Prognostic Implications of Type 2 Diabetes Mellitus in Heart Failure with Mildly Reduced Ejection Fraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients, Design and Data Collection
2.2. Inclusion and Exclusion Criteria
2.3. Risk Stratification
2.4. Study Endpoints
2.5. Statistical Methods
3. Results
3.1. Study Population
3.2. Prognostic Value of Type 2 Diabetes in Patients with HFmrEF
3.3. Propensity Score Matching
3.4. Changes in LVEF, NT-proBNP Levels and eGFR in Diabetics and Non-Diabetics
3.5. Predictors of Prognosis in Diabetics and Non-Diabetics
3.6. Prognostic Impact of Diabetes-Related Treatment
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannel, W.B.; Hjortland, M.; Castelli, W.P. Role of diabetes in congestive heart failure: The Framingham study. Am. J. Cardiol. 1974, 34, 29–34. [Google Scholar] [CrossRef]
- Bollano, E.; Redfors, B.; Rawshani, A.; Venetsanos, D.; Völz, S.; Angerås, O.; Ljungman, C.; Alfredsson, J.; Jernberg, T.; Råmunddal, T.; et al. Temporal trends in characteristics and outcome of heart failure patients with and without significant coronary artery disease. ESC Heart Fail. 2022, 9, 1812–1822. [Google Scholar] [CrossRef] [PubMed]
- Chioncel, O.; Benson, L.; Crespo-Leiro, M.G.; Anker, S.D.; Coats, A.J.S.; Filippatos, G.; McDonagh, T.; Margineanu, C.; Mebazaa, A.; Metra, M.; et al. Comprehensive Characterization of Non-Cardiac Comorbidities in Acute Heart Failure—An analysis of ESC-HFA EORP Heart Failure Long-Term Registry. Eur. J. Prev. Cardiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Givertz, M.M.; Aguilar, D.; Allen, L.A.; Chan, M.; Desai, A.S.; Deswal, A.; Dickson, V.V.; Kosiborod, M.N.; Lekavich, C.L.; et al. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 2019, 140, e294–e324. [Google Scholar] [CrossRef]
- Nakamura, K.; Miyoshi, T.; Yoshida, M.; Akagi, S.; Saito, Y.; Ejiri, K.; Matsuo, N.; Ichikawa, K.; Iwasaki, K.; Naito, T.; et al. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 3587. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.V.; Hill, J.A. Diabetic cardiomyopathy: Catabolism driving metabolism. Circulation 2015, 131, 771–773. [Google Scholar] [CrossRef]
- Tochiya, M.; Makino, H.; Tamanaha, T.; Omura-Ohata, Y.; Matsubara, M.; Koezuka, R.; Noguchi, M.; Tomita, T.; Asaumi, Y.; Miyamoto, Y.; et al. Diabetic microvascular complications predicts non-heart failure with reduced ejection fraction in type 2 diabetes. ESC Heart Fail. 2023, 10, 1158–1169. [Google Scholar] [CrossRef]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Bando, Y.K.; Murohara, T. Diabetes-related heart failure. Circ. J. 2014, 78, 576–583. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar]
- Al-Jarallah, M.; Rajan, R.; Al-Zakwani, I.; Dashti, R.; Bulbanat, B.; Ridha, M.; Sulaiman, K.; Alsheikh-Ali, A.A.; Panduranga, P.; AlHabib, K.F.; et al. Mortality and Morbidity in HFrEF, HFmrEF, and HFpEF Patients with Diabetes in the Middle East. Oman Med. J. 2020, 35, e99. [Google Scholar] [CrossRef] [PubMed]
- Al-Jarallah, M.; Rajan, R.; Al-Zakwani, I.; Dashti, R.; Bulbanat, B.; Ridha, M.; Sulaiman, K.; Alsheikh-Ali, A.A.; Panduranga, P.; AlHabib, K.F.; et al. Impact of diabetes on mortality and rehospitalization in acute heart failure patients stratified by ejection fraction. ESC Heart Fail. 2020, 7, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, G.; Chen, H.; Feng, Z.; Zhang, L.; Chen, L.; Fan, L. Role of Diabetes Mellitus in Acute Coronary Syndrome Patients with Heart Failure and Midrange Ejection Fraction Who Have Undergone Percutaneous Coronary Intervention: A 3-Year Case-Series Follow-Up Retrospective Study. Diabetes Metab. Syndr. Obes. 2021, 14, 4931–4944. [Google Scholar] [CrossRef] [PubMed]
