Diabetic Kidney Disease in Post-Kidney Transplant Patients
Abstract
:1. Introduction
2. Pathogenesis of Post-Transplant Diabetes Mellitus
3. Diagnostic Approach for PTDM
4. Effects of Maintenance Immunosuppression in Diabetic Kidney Disease
4.1. Calcineurin Inhibitors
4.2. Glucocorticoids
4.3. mTOR Inhibitors
4.4. Azathioprine and Mycophenolic Acid
4.5. Belatacept
5. Therapeutic Options for Post-Transplant Diabetes
5.1. Insulin
5.2. Insulin Secretagogues
5.3. Biguanides
5.4. Thiazolidinediones
5.5. Dipeptidyl Peptidase 4 Inhibitors
5.6. SGLT-2 Inhibitors
5.7. Glucagon-Like Peptide 1 Receptor Agonists (GLP1- RA) and Glucose-Dependent Insulinotropic Polypeptide-Glucagon-Like Peptide 1 Receptor Agonists (GIP-GLP1-RA)
6. Practice Considerations
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hariharan, S.; Johnson, C.P.; Bresnahan, B.A.; Taranto, S.E.; McIntosh, M.J.; Stablein, D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N. Engl. J. Med. 2000, 342, 605–612. [Google Scholar] [CrossRef]
- Port, F.K.; Wolfe, R.A.; Mauger, E.A.; Berling, D.P.; Jiang, K. Comparison of survival probabilities for dialysis patients vs. cadaveric renal transplant recipients. JAMA 1993, 270, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.O.; Port, F.K.; Wolfe, R.A.; Mauger, E.A.; Williams, L.; Berling, D.P. Comparative mortality risks of chronic dialysis and cadaveric transplantation in black end-stage renal disease patients. Am. J. Kidney Dis. 1994, 24, 59–64. [Google Scholar] [CrossRef]
- Alangaden, G.J.; Thyagarajan, R.; Gruber, S.A.; Morawski, K.; Garnick, J.; El-Amm, J.M.; West, M.S.; Sillix, D.H.; Chandrasekar, P.H.; Haririan, A. Infectious complications after kidney transplantation: Current epidemiology and associated risk factors. Clin. Transplant. 2006, 20, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Engels, E.A.; Pfeiffer, R.M.; Fraumeni, J.F., Jr.; Kasiske, B.L.; Israni, A.K.; Snyder, J.J.; Wolfe, R.A.; Goodrich, N.P.; Bayakly, A.R.; Clarke, C.A.; et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA 2011, 306, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.O. Cardiovascular complications after renal transplantation and their prevention. Transplantation 2006, 82, 603–611. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.; Matas, A.J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 2003, 3, 178–185. [Google Scholar] [CrossRef]
- Cosio, F.G.; Kudva, Y.; van der Velde, M.; Larson, T.S.; Textor, S.C.; Griffin, M.D.; Stegall, M.D. New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int. 2005, 67, 2415–2421. [Google Scholar] [CrossRef]
- Chakkera, H.A.; Weil, E.J.; Castro, J.; Heilman, R.L.; Reddy, K.S.; Mazur, M.J.; Hamawi, K.; Mulligan, D.C.; Moss, A.A.; Mekeel, K.L.; et al. Hyperglycemia during the immediate period after kidney transplantation. Clin. J. Am. Soc. Nephrol. 2009, 4, 853–859. [Google Scholar] [CrossRef]
- Sharif, A.; Hecking, M.; de Vries, A.P.; Porrini, E.; Hornum, M.; Rasoul-Rockenschaub, S.; Berlakovich, G.; Krebs, M.; Kautzky-Willer, A.; Schernthaner, G.; et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: Recommendations and future directions. Am. J. Transplant. 2014, 14, 1992–2000. [Google Scholar] [CrossRef]
- Porrini, E.L.; Diaz, J.M.; Moreso, F.; Delgado Mallen, P.I.; Silva Torres, I.; Ibernon, M.; Bayes-Genis, B.; Benitez-Ruiz, R.; Lampreabe, I.; Lauzurrica, R.; et al. Clinical evolution of post-transplant diabetes mellitus. Nephrol. Dial. Transplant. 2016, 31, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Pilmore, H.; Dent, H.; Chang, S.; McDonald, S.P.; Chadban, S.J. Reduction in cardiovascular death after kidney transplantation. Transplantation 2010, 89, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Sumrani, N.B.; Delaney, V.; Ding, Z.K.; Davis, R.; Daskalakis, P.; Friedman, E.A.; Butt, K.M.; Hong, J.H. Diabetes mellitus after renal transplantation in the cyclosporine era—An analysis of risk factors. Transplantation 1991, 51, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yan, J.; Yuan, L.; Qi, B.; Zhang, Z.; Zhang, W.; Ma, A.; Ding, F. Impact of diabetes mellitus developing after kidney transplantation on patient mortality and graft survival: A meta-analysis of adjusted data. Diabetol. Metab. Syndr. 2021, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Cohney, S. Post-transplantation diabetes—State of the art. Lancet Diabetes Endocrinol. 2016, 4, 337–349. [Google Scholar] [CrossRef]
- Stegall, M.D.; Cornell, L.D.; Park, W.D.; Smith, B.H.; Cosio, F.G. Renal Allograft Histology at 10 Years After Transplantation in the Tacrolimus Era: Evidence of Pervasive Chronic Injury. Am. J. Transplant. 2018, 18, 180–188. [Google Scholar] [CrossRef]
- Hecking, M.; Kainz, A.; Werzowa, J.; Haidinger, M.; Doller, D.; Tura, A.; Karaboyas, A.; Horl, W.H.; Wolzt, M.; Sharif, A.; et al. Glucose metabolism after renal transplantation. Diabetes Care 2013, 36, 2763–2771. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, A.E.; Trinanes, J.; Velazquez-Garcia, S.; Porrini, E.; Vega Prieto, M.J.; Diez Fuentes, M.L.; Arevalo, M.; Salido Ruiz, E.; Torres, A. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. Am. J. Transplant. 2013, 13, 1665–1675. [Google Scholar] [CrossRef]
- Montero, N.; Pascual, J. Immunosuppression and Post-transplant Hyperglycemia. Curr. Diabetes Rev. 2015, 11, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Biesenbach, G.; Raml, A.; Schmekal, B.; Eichbauer-Sturm, G. Decreased insulin requirement in relation to GFR in nephropathic Type 1 and insulin-treated Type 2 diabetic patients. Diabet. Med. 2003, 20, 642–645. [Google Scholar] [CrossRef]
