distribution
3.5. Primary Outcome
3.6. Secondary Outcomes
3.6.1. First Episode of Heart Failure
3.6.2. Malignant Ventricular Arrhythmia
3.6.3. End-Stage Heart Failure
3.6.4. Atrioventricular Conduction Disturbances
4. Discussion
4.1. Risk of Malignant Ventricular Arrhythmias
4.2. Risk of Atrioventricular Conduction Disturbances
4.3. Heart Failure and End-Stage Heart Failure
4.4. Molecular Hypothesis
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sicras-Mainar, A.; Sicras-Navarro, A.; Palacios, B.; Varela, L.; Delgado, J.F. Epidemiology and treatment of heart failure in Spain: The HF-PATHWAYS study. Rev. Esp. Cardiol. 2022, 75, 31–38. [Google Scholar] [CrossRef]
- Pinto, Y.M.; Elliott, P.M.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; de Groote, P.; Imazio, M.; et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: A position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016, 37, 1850–1858. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- McKenna, W.J.; Judge, D.P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 2021, 18, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Japp, A.G.; Gulati, A.; Cook, S.A.; Cowie, M.R.; Prasad, S.K. The Diagnosis and Evaluation of Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 67, 2996–3010. [Google Scholar] [CrossRef]
- Roberts, A.M.; Ware, J.S.; Herman, D.S.; Schafer, S.; Baksi, J.; Bick, A.G.; Buchan, R.J.; Walsh, R.; John, S.; Wilkinson, S.; et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 2015, 7, 270ra6. [Google Scholar] [CrossRef]
- Mestroni, L.; Rocco, C.; Gregori, D.; Sinagra, G.; Di Lenarda, A.; Miocic, S.; Vatta, M.; Pinamonti, B.; Muntoni, F.; Caforio, A.L.; et al. Familial Dilated Cardiomyopathy: Evidence for Genetic and Phenotypic Heterogeneity. J. Am. Coll. Cardiol. 1999, 34, 181–190. [Google Scholar] [CrossRef]
- Cuenca, S.; Ruiz-Cano, M.J.; Gimeno-Blanes, J.R.; Jurado, A.; Salas, C.; Gomez-Diaz, I.; Padron-Barthe, L.; Grillo, J.J.; Vilches, C.; Segovia, J.; et al. Genetic basis of familial dilated cardiomyopathy patients undergoing heart transplantation. J. Heart Lung Transplant. 2016, 35, 625–635. [Google Scholar] [CrossRef]
- Gerull, A.; Klaassen, S.; Brodehl, A. The Genetic Landscape of Cardiomyopathies. In Genetic Causes of Cardiac Disease; Erdmann, J., Moretti, A., Eds.; Part of the Cardiac and Vascular Biology Book Series; Springer Nature: Cham, Switzerland, 2019; Volume 7, pp. 45–91. [Google Scholar] [CrossRef]
- Berry, D.A.; Keogh, A.; dos Remedios, C.G. Nuclear membrane proteins in failing human dilated cardiomyopathy. Proteomics 2001, 1, 1507–1512. [Google Scholar] [CrossRef]
- Hershberger, R.E.; Siegfried, J.D. Update 2011: Clinical and Genetic Issues in Familial Dilated Cardiomyopathy. JACC 2011, 57, 1641–1649. [Google Scholar] [CrossRef]