- Forner, J.; Schupp, T.; Weidner, K.; Ruka, M.; Egner-Walter, S.; Behnes, M.; Akin, M.; Ayoub, M.; Mashayekhi, K.; Akin, I.; et al. Effect of Cardiovascular Risk Factors on 30-Day All-Cause Mortality in Cardiogenic Shock. J. Clin. Med. 2023, 12, 4870. [Google Scholar] [CrossRef] [PubMed]
- Murcia, A.M.; Hennekens, C.H.; Lamas, G.A.; Jiménez-Navarro, M.; Rouleau, J.L.; Flaker, G.C.; Goldman, S.; Skali, H.; Braunwald, E.; Pfeffer, M.A.; et al. Impact of diabetes on mortality in patients with myocardial infarction and left ventricular dysfunction. Arch. Intern. Med. 2004, 164, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Schupp, T.; Reinhardt, M.; Abel, N.; Lau, F.; Forner, J.; Ayoub, M.; Mashayekhi, K.; Weiß, C.; Akin, I.; et al. Prognostic impact of acute decompensated heart failure in patients with heart failure and mildly reduced ejection fraction. Eur. Heart J. Acute Cardiovasc. Care 2023, zuad139, Online ahead of print. [Google Scholar] [CrossRef]
- Popescu, B.A.; Andrade, M.J.; Badano, L.P.; Fox, K.F.; Flachskampf, F.A.; Lancellotti, P.; Varga, A.; Sicari, R.; Evangelista, A.; Nihoyannopoulos, P.; et al. European Association of Echocardiography recommendations for training, competence, and quality improvement in echocardiography. Eur. J. Echocardiogr. 2009, 10, 893–905. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Greenberg, B.H.; Abraham, W.T.; Albert, N.M.; Chiswell, K.; Clare, R.; Stough, W.G.; Gheorghiade, M.; O’Connor, C.M.; Sun, J.L.; Yancy, C.W.; et al. Influence of diabetes on characteristics and outcomes in patients hospitalized with heart failure: A report from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am. Heart J. 2007, 154, 277.e1–e8. [Google Scholar] [CrossRef]
- Sarma, S.; Mentz, R.J.; Kwasny, M.J.; Fought, A.J.; Huffman, M.; Subacius, H.; Nodari, S.; Konstam, M.; Swedberg, K.; Maggioni, A.P.; et al. Association between diabetes mellitus and post-discharge outcomes in patients hospitalized with heart failure: Findings from the EVEREST trial. Eur. J. Heart Fail. 2013, 15, 194–202. [Google Scholar] [CrossRef]
- Weidner, K.; Behnes, M.; Schupp, T.; Rusnak, J.; Reiser, L.; Bollow, A.; Taton, G.; Reichelt, T.; Ellguth, D.; Engelke, N.; et al. Type 2 diabetes is independently associated with all-cause mortality secondary to ventricular tachyarrhythmias. Cardiovasc. Diabetol. 2018, 17, 125. [Google Scholar] [CrossRef]
- Papazoglou, A.S.; Kartas, A.; Samaras, A.; Vouloagkas, I.; Vrana, E.; Moysidis, D.V.; Akrivos, E.; Kotzampasis, G.; Baroutidou, A.; Papanastasiou, A.; et al. Prognostic significance of diabetes mellitus in patients with atrial fibrillation. Cardiovasc. Diabetol. 2021, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Polovina, M.; Lund, L.H.; Đikić, D.; Petrović-Đorđević, I.; Krljanac, G.; Milinković, I.; Veljić, I.; Piepoli, M.F.; Rosano, G.M.C.; Ristić, A.D.; et al. Type 2 diabetes increases the long-term risk of heart failure and mortality in patients with atrial fibrillation. Eur. J. Heart Fail. 2020, 22, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.G.; Jang, S.Y.; Jang, J.; Cho, H.J.; Lee, S.; Lee, S.E.; Kim, K.H.; Yoo, B.S.; Kang, S.M.; Baek, S.H.; et al. Impact of diabetes mellitus on mortality in patients with acute heart failure: A prospective cohort study. Cardiovasc. Diabetol. 2020, 19, 49. [Google Scholar] [CrossRef] [PubMed]
- Gracia Gutiérrez, A.; rados Saso, D.; Esteban Cabello, E.I.; Salas Trigo, E.M.; Sánchez Marteles, M.; Garcés Horna, V.; Ioakeim-Skoufa, I.; Gimeno-Miguel, A.; Prados-Torres, A.; Ruiz Laiglesia, F.J. Clinical characteristics of heart failure patients with mid-range ejection fraction. Acta Cardiol. 2023, 78, 233–240. [Google Scholar] [CrossRef]