- Sharif, A.; Moore, R.H.; Baboolal, K. The use of oral glucose tolerance tests to risk stratify for new-onset diabetes after transplantation: An underdiagnosed phenomenon. Transplantation 2006, 82, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Wiederrecht, G.; Lam, E.; Hung, S.; Martin, M.; Sigal, N. The mechanism of action of FK-506 and cyclosporin A. Ann. N. Y. Acad. Sci. 1993, 696, 9–19. [Google Scholar] [CrossRef]
- Vincenti, F.; Friman, S.; Scheuermann, E.; Rostaing, L.; Jenssen, T.; Campistol, J.M.; Uchida, K.; Pescovitz, M.D.; Marchetti, P.; Tuncer, M.; et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am. J. Transplant. 2007, 7, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.T., Jr.; Yang, H.C.; Meier-Kriesche, H.U.; Croy, R.; Holman, J.; Fitzsimmons, W.E.; First, M.R. Long-term follow-up of a phase III clinical trial comparing tacrolimus extended-release/MMF, tacrolimus/MMF, and cyclosporine/MMF in de novo kidney transplant recipients. Transplantation 2014, 97, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F. Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med. 2004, 351, 2715–2729. [Google Scholar] [CrossRef]
- Dai, C.; Walker, J.T.; Shostak, A.; Padgett, A.; Spears, E.; Wisniewski, S.; Poffenberger, G.; Aramandla, R.; Dean, E.D.; Prasad, N.; et al. Tacrolimus- and sirolimus-induced human beta cell dysfunction is reversible and preventable. JCI Insight 2020, 5, e130770. [Google Scholar] [CrossRef]
- Fong, A.C.; Cheung, N.W. The high incidence of steroid-induced hyperglycaemia in hospital. Diabetes Res. Clin. Pract. 2013, 99, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Ruzzin, J.; Wagman, A.S.; Jensen, J. Glucocorticoid-induced insulin resistance in skeletal muscles: Defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia 2005, 48, 2119–2130. [Google Scholar] [CrossRef]
- van Raalte, D.H.; Ouwens, D.M.; Diamant, M. Novel insights into glucocorticoid-mediated diabetogenic effects: Towards expansion of therapeutic options? Eur. J. Clin. Investig. 2009, 39, 81–93. [Google Scholar] [CrossRef]
- Donihi, A.C.; Raval, D.; Saul, M.; Korytkowski, M.T.; DeVita, M.A. Prevalence and predictors of corticosteroid-related hyperglycemia in hospitalized patients. Endocr. Pract. 2006, 12, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Woodle, E.S.; First, M.R.; Pirsch, J.; Shihab, F.; Gaber, A.O.; Van Veldhuisen, P.; Corticosteroid Withdrawal Study Group. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann. Surg. 2008, 248, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Galeano, C.; Royuela, A.; Zamora, J. A systematic review on steroid withdrawal between 3 and 6 months after kidney transplantation. Transplantation 2010, 90, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, D.R. Benefit-risk assessment of sirolimus in renal transplantation. Drug Saf. 2005, 28, 153–181. [Google Scholar] [CrossRef]
- Marcen, R. Immunosuppressive drugs in kidney transplantation: Impact on patient survival, and incidence of cardiovascular disease, malignancy and infection. Drugs 2009, 69, 2227–2243. [Google Scholar] [CrossRef] [PubMed]
- Hakeam, H.A.; Al-Jedai, A.H.; Raza, S.M.; Hamawi, K. Sirolimus induced dyslipidemia in tacrolimus based vs. tacrolimus free immunosuppressive regimens in renal transplant recipients. Ann. Transplant. 2008, 13, 46–53. [Google Scholar] [PubMed]
- Johnston, O.; Rose, C.L.; Webster, A.C.; Gill, J.S. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 2008, 19, 1411–1418. [Google Scholar] [CrossRef]
- Romagnoli, J.; Citterio, F.; Nanni, G.; Favi, E.; Tondolo, V.; Spagnoletti, G.; Salerno, M.P.; Castagneto, M. Incidence of posttransplant diabetes mellitus in kidney transplant recipients immunosuppressed with sirolimus in combination with cyclosporine. Transplant. Proc. 2006, 38, 1034–1036. [Google Scholar] [CrossRef]
- Gyurus, E.; Kaposztas, Z.; Kahan, B.D. Sirolimus therapy predisposes to new-onset diabetes mellitus after renal transplantation: A long-term analysis of various treatment regimens. Transplant. Proc. 2011, 43, 1583–1592. [Google Scholar] [CrossRef]
- Asahara, S.I.; Inoue, H.; Watanabe, H.; Kido, Y. Roles of mTOR in the Regulation of Pancreatic beta-Cell Mass and Insulin Secretion. Biomolecules 2022, 12, 614. [Google Scholar] [CrossRef]
- Barlow, A.D.; Nicholson, M.L.; Herbert, T.P. Evidence for rapamycin toxicity in pancreatic beta-cells and a review of the underlying molecular mechanisms. Diabetes 2013, 62, 2674–2682. [Google Scholar] [CrossRef]
- Barlow, A.D.; Xie, J.; Moore, C.E.; Campbell, S.C.; Shaw, J.A.; Nicholson, M.L.; Herbert, T.P. Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia 2012, 55, 1355–1365. [Google Scholar] [CrossRef]
- Bell, E.; Cao, X.; Moibi, J.A.; Greene, S.R.; Young, R.; Trucco, M.; Gao, Z.; Matschinsky, F.M.; Deng, S.; Markman, J.F.; et al. Rapamycin has a deleterious effect on MIN-6 cells and rat and human islets. Diabetes 2003, 52, 2731–2739. [Google Scholar] [CrossRef]
- Ardestani, A.; Lupse, B.; Kido, Y.; Leibowitz, G.; Maedler, K. mTORC1 Signaling: A Double-Edged Sword in Diabetic beta Cells. Cell Metab. 2018, 27, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Paty, B.W.; Harmon, J.S.; Marsh, C.L.; Robertson, R.P. Inhibitory effects of immunosuppressive drugs on insulin secretion from HIT-T15 cells and Wistar rat islets. Transplantation 2002, 73, 353–357. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, W. Role of mTOR in Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2018, 19, 2043. [Google Scholar] [CrossRef]