- García-Hernández, S.; Iglesias, L.M. Genetic Testing as a Guide for Treatment in Dilated Cardiomyopathies. Curr. Cardiol. Rep. 2022, 24, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- Paldino, A.; Dal Ferro, M.; Stolfo, D.; Gandin, I.; Medo, K.; Graw, S.; Gigli, M.; Gagno, G.; Zaffalon, D.; Castrichini, M.; et al. Prognostic prediction of genotype vs phenotype in genetic cardiomyopathies. J. Am. Coll. Cardiol. 2022, 80, 1981–1994. [Google Scholar] [CrossRef] [PubMed]
- Arbustini, E.; Narula, N.; Dec, G.W.; Reddy, K.S.; Greenberg, B.; Kushwaha, S.; Marwick, T.; Pinney, S.; Bellazzi, R.; Favalli, V.; et al. The MOGE (S) Classification for a Phenotype—Genotype Nomenclature of Cardiomyopathy Endorsed by the World Heart Federation. J. Am. Coll. Cardiol. 2013, 62, 2046–2072. [Google Scholar] [CrossRef] [PubMed]
- Fatkin, D.; Huttner, I.G.; Kovacic, J.C.; Seidman, J.G.; Seidman, C.E. Precision Medicine in the Management of Dilated Cardiomyopathy: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 2921–2938. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Lopez, L.; Ochoa, J.P.; Mirelis, J.G.; Espinosa, M.Á.; Navarro, M.; Gallego-Delgado, M.; Barriales-Villa, R.; Robles-Mezcua, A.; Basurte-Elorz, M.T.; Gutiérrez García-Moreno, L.; et al. Association of Genetic Variants with Outcomes in Patients with Nonischemic Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2021, 78, 1682–1699. [Google Scholar] [CrossRef] [PubMed]
- Kayvanpour, E.; Sedaghat-Hamedani, F.; Amr, A.; Lai, A.; Haas, J.; Holzer, D.B.; Frese, K.S.; Keller, A.; Jensen, K.; Katus, H.A.; et al. Genotype-phenotype associations in dilated cardiomyopathy: Meta-analysis on more than 8000 individuals. Clin. Res. Cardiol. 2017, 106, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.M.; Lorenzini, M.; Cicerchia, M.; Ochoa, J.P.; Hey, T.M.; Sabater Molina, M.; Restrepo-Cordoba, M.A.; Dal Ferro, M.; Stolfo, D.; Johnson, R.; et al. Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused by Truncating Variants in the TTN Gene. Circ. Heart Fail. 2020, 13, e006832. [Google Scholar] [CrossRef] [PubMed]
- Gigli, M.; Merlo, M.; Graw, S.L.; Barbati, G.; Rowland, T.J.; Slavov, D.B.; Stolfo, D.; Haywood, M.E.; Dal Ferro, M.; Altinier, A.; et al. Genetic Risk of Arrhythmic Phenotypes in Patients with Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2020, 74, 1480–1490. [Google Scholar] [CrossRef]
- Barriales-Villa, R.; Ochoa, J.P.; Larrañaga-Moreira, J.M.; Salazar-Mendiguchia, J.; Díez-López, C.; Restrepo-Córdoba, M.A.; Álvarez-Rubio, J.; Robles-Mezcua, A.; Olmo-Conesa, M.C.; Nicolás-Rocamora, E.; et al. Risk predictors in a Spanish cohort with cardiac laminopathies. The REDLAMINA registry. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 216–224. [Google Scholar] [CrossRef]
- Van Rijsingen, I.A.; Arbustini, E.; Elliott, P.M.; Mogensen, J.; Hermans-van Ast, J.F.; van der Kooi, A.J.; van Tintelen, J.P.; van den Berg, M.P.; Pilotto, A.; Pasotti, M.; et al. Risk Factors for Malignant Ventricular Arrhythmias in Lamin A/C Mutation Carriers: A European Cohort Study. J. Am. Coll. Cardiol. 2012, 59, 493–500. [Google Scholar] [CrossRef]