- Hsu, J.J.; Ziaeian, B.; Fonarow, G.C. Heart Failure With Mid-Range (Borderline) Ejection Fraction: Clinical Implications and Future Directions. JACC Heart Fail. 2017, 5, 763–771. [Google Scholar] [CrossRef]
- Shiga, T.; Suzuki, A.; Haruta, S.; Mori, F.; Ota, Y.; Yagi, M.; Oka, T.; Tanaka, H.; Murasaki, S.; Yamauchi, T.; et al. Clinical characteristics of hospitalized heart failure patients with preserved, mid-range, and reduced ejection fractions in Japan. ESC Heart Fail. 2019, 6, 475–486. [Google Scholar] [CrossRef]
- Bhambhani, V.; Izer, J.R.; Lima, J.A.C.; van der Harst, P.; Bahrami, H.; Nayor, M.; de Filippi, C.R.; Enserro, D.; Blaha, M.J.; Cushman, M.; et al. Predictors and outcomes of heart failure with mid-range ejection fraction. Eur. J. Heart Fail. 2018, 20, 651–659. [Google Scholar] [CrossRef]
- Dries, D.L.; Sweitzer, N.K.; Drazner, M.H.; Stevenson, L.W.; Gersh, B.J. Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 2001, 38, 421–428. [Google Scholar] [CrossRef]
- Yen, F.S.; Wei, J.C.; Shih, Y.H.; Hsu, C.C.; Hwu, C.M. Impact of individual microvascular disease on the risks of macrovascular complications in type 2 diabetes: A nationwide population-based cohort study. Cardiovasc. Diabetol. 2023, 22, 109. [Google Scholar] [CrossRef]
- Benichou, T.; Pereira, B.; Mermillod, M.; Tauveron, I.; Pfabigan, D.; Maqdasy, S.; Dutheil, F. Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195166. [Google Scholar] [CrossRef]
- Carnethon, M.R.; Yan, L.; Greenland, P.; Garside, D.B.; Dyer, A.R.; Metzger, B.; Daviglus, M.L. Resting heart rate in middle age and diabetes development in older age. Diabetes Care 2008, 31, 335–339. [Google Scholar] [CrossRef]
- Hansen, C.S.; Jørgensen, M.E.; Malik, M.; Witte, D.R.; Brunner, E.J.; Tabák, A.G.; Kivimäki, M.; Vistisen, D. Heart Rate and Heart Rate Variability Changes Are Not Related to Future Cardiovascular Disease and Death in People With and Without Dysglycemia: A Downfall of Risk Markers? The Whitehall II Cohort Study. Diabetes Care 2021, 44, 1012–1019. [Google Scholar] [CrossRef]
- Mayyas, F.A.; Ibrahim, K.S. Predictors of mortality among patients with type 2 diabetes in Jordan. BMC Endocr. Disord. 2021, 21, 200. [Google Scholar] [CrossRef]
- Knight, E.L.; Glynn, R.J.; McIntyre, K.M.; Mogun, H.; Avorn, J. Predictors of decreased renal function in patients with heart failure during angiotensin-converting enzyme inhibitor therapy: Results from the studies of left ventricular dysfunction (SOLVD). Am. Heart J. 1999, 138, 849–855. [Google Scholar] [CrossRef]
- Khan, M.S.; Samman Tahhan, A.; Vaduganathan, M.; Greene, S.J.; Alrohaibani, A.; Anker, S.D.; Vardeny, O.; Fonarow, G.C.; Butler, J. Trends in prevalence of comorbidities in heart failure clinical trials. Eur. J. Heart Fail. 2020, 22, 1032–1042. [Google Scholar] [CrossRef]
- Borel, A.L.; Tamisier, R.; Böhme, P.; Priou, P.; Avignon, A.; Benhamou, P.Y.; Hanaire, H.; Pépin, J.L.; Kessler, L.; Valensi, P.; et al. Obstructive sleep apnoea syndrome in patients living with diabetes: Which patients should be screened? Diabetes Metab. 2019, 45, 91–101. [Google Scholar] [CrossRef]
- Ardelean, C.L.; Pescariu, S.; Lighezan, D.F.; Pleava, R.; Ursoniu, S.; Nadasan, V.; Mihaicuta, S. Particularities of Older Patients with Obstructive Sleep Apnea and Heart Failure with Mid-Range Ejection Fraction. Medicina 2019, 55, 449. [Google Scholar] [CrossRef]
- Jang, S.Y.; Jang, J.; Yang, D.H.; Cho, H.J.; Lim, S.; Jeon, E.S.; Lee, S.E.; Kim, J.J.; Kang, S.M.; Baek, S.H.; et al. Impact of insulin therapy on the mortality of acute heart failure patients with diabetes mellitus. Cardiovasc. Diabetol. 2021, 20, 180. [Google Scholar] [CrossRef]