- Deblon, N.; Bourgoin, L.; Veyrat-Durebex, C.; Peyrou, M.; Vinciguerra, M.; Caillon, A.; Maeder, C.; Fournier, M.; Montet, X.; Rohner-Jeanrenaud, F.; et al. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br. J. Pharmacol. 2012, 165, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, S.; Teutonico, A.; Leogrande, D.; Capobianco, C.; Schena, P.F. Chronic inhibition of mammalian target of rapamycin signaling downregulates insulin receptor substrates 1 and 2 and AKT activation: A crossroad between cancer and diabetes? J. Am. Soc. Nephrol. 2006, 17, 2236–2244. [Google Scholar] [CrossRef] [PubMed]
- Zaza, G.; Granata, S.; Caletti, C.; Signorini, L.; Stallone, G.; Lupo, A. mTOR Inhibition Role in Cellular Mechanisms. Transplantation 2018, 102 (Suppl. S1), S3–S16. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.L.; Watson, C.J.; Bradley, J.A. Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit. Rev. Oncol. Hematol. 2005, 56, 23–46. [Google Scholar] [CrossRef]
- Allison, A.C.; Eugui, E.M. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin. Transplant. 1996, 10 Pt 2, 77–84. [Google Scholar]
- Larsen, C.P.; Pearson, T.C.; Adams, A.B.; Tso, P.; Shirasugi, N.; Strobert, E.; Anderson, D.; Cowan, S.; Price, K.; Naemura, J.; et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transplant. 2005, 5, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Sayegh, M.H.; Turka, L.A. The role of T-cell costimulatory activation pathways in transplant rejection. N. Engl. J. Med. 1998, 338, 1813–1821. [Google Scholar] [CrossRef]
- Vincenti, F.; Larsen, C.; Durrbach, A.; Wekerle, T.; Nashan, B.; Blancho, G.; Lang, P.; Grinyo, J.; Halloran, P.F.; Solez, K.; et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 2005, 353, 770–781. [Google Scholar] [CrossRef]
- Vincenti, F.; Rostaing, L.; Grinyo, J.; Rice, K.; Steinberg, S.; Gaite, L.; Moal, M.C.; Mondragon-Ramirez, G.A.; Kothari, J.; Polinsky, M.S.; et al. Belatacept and Long-Term Outcomes in Kidney Transplantation. N. Engl. J. Med. 2016, 374, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Shabir, S.; Chand, S.; Cockwell, P.; Ball, S.; Borrows, R. Meta-analysis of calcineurin-inhibitor-sparing regimens in kidney transplantation. J. Am. Soc. Nephrol. 2011, 22, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Hecking, M.; Haidinger, M.; Doller, D.; Werzowa, J.; Tura, A.; Zhang, J.; Tekoglu, H.; Pleiner, J.; Wrba, T.; Rasoul-Rockenschaub, S.; et al. Early basal insulin therapy decreases new-onset diabetes after renal transplantation. J. Am. Soc. Nephrol. 2012, 23, 739–749. [Google Scholar] [CrossRef]
- Schwaiger, E.; Krenn, S.; Kurnikowski, A.; Bergfeld, L.; Perez-Saez, M.J.; Frey, A.; Topitz, D.; Bergmann, M.; Hodlmoser, S.; Bachmann, F.; et al. Early Postoperative Basal Insulin Therapy versus Standard of Care for the Prevention of Diabetes Mellitus after Kidney Transplantation: A Multicenter Randomized Trial. J. Am. Soc. Nephrol. 2021, 32, 2083–2098. [Google Scholar] [CrossRef] [PubMed]
- Sagedal, S.; Asberg, A.; Hartmann, A.; Bergan, S.; Berg, K.J. Glipizide treatment of post-transplant diabetes does not interfere with cyclosporine pharmacokinetics in renal allograft recipients. Clin. Transplant. 1998, 12, 553–556. [Google Scholar]
- Davies, M.J. Insulin secretagogues. Curr. Med. Res. Opin. 2002, 18 (Suppl. S1), s22–s30. [Google Scholar] [CrossRef]
- Krepinsky, J.; Ingram, A.J.; Clase, C.M. Prolonged sulfonylurea-induced hypoglycemia in diabetic patients with end-stage renal disease. Am. J. Kidney Dis. 2000, 35, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Turk, T.; Pietruck, F.; Dolff, S.; Kribben, A.; Janssen, O.E.; Mann, K.; Philipp, T.; Heemann, U.; Witzke, O. Repaglinide in the management of new-onset diabetes mellitus after renal transplantation. Am. J. Transplant. 2006, 6, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.C.; Wu, V.C.; Lin, C.J.; Pan, C.F.; Chen, C.Y.; Huang, T.M.; Wu, C.H.; Chen, L.; Wu, C.J.; The NRPB Kidney Consortium. Meglitinides increase the risk of hypoglycemia in diabetic patients with advanced chronic kidney disease: A nationwide, population-based study. Oncotarget 2017, 8, 78086–78095. [Google Scholar] [CrossRef]
- Rhee, C.M.; Kalantar-Zadeh, K. Diabetes mellitus: Complex interplay between metformin, AKI and lactic acidosis. Nat. Rev. Nephrol. 2017, 13, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.; Anderson-Haag, T.L.; Gustafson, S.; Snyder, J.J.; Kasiske, B.L.; Israni, A.K. Metformin use in kidney transplant recipients in the United States: An observational study. Am. J. Nephrol. 2014, 40, 546–553. [Google Scholar] [CrossRef]
- Alnasrallah, B.; Goh, T.L.; Chan, L.W.; Manley, P.; Pilmore, H. Transplantation and diabetes (Transdiab): A pilot randomised controlled trial of metformin in impaired glucose tolerance after kidney transplantation. BMC Nephrol. 2019, 20, 147. [Google Scholar] [CrossRef] [PubMed]
- Kharazmkia, A.; Ahmadpoor, P.; Ziaei, S.; Salamzadeh, J.; Pour-Reza-Gholi, F.; Khoshdel, A.; Samavat, S.; Samadian, F.; Nafar, M. Effects of pioglitazone on blood glucose and inflammatory markers of diabetic kidney transplant patients: A randomized controlled trial. Iran. J. Kidney Dis. 2014, 8, 408–416. [Google Scholar] [PubMed]
- Lane, J.T.; Odegaard, D.E.; Haire, C.E.; Collier, D.S.; Wrenshall, L.E.; Stevens, R.B. Sitagliptin therapy in kidney transplant recipients with new-onset diabetes after transplantation. Transplantation 2011, 92, e56–e57. [Google Scholar] [CrossRef]
- Strom Halden, T.A.; Asberg, A.; Vik, K.; Hartmann, A.; Jenssen, T. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol. Dial. Transplant. 2014, 29, 926–933. [Google Scholar] [CrossRef]