- Mirelis, J.G.; Escobar-Lopez, L.; Ochoa, J.P.; Espinosa, M.Á.; Villacorta, E.; Navarro, M.; Casas, G.; Mora-Ayestarán, N.; Barriales-Villa, R.; Mogollón-Jiménez, M.V.; et al. Combination of late gadolinium enhancement and genotype improves prediction of prognosis in non-ischaemic dilated cardiomyopathy. Eur. J. Heart Fail. 2022, 24, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Báez-ferrer, N.; Díaz-flores-estévez, F.; Pérez-cejas, A. Atrioventricular block in dilated cardiomyopathy and mutation in emerin gene. Med. Clin. 2023, 161, 551–552. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.R.; Fain, P.R.; Sinagra, G.; Robinson, M.L.; Robertson, A.D.; Carniel, E.; Di Lenarda, A.; Bohlmeyer, T.J.; Ferguson, D.A.; Brodsky, G.L.; et al. Natural History of Dilated Cardiomyopathy Due to Lamin A/C Gene Mutations. J. Am. Coll. Cardiol. 2003, 41, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.A.; Ellis, J.A. Molecular signatures of Emery–Dreifuss muscular dystrophy. Biochem. Soc. Trans. 2008, 36, 1354–1358. [Google Scholar] [CrossRef]
- Essawy, N.; Samson, C.; Petitalot, A.; Moog, S.; Bigot, A.; Herrada, I.; Marcelot, A.; Arteni, A.A.; Coirault, C.; Zinn-Justin, S. An emerin LEM-domain mutation impairs cell response to mechanical stress. Cells 2019, 8, 570. [Google Scholar] [CrossRef]
- Wheeler, M.A.; Warley, A.; Roberts, R.G.; Ehler, E.; Ellis, J.A. Identification of an emerin-β-catenin complex in the heart important for intercalated disc architecture and β-catenin localisation. Cell. Mol. Life Sci. 2010, 67, 781–796. [Google Scholar] [CrossRef]
- Stubenvoll, A.; Rice, M.; Wietelmann, A.; Wheeler, M.; Braun, T. Attenuation of wnt/β-catenin activity reverses enhanced generation of cardiomyocytes and cardiac defects caused by the loss of emerin. Hum. Mol. Genet. 2015, 24, 802–813. [Google Scholar] [CrossRef]
- Gómez-Monsivais, W.L.; Monterrubio-Ledezma, F.; Huerta-Cantillo, J.; Mondragon-Gonzalez, R.; Alamillo-Iniesta, A.; García-Aguirre, I.; Azuara-Medina, P.M.; Arguello-García, R.; Rivera-Monroy, J.E.; Holaska, J.M.; et al. The molecular basis and biologic significance of the β-dystroglycan-emerin interaction. Int. J. Mol. Sci. 2020, 21, 5944. [Google Scholar] [CrossRef]
- Chen, R.; Buchmann, S.; Kroth, A.; Arias-Loza, A.P.; Kohlhaas, M.; Wagner, N.; Grüner, G.; Nickel, A.; Cirnu, A.; Williams, T.; et al. Mechanistic Insights of the LEMD2 p.L13R Mutation and Its Role in Cardiomyopathy. Circ. Res. 2023, 132, e43–e58. [Google Scholar] [CrossRef]
- Hodgkinson, K.A.; Connors, S.P.; Merner, N.; Haywood, A.; Young, T.L.; McKenna, W.J.; Gallagher, B.; Curtis, F.; Bassett, A.S.; Parfrey, P.S. The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43. Clin. Genet. 2013, 83, 321–331. [Google Scholar] [CrossRef]
Overall Patients with EMD Mutation (n = 31) | DCM at Initial Evaluation (n = 21) † | No DCM at Initial Evaluation (n = 10) ¥ | p-Value ¥ | Overall Patients with TTN Mutations (n = 22) ‡ | p-Value ‡ | |