- Banerjee, M.; Pal, R.; Nair, K.; Mukhopadhyay, S. SGLT2 inhibitors and cardiovascular outcomes in heart failure with mildly reduced and preserved ejection fraction: A systematic review and meta-analysis. Indian. Heart J. 2023, 75, 122–127. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Bhatt, A.S.; Claggett, B.L.; Vaduganathan, M.; Kulac, I.J.; Lam, C.S.P.; Hernandez, A.F.; Martinez, F.A.; Inzucchi, S.E.; Shah, S.J.; et al. Effect of Dapagliflozin on Health Status in Patients With Preserved or Mildly Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2023, 81, 460–473. [Google Scholar] [CrossRef]
- Becher, P.M.; Schrage, B.; Ferrannini, G.; Benson, L.; Butler, J.; Carrero, J.J.; Cosentino, F.; Dahlström, U.; Mellbin, L.; Rosano, G.M.C.; et al. Use of sodium-glucose co-transporter 2 inhibitors in patients with heart failure and type 2 diabetes mellitus: Data from the Swedish Heart Failure Registry. Eur. J. Heart Fail. 2021, 23, 1012–1022. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- Kuno, T.; Ueyama, H.; Fujisaki, T.; Briasouli, A.; Takagi, H.; Briasoulis, A. Meta-Analysis Evaluating the Effects of Renin-Angiotensin-Aldosterone System Blockade on Outcomes of Heart Failure With Preserved Ejection Fraction. Am. J. Cardiol. 2020, 125, 1187–1193. [Google Scholar] [CrossRef]
- Gu, J.; Pan, J.A.; Fan, Y.Q.; Zhang, H.L.; Zhang, J.F.; Wang, C.Q. Prognostic impact of HbA1c variability on long-term outcomes in patients with heart failure and type 2 diabetes mellitus. Cardiovasc. Diabetol. 2018, 17, 96. [Google Scholar] [CrossRef] [PubMed]
Without Propensity Score Matching | With Propensity Score Matching | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Non-Diabetics (n = 1385) | Diabetics (n = 784) | p-Value | Non-Diabetics (n = 551) | Diabetics (n = 551) | p-Value | |||||
Age, median (IQR) | 74 | (62–82) | 77 | (68–83) | 0.001 | 76 | (66–83) | 76 | (67–83) | 0.535 |
Male sex, n (%) | 868 | (62.7) | 534 | (64.1) | 0.011 | 383 | (69.5) | 373 | (67.7) | 0.516 |
Body mass index, kg/m2, median (IQR) | 25.6 | (23.2–29.3) | 29.0 | (25.2–32.6) | 0.001 | 27.1 | (24.3–31.2) | 28.0 | (24.8–31.1) | 0.214 |
SBP, mmHg, median (IQR) | 140 | (124–160) | 144 | (127–167) | 0.001 | 145 | (125–164) | 144 | (125–166) | 0.883 |
DBP, mmHg, median (IQR) | 80 | (70–90) | 78 | (67–90) | 0.029 | 80 | (70–90) | 78 | (67–90) | 0.049 |
Heart rate, bpm, median (IQR) | 81 | (68–96) | 80 | (68–93) | 0.110 | 80 | (67–92) | 80 | (69–93) | 0.677 |
Medical history, n (%) | ||||||||||
Coronary artery disease | 499 | (36.0) | 390 | (49.7) | 0.001 | 268 | (48.6) | 256 | (46.5) | 0.469 |
Prior myocardial infarction | 291 | (21.0) | 225 | (28.7) | 0.001 | 159 | (28.9) | 147 | (26.7) | 0.420 |
Congestive heart failure | 425 | (30.7) | 311 | (39.7) | 0.001 | 200 | (36.3) | 196 | (35.6) | 0.802 |
Decompensated heart failure < 12 months | 129 | (9.3) | 106 | (13.5) | 0.002 | 67 | (12.2) | 58 | (10.5) | 0.393 |
Prior ICD | 25 | (1.8) | 17 | (2.2) | 0.555 | 13 | (2.4) | 11 | (2.0) | 0.680 |
Primary prevention | 19 | (76.0) | 9 | (52.9) | 0.120 | 10 | (76.9) | 8 | (72.7) | 0.334 |
Secondary prevention | 6 | (24.0) | 8 | (47.1) | 3 | (23.1) | 3 | (67.3) | ||
Prior s-ICD | 8 | (0.6) | 1 | (0.1) | 0.117 | 2 | (0.4) | 0 | (0.0) | 0.157 |
Primary prevention | 5 | (62.5) | 0 | (0) | 0.236 | 2 | (100) | 0 | (0.0) | 0.800 |
Secondary prevention | 3 | (37.5) | 1 | (100.0) | 0 | (0.0) | 0 | (0.0) | ||
Chronic kidney disease | 356 | (25.7) | 315 | (40.2) | 0.001 | 198 | (35.9) | 182 | (33.0) | 0.311 |
Peripheral artery disease | 112 | (8.1) | 134 | (17.1) | 0.001 | 67 | (12.2) | 65 | (11.8) | 0.853 |