- Haidinger, M.; Werzowa, J.; Hecking, M.; Antlanger, M.; Stemer, G.; Pleiner, J.; Kopecky, C.; Kovarik, J.J.; Doller, D.; Pacini, G.; et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation--a randomized, double-blind, placebo-controlled trial. Am. J. Transplant. 2014, 14, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Boerner, B.P.; Miles, C.D.; Shivaswamy, V. Efficacy and safety of sitagliptin for the treatment of new-onset diabetes after renal transplantation. Int. J. Endocrinol. 2014, 2014, 617638. [Google Scholar] [CrossRef]
- Bae, J.; Lee, M.J.; Choe, E.Y.; Jung, C.H.; Wang, H.J.; Kim, M.S.; Kim, Y.S.; Park, J.Y.; Kang, E.S. Effects of Dipeptidyl Peptidase-4 Inhibitors on Hyperglycemia and Blood Cyclosporine Levels in Renal Transplant Patients with Diabetes: A Pilot Study. Endocrinol. Metab. 2016, 31, 161–167. [Google Scholar] [CrossRef]
- Abdelaziz, T.S.; Ali, A.Y.; Fatthy, M. Efficacy and Safety of Dipeptidyl Peptidase-4 Inhibitors in Kidney Transplant Recipients with Post-transplant Diabetes Mellitus (PTDM)—A Systematic Review and Meta-Analysis. Curr. Diabetes Rev. 2020, 16, 580–585. [Google Scholar] [CrossRef]
- Liou, J.H.; Liu, Y.M.; Chen, C.H. Management of Diabetes Mellitus with Glucagonlike Peptide-1 Agonist Liraglutide in Renal Transplant Recipients: A Retrospective Study. Transplant. Proc. 2018, 50, 2502–2505. [Google Scholar] [CrossRef]
- Singh, P.; Pesavento, T.E.; Washburn, K.; Walsh, D.; Meng, S. Largest single-centre experience of dulaglutide for management of diabetes mellitus in solid organ transplant recipients. Diabetes Obes. Metab. 2019, 21, 1061–1065. [Google Scholar] [CrossRef]
- Singh, P.; Taufeeq, M.; Pesavento, T.E.; Washburn, K.; Walsh, D.; Meng, S. Comparison of the glucagon-like-peptide-1 receptor agonists dulaglutide and liraglutide for the management of diabetes in solid organ transplant: A retrospective study. Diabetes Obes. Metab. 2020, 22, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, T.; Lyden, E.; Shivaswamy, V. A Retrospective Study of Glucagon-Like Peptide 1 Receptor Agonists for the Management of Diabetes After Transplantation. Diabetes Ther. 2020, 11, 987–994. [Google Scholar] [CrossRef]
- Kukla, A.; Hill, J.; Merzkani, M.; Bentall, A.; Lorenz, E.C.; Park, W.D.; D’Costa, M.; Kudva, Y.C.; Stegall, M.D.; Shah, P. The Use of GLP1R Agonists for the Treatment of Type 2 Diabetes in Kidney Transplant Recipients. Transplant. Direct 2020, 6, e524. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, J.; Jung, C.H.; Park, J.Y.; Lee, W.J. Dulaglutide as an Effective Replacement for Prandial Insulin in Kidney Transplant Recipients with Type 2 Diabetes Mellitus: A Retrospective Review. Diabetes Metab. J. 2021, 45, 948–953. [Google Scholar] [CrossRef]
- Yugueros Gonzalez, A.; Kanter, J.; Sancho, A.; Gavela, E.; Sola, E.; Avila, A.; Pallardo, L.M. Institutional Experience with New Antidiabetic Drugs in Kidney Transplant. Transplant. Proc. 2021, 53, 2678–2680. [Google Scholar] [CrossRef] [PubMed]
- Vigara, L.A.; Villanego, F.; Orellana, C.; Naranjo, J.; Torrado, J.; Garcia, T.; Mazuecos, A. Effectiveness and safety of glucagon-like peptide-1 receptor agonist in a cohort of kidney transplant recipients. Clin. Transplant. 2022, 36, e14633. [Google Scholar] [CrossRef]
- Sweiss, H.; Hall, R.; Zeilmann, D.; Escamilla, J.; Bhayana, S.; Patel, R.; Long, C. Single-center Evaluation of Safety & Efficacy of Glucagon-Like Peptide-1 Receptor Agonists in Solid Organ Transplantation. Prog. Transplant. 2022, 32, 357–362. [Google Scholar] [CrossRef]
- Baldwin, D., Jr.; Duffin, K.E. Rosiglitazone treatment of diabetes mellitus after solid organ transplantation. Transplantation 2004, 77, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, G.; Baldwin, D. Rosiglitazone therapy of posttransplant diabetes mellitus. Transplantation 2005, 80, 1402–1405. [Google Scholar] [CrossRef] [PubMed]
- Voytovich, M.H.; Simonsen, C.; Jenssen, T.; Hjelmesaeth, J.; Asberg, A.; Hartmann, A. Short-term treatment with rosiglitazone improves glucose tolerance, insulin sensitivity and endothelial function in renal transplant recipients. Nephrol. Dial. Transplant. 2005, 20, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Rajasekeran, H.; Kim, S.J.; Cardella, C.J.; Schiff, J.; Cattral, M.; Cherney, D.Z.I.; Singh, S.K.S. Use of Canagliflozin in Kidney Transplant Recipients for the Treatment of Type 2 Diabetes: A Case Series. Diabetes Care 2017, 40, e75–e76. [Google Scholar] [CrossRef] [PubMed]
- Halden, T.A.S.; Kvitne, K.E.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Asberg, A.; Jenssen, T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients with Posttransplant Diabetes Mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef]
- Schwaiger, E.; Burghart, L.; Signorini, L.; Ristl, R.; Kopecky, C.; Tura, A.; Pacini, G.; Wrba, T.; Antlanger, M.; Schmaldienst, S.; et al. Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am. J. Transplant. 2019, 19, 907–919. [Google Scholar] [CrossRef]
- Shah, M.; Virani, Z.; Rajput, P.; Shah, B. Efficacy and Safety of Canagliflozin in Kidney Transplant Patients. Indian J. Nephrol. 2019, 29, 278–281. [Google Scholar] [CrossRef]
- Attallah, N.; Yassine, L. Use of Empagliflozin in Recipients of Kidney Transplant: A Report of 8 Cases. Transplant. Proc. 2019, 51, 3275–3280. [Google Scholar] [CrossRef]
- Mahling, M.; Schork, A.; Nadalin, S.; Fritsche, A.; Heyne, N.; Guthoff, M. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibition in Kidney Transplant Recipients with Diabetes Mellitus. Kidney Blood Press. Res. 2019, 44, 984–992. [Google Scholar] [CrossRef]