---|---|---|---|---|---|---|
Age * | 42 (34–47) | 45 (41–49) | 25 (22–37) | <0.001 | 51 (46–56) | 0.01 |
Proband patient | 11 (35) | 11 (52) | 0 (0) | 0.04 | ||
Arterial hypertension | 3 (10) | 3 (14) | 0 (0) | 0.11 | 3 (14) | 0.6 |
Diabetes mellitus | 2 (6) | 2 (10) | 0 (0) | 0.21 | 4 (18) | 0.7 |
Ischemic coronary disease | 2 (6) | 2 (10) | 0 (0) | 0.21 | 0 (0) | 0.07 |
Chronic Kidney Disease | 2 (6) | 2 (10) | 0 (0) | 0.21 | 0 (0) | 0.07 |
Atrial fibrillation | 10 (32) | 9 (43) | 1 (10) | 0.055 | 4 (18) | 0.06 |
Left bundle branch block | 11 (35) | 10 (48) | 1 (10) | 0.03 | 5 (23) | 0.06 |
Right bundle branch block | 0 (0) | 0 (0) | 0 (0) | 1 (5) | 0.3 | |
Left anterior hemiblock | 2 (6) | 0 (0) | 2 (20) | 0.03 | 2 (9) | 0.16 |
T-wave inversion | 0 (0) | 0 (0) | 0 (0) | 5 (23) | 0.02 | |
Q-wave | 4 (13) | 3 (24) | 1 (10) | 0.7 | 0 (0) | 0.06 |
Long PR | 2 (6) | 2 (10) | 0 (0) | 0.21 | 0 (0) | 0.13 |
Pacemaker | 3 (10) | 3 (14) | 0 (0) | 0.11 | 0 (0) | 0.06 |
Paced | 5 (16) | 5 (24) | 0 (0) | 0.08 | 0 (0) | 0.01 |
LV end-diastolic diameter by TTE * | 59 (51–61) | 60 (59–61) | 45 (45–55) | <0.01 | 60 (51–64) | 0.8 |
LVEF by TTE | 45 ± 16 | 35 ± 9 | 63 ± 7 | <0.0001 | 37 ± 15 | 0.7 |
LV end-diastolic volume by CMR | 223 ± 44 | |||||
LV end-diastolic diameter by CMR | 58 ± 5 | 59 ± 7 | 0.9 | |||
LVEF by CMR | 38 ± 10 | 28 ± 11 | 0.1 | |||
RVEF by CMR | 52 ± 11 | 48 ± 12 | 0.5 | |||
LGE | 7 (23) | 6 (29) | 0 (0) | 0.06 | 5 (23) | 0.6 |
Subendocardial | 3 (10) | 3 (14) | 0 (0) | 0.11 | 0 (0) | 0.06 |
Transmural | 2 (6) | 2 (10) | 0 (0) | 0.21 | 0 (0) | 0.07 |
Intramyocardial | 2 (6) | 1 (5) | 1 (10) | 0.5 | 5 (23) | 0.09 |
RV-LV junction | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Báez-Ferrer, N.; Díaz-Flores-Estévez, F.; Pérez-Cejas, A.; Avanzas, P.; Lorca, R.; Abreu-González, P.; Domínguez-Rodríguez, A. Natural History of Dilated Cardiomyopathy Due to c.77T>C (p.Val26Ala) in Emerin Protein. J. Clin. Med. 2024, 13, 660. https://doi.org/10.3390/jcm13030660
Báez-Ferrer N, Díaz-Flores-Estévez F, Pérez-Cejas A, Avanzas P, Lorca R, Abreu-González P, Domínguez-Rodríguez A. Natural History of Dilated Cardiomyopathy Due to c.77T>C (p.Val26Ala) in Emerin Protein. Journal of Clinical Medicine. 2024; 13(3):660. https://doi.org/10.3390/jcm13030660
Chicago/Turabian StyleBáez-Ferrer, Néstor, Felícitas Díaz-Flores-Estévez, Antonia Pérez-Cejas, Pablo Avanzas, Rebeca Lorca, Pedro Abreu-González, and Alberto Domínguez-Rodríguez. 2024. "Natural History of Dilated Cardiomyopathy Due to c.77T>C (p.Val26Ala) in Emerin Protein" Journal of Clinical Medicine 13, no. 3: 660. https://doi.org/10.3390/jcm13030660
APA StyleBáez-Ferrer, N., Díaz-Flores-Estévez, F., Pérez-Cejas, A., Avanzas, P., Lorca, R., Abreu-González, P., & Domínguez-Rodríguez, A. (2024). Natural History of Dilated Cardiomyopathy Due to c.77T>C (p.Val26Ala) in Emerin Protein. Journal of Clinical Medicine, 13(3), 660. https://doi.org/10.3390/jcm13030660