Stroke | 183 | (13.2) | 145 | (18.5) | 0.001 | 86 | (15.6) | 107 | (19.4) | 0.096 |
Liver cirrhosis | 23 | (1.7) | 24 | (3.1) | 0.031 | 9 | (1.6) | 16 | (2.9) | 0.157 |
Malignancy | 215 | (15.5) | 118 | (15.1) | 0.769 | 79 | (14.3) | 79 | (14.3) | 1.000 |
COPD | 155 | (11.2) | 103 | (13.1) | 0.179 | 64 | (11.6) | 72 | (13.1) | 0.464 |
Cardiovascular risk factors, n (%) | ||||||||||
Arterial hypertension | 977 | (70.5) | 711 | (90.7) | 0.001 | 497 | (90.2) | 490 | (88.9) | 0.490 |
Hyperlipidemia | 356 | (25.7) | 300 | (38.3) | 0.001 | 202 | (36.7) | 196 | (35.6) | 0.707 |
Smoking | ||||||||||
Current | 285 | (20.6) | 117 | (14.9) | 0.001 | 105 | (19.1) | 93 | (16.9) | 0.346 |
Former | 228 | (16.5) | 157 | (20.0) | 0.037 | 105 | (19.1) | 101 | (18.3) | 0.757 |
Family history | 137 | (9.9) | 64 | (8.2) | 0.182 | 47 | (8.5) | 48 | (8.7) | 0.915 |
Comorbidities at index hospitalization, n (%) | ||||||||||
Acute coronary syndrome | ||||||||||
Unstable angina | 63 | (4.5) | 36 | (4.6) | 0.963 | 32 | (5.8) | 30 | (5.4) | 0.794 |
STEMI | 129 | (9.3) | 46 | (5.9) | 0.005 | 45 | (8.2) | 41 | (7.4) | 0.653 |
NSTEMI | 153 | (11.0) | 120 | (15.3) | 0.004 | 70 | (12.7) | 71 | (12.9) | 0.928 |
Acute decompensated heart failure | 253 | (18.3) | 226 | (28.8) | 0.001 | 137 | (24.9) | 139 | (25.2) | 0.889 |
Atrial fibrillation | 571 | (41.2) | 343 | (43.8) | 0.253 | 228 | (41.4) | 236 | (42.8) | 0.625 |
Stroke | 187 | (13.5) | 111 | (14.2) | 0.670 | 76 | (13.8) | 79 | (14.3) | 0.795 |
Medication at index admission, n (%) | ||||||||||
ACE inhibitor | 434 | (31.3) | 336 | (42.9) | 0.001 | 209 | (37.9) | 220 | (39.9) | 0.497 |
ARB | 273 | (19.7) | 210 | (26.8) | 0.001 | 138 | (25.0) | 157 | (28.5) | 0.196 |
Beta blocker | 713 | (51.5) | 512 | (65.3) | 0.001 | 347 | (63.0) | 351 | (63.7) | 0.803 |
Aldosterone antagonist | 118 | (8.5) | 86 | (11.0) | 0.060 | 60 | (10.9) | 56 | (10.2) | 0.695 |
ARNI | 13 | (0.9) | 6 | (0.8) | 0.677 | 6 | (1.1) | 3 | (0.5) | 0.315 |
SGLT2 inhibitor | 2 | (0.1) | 43 | (5.5) | 0.001 | 1 | (0.2) | 29 | (5.3) | 0.001 |
Loop diuretics | 412 | (29.7) | 399 | (50.9) | 0.001 | 207 | (37.6) | 254 | (46.1) | 0.004 |
Statin | 529 | (38.2) | 450 | (57.4) | 0.001 | 285 | (51.7) | 303 | (55.0) | 0.277 |
Without Propensity Score Matching | With Propensity Score Matching | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Non-Diabetics (n = 1385) | Diabetics (n = 784) | p-Value | Non-Diabetics (n = 551) | Diabetics (n = 551) | p-Value | |||||
Heart failure etiology, n (%) | ||||||||||
Ischemic cardiomyopathy | 741 | (53.5) | 509 | (64.9) | 0.001 | 348 | (63.2) | 343 | (62.3) | 0.473 |
Non-ischemic cardiomyopathy | 104 | (7.5) | 42 | (5.4) | 29 | (5.3) | 34 | (6.2) | ||
Hypertensive cardiomyopathy | 119 | (8.6) | 57 | (7.3) | 56 | (10.2) | 42 | (7.6) | ||
Congenital heart disease | 3 | (0.2) | 1 | (0.1) | 1 | (0.2) | 0 | (0.0) | ||
Valvular heart disease | 66 | (4.8) | 30 | (3.8) | 19 | (3.4) | 23 | (4.2) | ||
Tachycardia-associated | 30 | (2.2) | 8 | (1.0) | 18 | (3.3) | 13 | (2.4) | ||
Tachymyopathy | 67 | (4.8) | 23 | (2.9) | 10 | (1.8) | 7 | (1.3) | ||
Pacemaker-induced cardiomyopathy | 13 | (0.9) | 6 | (0.8) | 6 | (1.1) | 6 | (1.1) | ||
Unknown | 242 | (17.5) | 108 | (13.8) | 64 | (11.6) | 83 | (15.1) | ||
NYHA functional class, n (%) | ||||||||||
I/II | 1063 | (76.7) | 514 | (65.5) | 0.001 | 398 | (72.2) | 380 | ((69.0) | 0.246 |
III | 218 | (15.7) | 187 | (23.9) | 95 | (17.2) | 121 | (22.0) | ||
IV | 104 | (7.5) | 83 | (10.6) | 58 | (10.5) | 50 | (9.1) | ||
Echocardiographic data | ||||||||||
LVEF, %, median (IQR) | 45 (45–47) | 45 (45–47) | 0.128 | 45 (45–47) | 45 (45–47) | 0.863 | ||||