- AlKindi, F.; Al-Omary, H.L.; Hussain, Q.; Al Hakim, M.; Chaaban, A.; Boobes, Y. Outcomes of SGLT2 Inhibitors Use in Diabetic Renal Transplant Patients. Transplant. Proc. 2020, 52, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Kwon, S.; Jeon, Y.; Kim, Y.H.; Kwon, H.; Kim, Y.S.; Lee, H.; Kim, Y.L.; Kim, C.D.; Park, S.H.; et al. The Efficacy and Safety of SGLT2 Inhibitor in Diabetic Kidney Transplant Recipients. Transplantation 2022, 106, e404–e412. [Google Scholar] [CrossRef]
- Sweiss, H.; Selznick, L.; Contreras, J.; Long, C.; Hall, R.; Bhayana, S.; Patel, R.; Klein, K. Safety and Efficacy of Sodium-Glucose Cotransporter-2 Inhibitors in Solid Organ Transplant Recipients. Prog. Transplant. 2023, 33, 261–265. [Google Scholar] [CrossRef]
- Lin, Y.; Mok, M.; Harrison, J.; Battistella, M.; Farrell, A.; Leung, M.; Cheung, C. Use of sodium-glucose co-transporter 2 inhibitors in solid organ transplant recipients with pre-existing type 2 or post-transplantation diabetes mellitus: A systematic review. Transplant. Rev. 2023, 37, 100729. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Pfeiffer, A.F.H. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes. Metab. 2021, 23 (Suppl. S3), 5–29. [Google Scholar] [CrossRef] [PubMed]
- Madsbad, S.; Holst, J.J. Cardiovascular effects of incretins: Focus on glucagon-like peptide-1 receptor agonists. Cardiovasc. Res. 2023, 119, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jodar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Ryden, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- Kidney, G. Disease: Improving Global Outcomes Diabetes Work, “KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease”. Kidney Int. 2022, 102 (Suppl. S5), S1–S127. [Google Scholar] [CrossRef]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020, 43, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Kuningas, K.; Driscoll, J.; Mair, R.; Smith, H.; Dutton, M.; Day, E.; Sharif, A.A. Comparing Glycaemic Benefits of Active Versus Passive Lifestyle Intervention in Kidney Allograft Recipients: A Randomized Controlled Trial. Transplantation 2020, 104, 1491–1499. [Google Scholar] [CrossRef]
- Murakami, N.; Riella, L.V.; Funakoshi, T. Risk of metabolic complications in kidney transplantation after conversion to mTOR inhibitor: A systematic review and meta-analysis. Am. J. Transplant. 2014, 14, 2317–2327. [Google Scholar] [CrossRef]
- Haller, M.C.; Royuela, A.; Nagler, E.V.; Pascual, J.; Webster, A.C. Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst. Rev. 2016, 2016, CD005632. [Google Scholar] [CrossRef]
Drug Type | Pathophysiology |
---|---|
mTOR inhibitors | Increase in apoptosis Decrease in β-cell size Reduction in basal and insulin-stimulated glucose uptake and glycogen synthesis Reduction in basal and insulin-stimulated glucose uptake and glycogen synthesis Decrease in insulin-stimulated Akt phosphorylation |
Calcineurin Inhibitors | Both tacrolimus and cyclosporin have diabetogenic effects Decrease in insulin secretion Increase in insulin resistance Toxicity on β-cells Tacrolimus has more diabetogenic effects than cyclosporin |
Mycophenolate | No diabetogenic effect |
Belatacept | Not independent diabetogenic effect Decreased risk compared to Tacrolimus |
Glucocorticoids | Increased insulin resistance Increased gluconeogenesis Suppressed insulin secretion Β-cell apoptosis |
Study | Methods | Conclusions |
---|---|---|
Insulin Secretagogues | ||
Turk et al., 2006 [61] N = 23 | Study type: Observational study single-center Treatment: Repaglinide versus rosiglitazone (control group) Primary outcome: improvement in blood glucose concentration and HbA1c <7% in the absence of glucosuria and without need for additional antidiabetic agents Follow-up period: 6 months | 14 of 23 patients were successfully treated Mean HbA1c decreased for 7.6 ± 0.6% to 5.8% ± 0.6% Nine patients had persistent hyperglycemia and were switched to insulin treatment HbA1c (8.5 ± 2.9% at the beginning to 7.4 ± 2.2%) |
DPP4 inhibitors | ||
Lane et al., 2011 [67] N = 13 | Study type: Pilot study single-center Treatment: Sitagliptin 100 mg Primary outcome: Effect of sitagliptin on tacrolimus and sirolimus levels and change in renal function. Follow-up: 3 months | No significant change in tacrolimus and sirolimus levels and no change in eGFR (58.9 ± 4.4 mL/min at entry and 60.5 ± 5.6 mL/min at week 12) HbA1c improved from a baseline of 7.2% ± 0.1 to 6.7% ± 0.2 (p = 0.002) |
Strom et al., 2014 [68] N = 19 | Study type: Randomized controlled cross-over, single-center Treatment: Sitagliptin 50–100 mg vs. sitagliptin-free period Primary outcome: Change in oral glucose tolerance test, insulin and laser Doppler flowmetry assessment of endothelial function with sitagliptin Follow-up: 4 weeks | The median first- and second-phase insulin increased by 56.3% (45.2–112.6%, p = 0.005) and 39.3% (26.5–81.0%, p = 0.006). Fasting and 2 h serum glucose fell 0.9 mmol/L (0.5–1.7 mmol/L, p = 0.003) and 2.9 mmol/L (0.5–6.4 mmol/L, p = 0.004), respectively. No serious adverse events were observed |
Haidinger et al., 2014 [69] N = 33 | Study type: Prospective double-blind, randomized, placebo-controlled phase II trial. Single-center. Treatment: Vildagliptin (17), Placebo (16) Primary Outcome: Change in OGTT-derived 2HPG from baseline to 3 months Follow-up: 16 weeks | Reduction in 2HPG in vildagliptin compared with placebo (−73.7 ± 51.3 mg/dL vs. −5.7 ± 41.4 mg/dL, p ≤ 0.01) No severe adverse events were observed. No drug interactions with the immunosuppressants. |
Boerner et al., 2014 [70] N = 22 | Study type: Observational retrospective. Single-center Treatment: Sitagliptin alone (19), sitagliptin and other meds (1), sitagliptin stopped and other meds started (2). Primary outcome: Efficacy and safety of sitagliptin in terms of diabetes control, side effects, immunosuppressant levels, and graft function. Follow-up: 12 months then extended | HbA1c was significantly improved at 6 and 12 months Analysis of long-term follow-up (32.5 ± 17.8 months) revealed that 17/22 patients remained on sitagliptin (mean hemoglobin A1c <7%), with 9/17 patients remaining on sitagliptin alone Transplant-specific adverse events were rare |
Bae et al., 2016 [71] N = 65 | Study type: Observational retrospective longitudinal, single-center Treatment: Vildagliptin (N = 17), Sitagliptin (N = 28), and Linagliptin (N = 20) Primary outcome: Glucose-lowering efficacy (HbA1c) of the DPP-4 inhibitors and cyclosporin changes with each drug Follow-up period: 3 months | Linagliptin demonstrates superior glucose-lowering efficacy (mean HBA1c −1.40 ± 1.34 p = 0.016) Cyclosporin trough levels were increased in sitagliptin compared with vildagliptin (30.62 ± 81.70 ng/mL vs. 24.22 ± 53.54 ng/mL p = 0.036) in kidney transplant patients |
Abdelazis et al., 2020 [72] | Study type: Systematic Review and Meta-Analysis Treatment: Any DPP-4 inhibitor vs. placebo or other hypoglycemic agent Primary outcome: Difference in HbA1c. Safety endpoints: worsening of graft functions and change in Tacrolimus trough level. | Favorable glycemic effect in HbA1c (−0.993, 95% CI = −1.303 to −0.683, p = 0.001) Not significant change in eGFR (0.147, 95% CI = −0.139–0.433, p = 0.312) Not significant change in Tacrolimus level (0.152, 95% CI = −0.172 to 0.477, p = 0.354). |
GLP-1 Agonists | ||
Liou et al., 2018 [73] (N = 7) | Study type: Retrospective single-center Treatment: Liraglutide Primary outcome: long-term benefits of liraglutide in management of DM in kidney transplant recipients Follow-up period: 19.4 ± 7.6 (range 10.5–27.6) months. | Glycemic control improved fasting blood sugar (FBS) from an initial 228.6 ± 39.1 mg/dL to a final FBS of 166.0 ± 26.6 mg/dL (p = 0.103), glycated hemoglobin (HbA1c) from an initial 10.0 ± 1.6% to a final 8.1 ± 0.8% (p = 0.043). The average body weight was from an initial of 78.0 ± 7.8 kg to a nadir of 75.1 ± 9.1 kg (p = 0.032). No significant change in urinary protein to creatinine ratio. |
Singh et al., 2019 [74] (N = 63) | Study type: Retrospective single-center Treatment: Dulaglutide Primary outcome: change in weight (kg), BMI (kg/m2), insulin requirements (units), Cardiovascular morbidity, graft-survival, and all-cause mortality Follow-up period: 6, 12, 24 months | Mean of the paired difference for reduction in weight was 2.07 (p value < 0.003), 4.007 (p value < 0.001), and 5.235 kg (p value < 0.034) and in BMI was 0.808 (p value < 0.001), 1.352 (p value < 0.005), and 2.015 kg/m2 (p value < 0.045) at 6, 12, and 24 months, respectively The mean daily insulin requirement before dulaglutide treatment was 22.9 units, which decreased to a mean of 17.03 units after dulaglutide treatment (mean of paired difference, 5.95 units; p = 0.0002). |
Singh et al., 2020 [75] (N = 88) | Study type: Retrospective single-center (US) Treatment: Dulaglutide (N = 63), Liraglutide (N = 25) Primary outcome: assess the safety and effectiveness of dulaglutide and liraglutide in solid organ transplant with diabetes Follow-up period: 6 months, 12 months, 24 months | The % decreases in weight were 2%, 4%, and 5.2% with dulaglutide, and 0.09%, 0.87%, and 0.89% with liraglutide, at 6, 12, and 24 months, respectively. BMI % reductions of 2.4%, 6%, and 8% with dulaglutide, and minimal decreases of 0.24%, 1.4%, and 0.54% with liraglutide, at 6, 12, and 24 months, respectively (p values < 0.05 throughout the study period). The % reduction in insulin requirement was 26% with dulaglutide versus 3.6% with liraglutide at the end of follow-up (p = 0.01). |
Thangavelu et al., 2020 [76] (N = 19) | Study type: Retrospective single-center Treatment: Liraglutide (N = 10), dulaglutide (N = 5), semaglutide (N = 2), and exenatide (N = 2) Primary outcome: changes in immunosuppressant levels, rejection episodes, changes in hemoglobin A1c (HbA1c), weight, and body mass index (BMI) while on the GLP-1RA Follow-up period: 12 months | Kidney transplants: 7 patients No significant changes in tacrolimus levels and renal function Mean decrease in weight was 4.86 kg [95% CI −7.79, −1.93] BMI decreased by mean of 1.63 kg/m2 at the end of 12 months [95% CI −2.53, −0.73] HbA1c decreased from baseline by 1.08% [95% CI −1.65, −0.51], 0.96% [95% CI −1.68, −0.25], and 0.75% [95% CI −1.55, 0.05] at 3, 6, and 12 months, respectively |
Kukla et al., 2020 [77] (N = 17) | Study type: Retrospective single-center Treatment: Liraglutide (N = 14), dulaglutide (N = 2), and exenatide (N = 1) Primary outcome: efficacy, safety, and the effect on kidney allograft function in kidney transplant recipients on GLP1a Follow-up period: at least 12 months (N = 14) | Median body weight and BMI at the therapy implementation was 106 [IQR 98.5–125.2] kg and 36.5 [IQR 34.7–38.1] kg/m2, respectively. Not statistically significant at 12 months. Reduction in the total daily insulin dose, from the median of 63 [interquartile range 43–113] IU to 44 [interquartile range 25–88], and reduction in the risk of hypoglycemia Median eGFR at therapy initiation was 52 [IQR 40–60] mL/min/1.73 m2 and kidney function remained stable. Tacrolimus dose did not require adjustment and was not significantly changed within 4 months of initiation (p = 0.3) |