IVSd, median (IQR) | 12 (10–13) | 12 (11–13) | 0.001 | 12 (11–13) | 12 (11–13) | 0.024 | ||||
TAPSE, mm, median (IQR) | 20 (17–23) | 20 (17–23) | 0.152 | 20 (18–23) | 20 (17–23) | 0.325 | ||||
Diastolic dysfunction, n (%) | 971 | (70.1) | 590 | (75.3) | 0.010 | 419 | (76.0) | 408 | (74.0) | 0.444 |
Moderate–severe aortic stenosis, n (%) | 127 | (9.2) | 86 | (11.0) | 0.176 | 59 | (10.7) | 59 | (10.7) | 1.000 |
Moderate–severe aortic regurgitation, n (%) | 56 | (4.0) | 27 | (3.4) | 0.484 | 27 | (4.9) | 21 | (3.8) | 0.376 |
Moderate–severe mitral regurgitation, n (%) | 174 | (12.6) | 86 | (11.0) | 0.272 | 68 | (12.3) | 67 | (12.2) | 0.927 |
Moderate–severe tricuspid regurgitation, n (%) | 233 | (16.8) | 110 | (14.0) | 0.087 | 87 | (15.8) | 87 | (15.8) | 1.000 |
Coronary angiography, n (%) | 570 | (41.2) | 323 | (41.2) | 0.984 | 247 | (44.8) | 234 | (42.5) | 0.430 |
No evidence of coronary artery disease | 129 | (22.6) | 42 | (13.0) | 0.001 | 43 | (17.4) | 34 | (14.5) | 0.008 |
1-vessel disease | 119 | (20.9) | 47 | (14.6) | 56 | (22.7) | 39 | (16.7) | ||
2-vessel disease | 137 | (24.0) | 54 | (16.7) | 55 | (22.3) | 37 | (15.8) | ||
3-vessel disease | 185 | (32.5) | 180 | (55.7) | 93 | (37.7) | 124 | (53.0) | ||
CABG | 31 | (5.4) | 40 | (12.4) | 0.001 | 25 | (10.1) | 26 | (11.1) | 0.725 |
Chronic total occlusion | 54 | (9.5) | 59 | (18.3) | 0.001 | 26 | (10.5) | 36 | (15.4) | 0.112 |
PCI, n (%) | 311 | (54.6) | 169 | (52.3) | 0.519 | 141 | (57.1) | 120 | (51.3) | 0.202 |
Sent to CABG, n (%) | 20 | (3.5) | 31 | (9.6) | 0.001 | 9 | (3.6) | 23 | (9.8) | 0.007 |
Baseline laboratory values, median (IQR) | ||||||||||
Creatinine, mg/dL | 1.02 (0.83–1.32) | 1.20 (0.95–1.67) | 0.001 | 1.10 (0.91–1.48) | 1.12 (0.91–1.49) | 0.604 | ||||
eGFR, mL/min/1.73 m2 | 70 (50–90) | 58 (39–77) | 0.001 | 64 (43–83) | 62 (44–80) | 0.617 | ||||
Hemoglobin, g/dL | 12.6 (10.6–14.1) | 12.0 (10.3–13.7) | 0.001 | 12.4 (10.4–14.0) | 12.3 (10.5–13.8) | 0.837 | ||||
HbA1c, % | 5.6 (5.3–5.8) | 7.0 (6.4–8.0) | 0.001 | 5.7 (5.3–5.9) | 7.0 (6.3–7.9) | 0.001 | ||||
LDL-cholesterol, mg/dL | 102 (78–130) | 91 (68–121) | 0.001 | 97 (76–126) | 91 (70–121) | 0.098 | ||||
HDL-cholesterol, mg/dL | 44 (35–54) | 39 (32–46) | 0.001 | 43 (34–53) | 39 (32–46) | 0.001 | ||||
C-reactive protein, mg/L | 13 (3–43) | 14 (4–45) | 0.077 | 11.8 (2.9–41.7) | 12.5 (3.8–42.2) | 0.367 | ||||
NT-pro BNP, pg/mL | 2283 (774–5454) | 3487 (1551–7958) | 0.001 | 2375 (963–7313) | 3001 (1417–7431) | 0.176 | ||||
Cardiac troponin I, µg/L | 0.03 (0.02–0.16) | 0.03 (0.02–0.21) | 0.130 | 0.03 (0.02–0.17) | 0.03 (0.02–0.17) | 0.885 | ||||
Medication at discharge, n (%) | ||||||||||
ACE inhibitor | 676 | (50.3) | 375 | (49.9) | 0.837 | 271 | (50.5) | 256 | (48.4) | 0.499 |
ARB | 277 | (20.6) | 216 | (28.7) | 0.001 | 135 | (25.1) | 166 | (31.4) | 0.024 |
Beta blocker | 1032 | (76.8) | 591 | (78.6) | 0.358 | 438 | (81.6) | 410 | (77.5) | 0.100 |
Aldosterone antagonist | 172 | (12.8) | 120 | (16.0) | 0.046 | 90 | (16.8) | 77 | (14.6) | 0.322 |
ARNI | 17 | (1.3) | 8 | (1.1) | 0.683 | 8 | (1.5) | 3 | (0.6) | 0.136 |
SGLT2 inhibitor | 15 | (1.1) | 67 | (8.9) | 0.001 | 10 | (1.9) | 49 | (9.3) | 0.001 |
Loop diuretics | 541 | (40.3) | 467 | (62.1) | 0.001 | 270 | (50.3) | 300 | (56.7) | 0.035 |
Statin | 868 | (64.6) | 566 | (75.3) | 0.001 | 396 | (73.7) | 395 | (74.7) | 0.730 |
Insulin | 0 | (0.0) | 286 | (38.0) | 0.001 | 0 | (0.0) | 200 | (37.8) | 0.001 |
Metformin | 0 | (0.0) | 276 | (36.7) | 0.001 | 0 | (0.0) | 202 | (38.2) | 0.001 |
DPP4 inhibitors | 0 | (0.0) | 200 | (26.6) | 0.001 | 0 | (0.0) | 158 | (30.0) | 0.001 |