Kim et al., 2020 [78] (N = 37) | Study type: Retrospective single-center Treatment: Dulaglutide (0.75 mg and 1.5 mg) and basal insulin vs. multiple insulin injections Primary outcome: efficacy of dulaglutide compared to prandial insulin in kidney transplant recipients with T2DM undergoing multiple daily insulin injection (MDI) therapy Follow-up period: 6 months | HbA1c 7.1% vs. 7.0% for dulaglutide and MDI injections, respectively; 95% confidence interval [CI], −0.53 to 0.28; p = 0.53) The basal insulin and dulaglutide combination resulted in a reduction in FPG levels by 9.7 mg/dL (95% CI, 2.09 to 41.54; p = 0.03), in body weight by 4.9 kg (95% CI, 2.87 to 6.98; <0.001), and in basal insulin dose by 9.52 IU (95% CI, 5.80 to 3.23; p < 0.001). |
Yugueros González et al., 2021 [79] (N = 15) | Study type: Retrospective single-center Treatment: Semaglutide (N = 7), liraglutide (N = 4), dulaglutide (N = 2), and empagliflozin (N = 2) Primary outcome: efficacy and safety of GLP-1a and/or SGLT2i in kidney transplant recipients Follow-up period: 12 months | Median HbA1c at baseline was 6.7 (interquartile range [IQR] = 5.8–8.2) and at 12 months it was 6 (IQR = 5.3-8.1, p = 0.96) Mean weight difference at 12 months was a loss of 7.2 ± 6 kg; median body mass index at baseline was 31.2 kg/m2 (IQR = 29.7–35.5) and 29.5 kg/m2 (IQR = 27.6–31.6, p = 0.01) at 12 months |
Vigara et al., 2022 [80] (N = 40) | Study type: Retrospective single-center Treatment: Semaglutide (19), liraglutide (13), and dulaglutide (8) Primary outcome: efficacy of GLP-1RA in kidney transplant recipients Follow-up period: 6 months (N = 40), 12 months (N = 26) | eGFR improvement (+3.5 mL/min/1.73 m2 at 12 months, p = 0.030) and a reduction in proteinuria (−59.1 mg/g at 6 months, p = 0.009 and −48.5mg/g at 12 months, p = 0.021) Body weight was reduced (−2.4 kg at 6 months, p = 0.006 and −3 kg at 12 months, p = 0.041). HbA1c was also decreased (−9 mmol/mol at 6 months, p < 0.001 and −5 mmol/mol at 12 months, p = 0.018) |
Sweiss et al., 2022 [81] (N = 118) | Study type: Retrospective single-center Treatment: Dulaglutide (N = 45), liraglutide (N = 36), semaglutide (N = 32), and exenatide ER (N = 5) Primary outcome: efficacy and safety of GLP1-RA for DM in SOT transplants for a minimum of 3–12 months Follow-up period: 3–12 months | Kidney transplants: 70% A statistically significant difference was observed in median fasting blood glucose and HbA1c at baseline to 3–12-month nadir (8% (7–9) vs. 7% (6–8); p < 0.001). Fasting blood glucose (p < 0.0001), body weight (p < 0.0001), body mass index (p = 0.0008), serum creatinine (p < 0.0001), and eGFR (p < 0.0001) were all found to be statistically significant from baseline to 3 to 12-month nadir. |
Thiazolidinediones | ||
Baldwin Jr et al., (2004) [82] N = 18 | Study type: Case series, single-center Treatment: rosiglitazone 4 mg/d, increased to 4 mg twice daily in 8 patients. Primary outcome: Changes in serum creatinine, cyclosporin, or tracrolimus. Change in HbA1c. Follow-up: 133–718 days (mean 381 days) | No significant changes in serum creatinine, cyclosporin, or tacrolimus. Mean HbA1c improved from 8.1 ± 1.5% to 6.9 ± 1.3%, p = 0.01. No patient developed clinically significant peripheral edema or pulmonary congestion |
Villanueva et al., (2005) [83] N = 40 | Study type: Retrospective, single-center Treatment: rosiglitazone 4 mg/d increased to BID when needed. Primary outcome: Normalization of levels of HbA1c in patients with post-transplant Diabetes. Follow-up: 3–12 months (mean 26 weeks) | 30% of the patients maintained normal HbA1C levels (5.6 ± 0.8%) with Rosiglitazone alone, 63% required addition of a sulfonylurea. 63% continued 4 mg/d and 37% required an increase to 8 mg/d. Mild edema developed in 13% of patients. |
Voytovich et al., (2005) [84] N = 10 | Study type: Case series, single-center Treatment: Rosiglitazone 8mg/d Primary outcome: Changes in glucose disposal rate. Change in fasting and 2 h plasma glucose. Follow-up: 4 weeks | Improved mean glucose disposal rate (from 6.5 to 9.7 g/kg/min, p = 0.02) and a significant decline in fasting and 2 h plasma glucose (from 6.4 to 5.8 mmol/l, p = 0.02 and from 14.2 to 10.6 mmol/l, p = 0.03, respectively). No changes in plasma tacrolimus and cyclosporin were observed. |
Kharazmkia et al., (2014) [66] N = 64 | Study type: Double-blind randomized placebo-controlled trial, single-center Treatment: pioglitazone (30 mg) plus insulin and placebo plus insulin Primary outcome: Changes in blood glucose level Follow-up: 4 months | No significant change in blood glucose levels. Decrease in HbA1C% (−1.21 ± 1.2, p ≤ 0.001) Four dropouts in pioglitazone group (three had mild to moderate lower extremity edema and one insomnia) Did not affect cyclosporin level or doses (−12.1 ± 28.0 vs. −12.41 ± 7.5, p = 0.13) |
SGLT2 inhibitors | ||
Rajasekeran et al., (2017) [85] N = 10 | Study type: Case series Treatment: Canagliflozin Primary outcome: Mean changes in metabolic and hemodynamic parameters Follow-up: 80.5 person-months | Change in HbA1c −0.84% (1.2 SD), p = 0.07 Change in weight −2.14 kg (2.8 SD), p = 0.07 Change in eGFR −4.3 mL 7 min/1.73 m2 (12.2 SD), p = 0.3 |
Halden et al., (2019) [86] N = 49 | Study type: Prospective, randomized double-blind, single-center Treatment: Empagliflozin 10 mg, placebo. Primary outcome: Change in mean glucose estimated with continuous glucose monitor. Secondary outcome: change in HbA1c, FPG, 2 h plasma glucose, body weight, WHR (waist/hip ratio), visceral fat, blood pressure, and eGFR. Follow-up: 24 weeks | Median change in HbA1c significantly reduced with empagliflozin compared with placebo: −0.2% (−0.6, −0.1) vs. −0.1% (−0.1, 0.4), p = 0.025. Significant reduction in body weight of −2.5 kg (−4.0, −0.05) compared with an increase of 1 kg in the placebo group (p = 0.014) No significant differences in adverse events, immunosuppressive drug levels, or eGFR |
Schwaiger et al., (2019) [87] N = 14 | Study type: Prospective, interventional pilot, single-center study Treatment: Empagliflozin 10 mg (initiated after stopping insulin) Primary outcome: Change in the 2 h glucose level in the OGTT (Increase <30 mg/dL suggesting noninferiority compared to insulin) Follow-up: 14 participants 4 weeks and 8 participants 12 months | 2 h glucose increased from 232 ± 82 mg/dL (baseline) to 273 ± 116 mg/dL (4 weeks, p = 0.6) and to 251 ± 71 mg/dL (12 months, p = 0.41) Reduction in eGFR from 55.6 ± 20.3 to 47.5 ± 15.1 mL/min/1.73 m2 (4 weeks, p = 0.008) and to 53.5 ± 13.3 (12 months, p = 0.93) Bacterial urinary infections occurred in five empagliflozin participants vs. nine matched reference patients (p = 0.81) |
Shah M et al., (2019) [88] N = 24 | Study type: Pilot study, single-center Treatment: Canagliflozin 100 mg Primary outcome: Change in weight, BP, and HbA1c Follow-up: 6 months | Mean body weight was 78.6 ± 12.1 kg before and 76.1 ± 11.2 kg 6 months after, p < 0.05) Mean systolic and diastolic BP (mmHg) was 142 ± 21 and 81 ± 9 before and 134 ± 17 and 79 ± 8, 6 months after; p < 0.05 Decrease in HbA1c from 8.5% ± 1.5 to 7.6 ± 1, p < 0.05. No significant change in creatinine |
Attallah et al., (2019) [89] N = 8 | Study type: Case series Treatment: empagliflozin Primary outcome: change in creatinine, HbA1c, urine protein, and weight Follow-up: 1 year | Urine protein decreased by 0.6 g/d, HbA1c decreased by 0.85% and weight decreased by 2.4 kg During the first month, serum creatinine increased by 12.4% but then stabilized Two patients developed UTI |
Mahling M et al., (2019) [90] N = 10 | Study type: Prospective observational study, single-center Treatment: Empagliflozin Primary outcome: Change in eGFR, HbA1c Follow up: 6.3 person-years | The median eGFR at baseline was 57 mL/min/1.73 m and remained stable Median HbA1c decreased from 7.3 to 7.1% Two patients developed UTI |
AlKindi F et al., (2019) [91] N = 8 | Study type: Retrospective observational single-center Treatment: empagliflozin 10 mg/d (5), empagliflozin 25 mg/d (1) and dapagliflozin 5 mg/d (2) Primary Outcome: Changes in HbA1c, renal function, blood pressure, and weight Follow-up: 12 months | Decrease in HbA1c from 9.34 ± 1.36 to 7.41 ± 1.44, p ≤ 0.05 Decrease in body mass index (BMI) from 32.74 ± 7.2 to 27.4 ± 4.2, p ≤ 0.05 No significant change in eGFR, serum creatinine, and blood pressure One patient developed UTI |
Lim et al., (2022) [92] N = 2083 | Study type: Multicenter cohort, propensity score matching Treatment: SGLT2 inhibitors vs. non SGLT2 inhibitors Primary outcome: Composite outcome of all-cause mortality, death-censored graft failure (DCGF), serum creatinine doubling. Follow-up: 62.9 ± 42.2 months | SGLT2i group had a lower risk of primary composite outcome than control group (adjusted HR, 0.43; 95% CI, 0.24–0.78; p = 0.006) Decreased risk of DCGF and serum creatinine doubling in the SGLT2i group Overall eGFR remained stable without an initial dip after SGLT2i use |
Sweiss H et al., (2023) [93] N = 49 (18 kidney) | Study type: Retrospective Treatment: SGLT2 inhibitors (26 liver, 18 kidney, 4 lung, and 1 simultaneous liver–kidney recipient) Primary outcomes: included change in hemoglobin A1c, fasting blood glucose, actual body weight, and body mass index. Safety outcomes included adverse effects, cardiovascular events, death-censored graft loss, and all-cause mortality. Follow-up: 12 months | Glycemic and weight loss outcomes showed a statistically significant benefit from SGLT2i use Total safety outcome incidence was minimal at 12 months No patient experienced myocardial infarctions, graft loss, or mortality at 3–12 months One incidence of urinary tract infection and stroke occurred each |
Lin Y et al., (2023) [94] N = 2417 | Study type: Systematic Review Treatment: Included all primary interventional and observational studies on SGLT2 inhibitors in transplant patients (15 studies total) Primary outcomes: Mortality, cardiovascular and kidney events, graft rejection Follow-up: 0.4 to 5.2 years | Could not confirm clinical cardiovascular and kidney benefits in the transplant population SGLT2 inhibitors may improve glycemic control; however, they are associated with increased risk of UTIs Benefit of SGLT2 inhibitors may not outweigh potential harm in solid organ transplant population. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, N.-Y.T.; Cruz, D.; Madera-Marin, L.; Ravender, R.; Garcia, P. Diabetic Kidney Disease in Post-Kidney Transplant Patients. J. Clin. Med. 2024, 13, 793. https://doi.org/10.3390/jcm13030793
Pham N-YT, Cruz D, Madera-Marin L, Ravender R, Garcia P. Diabetic Kidney Disease in Post-Kidney Transplant Patients. Journal of Clinical Medicine. 2024; 13(3):793. https://doi.org/10.3390/jcm13030793
Chicago/Turabian StylePham, Ngoc-Yen T., Diego Cruz, Luis Madera-Marin, Raja Ravender, and Pablo Garcia. 2024. "Diabetic Kidney Disease in Post-Kidney Transplant Patients" Journal of Clinical Medicine 13, no. 3: 793. https://doi.org/10.3390/jcm13030793
APA StylePham, N.-Y. T., Cruz, D., Madera-Marin, L., Ravender, R., & Garcia, P. (2024). Diabetic Kidney Disease in Post-Kidney Transplant Patients. Journal of Clinical Medicine, 13(3), 793. https://doi.org/10.3390/jcm13030793