GLP1 analogues | 0 | (0.0) | 13 | (1.7) | 0.001 | 0 | (0.0) | 8 | (1.5) | 0.001 |
Without Propensity Score Matching | |||||||
Non-Diabetics (n = 1385) | Diabetics (n = 784) | HR | 95% CI | p-Value | |||
Primary endpoint, n (%) | |||||||
All-cause mortality, at 30 months | 396 | (28.6) | 281 | (35.8) | 1.273 | 1.092–1.483 | 0.002 |
Secondary endpoints, n (%) | |||||||
All-cause mortality, in-hospital | 42 | (3.0) | 32 | (4.1) | 1.094 | 0.688–1.740 | 0.704 |
Heart failure-related rehospitalization, at 30 months | 144 | (10.7) | 134 | (17.8) | 1.714 | 1.355–2.169 | 0.001 |
Cardiac rehospitalization, at 30 months | 266 | (19.8) | 193 | (25.7) | 1.334 | 1.108–1.606 | 0.002 |
Revascularization, at 30 months | 77 | (5.7) | 63 | (8.4) | 1.467 | 1.058–2.059 | 0.022 |
Acute myocardial infarction, at 30 months | 29 | (2.2) | 35 | (4.7) | 2.169 | 1.326–3.548 | 0.002 |
Stroke, at 30 months | 38 | (2.8) | 19 | (2.5) | 0.881 | 0.508–1.528 | 0.652 |
MACCE, at 30 months | 488 | (35.2) | 346 | (44.1) | 1.298 | 1.131–1.489 | 0.001 |
Follow-up data, median (IQR) | |||||||
Hospitalization time, days | 8 (5–14) | 10 (6–17) | - | - | 0.001 | ||
ICU time, days | 0 (0–1) | 0 (0–1) | - | - | 0.216 | ||
Follow-up time, days | 917 (389–1691) | 888 (334–1561) | - | - | 0.164 | ||
With propensity score matching | |||||||
Non-Diabetics (n = 551) | Diabetics (n = 551) | HR | 95% CI | p-Value | |||
Primary endpoint, n (%) | |||||||
All-cause mortality, at 30 months | 147 | (26.7) | 182 | (33.0) | 1.265 | 1.018–1.572 | 0.034 |
Secondary endpoints, n (%) | |||||||
All-cause mortality, in-hospital | 14 | (2.5) | 22 | (4.0) | 1.077 | 0.874–1.245 | 0.813 |
Heart failure-related rehospitalization, at 30 months | 78 | (14.5) | 89 | (16.8) | 1.172 | 0.865–1.589 | 0.306 |
Cardiac rehospitalization, at 30 months | 131 | (24.4) | 128 | (24.2) | 1.018 | 0.987–1.188 | 0.904 |
Revascularization, at 30 months | 41 | (7.6) | 40 | (7.6) | 0.982 | 0.635–1.518 | 0.934 |
Acute myocardial infarction, at 30 months | 17 | (3.2) | 19 | (3.6) | 1.132 | 0.588–2.178 | 0.710 |
Stroke, at 30 months | 16 | (3.0) | 14 | (2.6) | 0.876 | 0.428–1.796 | 0.718 |
MACCE, at 30 months | 194 | (35.2) | 229 | (41.6) | 1.210 | 1.000–1.465 | 0.050 |
Follow-up data, median (IQR) | |||||||
Hospitalization time, days | 8 (5–15) | 9 (6–16) | - | - | 0.205 | ||
ICU time, days | 0 (0–1) | 0 (0–1) | - | - | 0.789 | ||
Follow-up time, days | 880 (432–1661) | 915 (346–1654) | - | - | 0.778 |
All-Cause Mortality | Heart Failure-Related Rehospitalization | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Diabetics | ||||||
Age | 1.041 | 1.022–1.060 | 0.001 | 1.003 | 0.981–1.025 | 0.798 |
Male | 1.150 | 0.841–1.574 | 0.382 | 0.756 | 0.505–1.134 | 0.176 |
Body mass index | 0.970 | 0.938–1.002 | 0.065 | 0.992 | 0.953–1.032 | 0.681 |
Heart rate | 1.002 | 0.994–1.010 | 0.686 | 1.003 | 0.993–1.013 | 0.618 |
Prior congenital heart failure | 1.122 | 0.787–1.599 | 0.526 | 1.663 | 1.016–2.721 | 0.043 |
Prior decompensation | 0.862 | 0.544–1.367 | 0.528 | 1.710 | 1.003–2.915 | 0.049 |
Creatinine | 1.204 | 1.081–1.342 | 0.001 | 1.171 | 1.020–1.344 | 0.025 |
Hemoglobin | 0.887 | 0.822–0.957 | 0.002 | 0.973 | 0.883–1.071 | 0.572 |
Arterial hypertension | 0.735 | 0.409–1.319 | 0.302 | 1.664 | 0.600–4.613 | 0.328 |
Hyperlipidemia | 0.908 | 0.667–1.236 | 0.539 | 0.767 | 0.510–1.153 | 0.202 |
Acute myocardial infarction | 0.959 | 0.647–1.422 | 0.836 | 1.350 | 0.796–2.288 | 0.265 |
Acute decompensated heart failure | 1.448 | 1.048–2.001 | 0.025 | 1.880 | 1.232–2.867 | 0.003 |
Atrial fibrillation | 1.273 | 0.914–1.772 | 0.153 | 2.188 | 1.386–3.455 | 0.001 |
TAPSE < 18 mm | 0.967 | 0.932–1.003 | 0.073 | 0.984 | 0.948–1.021 | 0.394 |
Non-Diabetics | ||||||
Age | 1.041 | 1.028–1.054 | 0.001 | 1.013 | 0.995–1.031 | 0.161 |
Male | 1.394 | 1.073–1.810 | 0.013 | 1.217 | 0.810–1.829 | 0.344 |
Body mass index | 0.939 | 0.911–0.968 | 0.001 | 1.045 | 1.013–1.078 | 0.005 |
Heart rate | 0.996 | 0.990–1.002 | 0.201 | 1.003 | 0.995–1.011 | 0.480 |
Prior congenital heart failure | 1.337 | 0.995–1.796 | 0.054 | 1.942 | 1.240–3.042 | 0.004 |
Prior decompensation | 0.836 | 0.549–1.273 | 0.404 | 1.366 | 0.806–2.312 | 0.246 |
Creatinine | 0.984 | 0.892–1.085 | 0.743 | 0.992 | 0.837–1.176 | 0.929 |
Hemoglobin | 0.777 | 0.733–0.825 | 0.001 | 0.860 | 0.786–0.942 | 0.001 |
Arterial hypertension | 0.999 | 0.740–1.349 | 0.995 | 1.198 | 0.720–1.994 | 0.486 |
Hyperlipidemia | 0.442 | 0.315–0.618 | 0.001 | 1.048 | 0.685–1.604 | 0.828 |
Acute myocardial infarction | 0.637 | 0.435–0.930 | 0.020 | 0.622 | 0.314–1.231 | 0.173 |
Acute decompensated heart failure | 1.748 | 1.335–2.290 | 0.001 | 1.892 | 1.254–2.856 | 0.002 |
Atrial fibrillation | 1.190 | 0.903–1.567 | 0.217 | 1.463 | 0.947–2.261 | 0.087 |
TAPSE < 18 mm | 1.003 | 0.993–1.014 | 0.519 | 0.974 | 0.932–1.017 | 0.233 |
All-Cause Mortality | Heart Failure-Related Rehospitalization | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age | 1.054 | 1.038–1.070 | 0.001 | 1.010 | 0.991–1.028 | 0.300 |
Male | 1.190 | 0.909–1.559 | 0.205 | 0.808 | 0.565–1.156 | 0.244 |
Prior coronary artery disease | 0.777 | 0.514–1.175 | 0.232 | 1.525 | 0.880–2.644 | 0.132 |
Prior myocardial infarction | 1.142 | 0.790–1.649 | 0.481 | 1.109 | 0.705–1.732 | 0.655 |
Arterial hypertension | 0.729 | 0.464–1.145 | 0.170 | 1.444 | 0.663–3.148 | 0.355 |
Hyperlipidemia | 1.074 | 0.822–1.404 | 0.601 | 0.683 | 0.470–0.993 | 0.046 |
eGFR | 0.996 | 0.990–1.002 | 0.178 | 0.988 | 0.980–0.996 | 0.005 |
Ischemic cardiomyopathy | 0.898 | 0.624–1.292 | 0.562 | 1.069 | 0.628–1.822 | 0.805 |
NYHA functional class | 1.129 | 1.000–1.275 | 0.049 | 1.546 | 1.306–1.830 | 0.001 |
SGLT2 inhibitor | 0.552 | 0.270–1.130 | 0.104 | 0.661 | 0.286–1.527 | 0.333 |
Insulin | 1.332 | 1.018–1.742 | 0.037 | 1.208 | 0.841–1.734 | 0.307 |
Metformin | 0.805 | 0.587–1.102 | 0.176 | 1.719 | 1.119–2.639 | 0.013 |
DPP4 inhibitor | 1.158 | 0.877–1.528 | 0.301 | 1.026 | 0.689–1.508 | 0.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schupp, T.; Abumayyaleh, M.; Weidner, K.; Lau, F.; Reinhardt, M.; Abel, N.; Schmitt, A.; Forner, J.; Ayasse, N.; Bertsch, T.; et al. Prognostic Implications of Type 2 Diabetes Mellitus in Heart Failure with Mildly Reduced Ejection Fraction. J. Clin. Med. 2024, 13, 742. https://doi.org/10.3390/jcm13030742
Schupp T, Abumayyaleh M, Weidner K, Lau F, Reinhardt M, Abel N, Schmitt A, Forner J, Ayasse N, Bertsch T, et al. Prognostic Implications of Type 2 Diabetes Mellitus in Heart Failure with Mildly Reduced Ejection Fraction. Journal of Clinical Medicine. 2024; 13(3):742. https://doi.org/10.3390/jcm13030742
Chicago/Turabian StyleSchupp, Tobias, Mohammad Abumayyaleh, Kathrin Weidner, Felix Lau, Marielen Reinhardt, Noah Abel, Alexander Schmitt, Jan Forner, Niklas Ayasse, Thomas Bertsch, and et al. 2024. "Prognostic Implications of Type 2 Diabetes Mellitus in Heart Failure with Mildly Reduced Ejection Fraction" Journal of Clinical Medicine 13, no. 3: 742. https://doi.org/10.3390/jcm13030742
APA StyleSchupp, T., Abumayyaleh, M., Weidner, K., Lau, F., Reinhardt, M., Abel, N., Schmitt, A., Forner, J., Ayasse, N., Bertsch, T., Akin, M., Akin, I., & Behnes, M. (2024). Prognostic Implications of Type 2 Diabetes Mellitus in Heart Failure with Mildly Reduced Ejection Fraction. Journal of Clinical Medicine, 13(3), 742. https://doi.org/10.3390/jcm13030742