Malondialdehyde Serum Levels in a Full Characterized Series of 430 Rheumatoid Arthritis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection and Laboratory Assessments
2.3. Cardiovascular Risk and Carotid Ultrasound Assessments
2.4. Statistical Analysis
3. Results
3.1. Demographic and Disease-Related Data
3.2. Relation between Demographic and Disease-Related Data and MDA Serum Levels
3.3. Relationship of Cardiovascular Risk Score, Carotid Atherosclerosis, and Lipid Profile and Insulin Resistance Indices to MDA Serum Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315. [Google Scholar] [CrossRef] [PubMed]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Karimi Galougahi, K.; Liu, C.C.; Bhindi, R.; Figtree, G.A. Biological Markers of Oxidative Stress: Applications to Cardiovascular Research and Practice. Redox Biol. 2013, 1, 483. [Google Scholar] [CrossRef]
- Porter, N.A.; Caldwell, S.E.; Mills, K.A. Mechanisms of Free Radical Oxidation of Unsaturated Lipids. Lipids 1995, 30, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Meagher, E.A.; Fitzgerald, G.A. Indices of Lipid Peroxidation in Vivo: Strengths and Limitations. Free Radic. Biol. Med. 2000, 28, 1745–1750. [Google Scholar] [CrossRef]
- Ito, F.; Sono, Y.; Ito, T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants 2019, 8, 72. [Google Scholar] [CrossRef]
- Walter, M.F.; Jacob, R.F.; Jeffers, B.; Ghadanfar, M.M.; Preston, G.M.; Buch, J.; Mason, R.P. Serum Levels of Thiobarbituric Acid Reactive Substances Predict Cardiovascular Events in Patients with Stable Coronary Artery Disease: A Longitudinal Analysis of the PREVENT Study. J. Am. Coll. Cardiol. 2004, 44, 1996–2002. [Google Scholar] [CrossRef]
- Lankin, V.Z.; Tikhaze, A.K.; Melkumyants, A.M. Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. Int. J. Mol. Sci. 2023, 24, 128. [Google Scholar] [CrossRef] [PubMed]
- Guellec, D.; Cozien, S.; Ruyssen-Witrand, A.; Dieudé, P.; Saraux, A. Prevalence and Clinical Significance of Extra-Articular Manifestations at Diagnosis in the ESPOIR Cohort with Recent-Onset Arthritis. Semin. Arthritis Rheum. 2020, 50, 409–413. [Google Scholar] [CrossRef]
- Alivernini, S.; Firestein, G.S.; McInnes, I.B. The Pathogenesis of Rheumatoid Arthritis. Immunity 2022, 55, 2255–2270. [Google Scholar] [CrossRef]
- Zamudio-Cuevas, Y.; Martínez-Flores, K.; Martínez-Nava, G.A.; Clavijo-Cornejo, D.; Fernández-Torres, J.; Sánchez-Sánchez, R. Rheumatoid Arthritis and Oxidative Stress. Cell. Mol. Biol. 2022, 68, 174–184. [Google Scholar] [CrossRef]
- Grinnell, S.; Yoshida, K.; Jasin, H.E. Responses of Lymphocytes of Patients with Rheumatoid Arthritis to IgG Modified by Oxygen Radicals or Peroxynitrite. Arthritis Rheum. 2005, 52, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, M.; Hayashi, T.; Jasin, H.E. Covalent Cross-Linking of Immune Complexes by Oxygen Radicals and Nitrite. J. Immunol. 1998, 161, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Yu, G.; Yang, K.; Li, J.; Hao, W.; Chen, H. The Efficacy of Antioxidative Stress Therapy on Oxidative Stress Levels in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Oxid. Med. Cell. Longev. 2021, 2021, 3302886. [Google Scholar] [CrossRef]
- Hashemi, G.; Mirjalili, M.; Basiri, Z.; Tahamoli-Roudsari, A.; Kheiripour, N.; Shahdoust, M.; Ranjbar, A.; Mehrpooya, M.; Ataei, S. A Pilot Study to Evaluate the Effects of Oral N-Acetyl Cysteine on Inflammatory and Oxidative Stress Biomarkers in Rheumatoid Arthritis. Curr. Rheumatol. Rev. 2019, 15, 246–253. [Google Scholar] [CrossRef]
- Nachvak, S.M.; Alipour, B.; Mahdavi, A.M.; Aghdashi, M.A.; Abdollahzad, H.; Pasdar, Y.; Samadi, M.; Mostafai, R. Effects of Coenzyme Q10 Supplementation on Matrix Metalloproteinases and DAS-28 in Patients with Rheumatoid Arthritis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Clin. Rheumatol. 2019, 38, 3367–3374. [Google Scholar] [CrossRef]
- Zamani, B.; Farshbaf, S.; Golkar, H.R.; Bahmani, F.; Asemi, Z. Synbiotic Supplementation and the Effects on Clinical and Metabolic Responses in Patients with Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled Trial. Br. J. Nutr. 2017, 117, 1095–1102. [Google Scholar] [CrossRef]
- Aryaeian, N.; Shahram, F.; Djalali, M.; Eshragian, M.R.; Djazayeri, A.; Sarrafnejad, A.; Salimzadeh, A.; Naderi, N.; Maryam, C. Effect of Conjugated Linoleic Acids, Vitamin E and Their Combination on the Clinical Outcome of Iranian Adults with Active Rheumatoid Arthritis. Int. J. Rheum. Dis. 2009, 12, 20–28. [Google Scholar] [CrossRef]
- León Fernández, O.S.; Viebahn-Haensler, R.; Cabreja, G.L.; Espinosa, I.S.; Matos, Y.H.; Roche, L.D.; Santos, B.T.; Oru, G.T.; Polo Vega, J.C. Medical Ozone Increases Methotrexate Clinical Response and Improves Cellular Redox Balance in Patients with Rheumatoid Arthritis. Eur. J. Pharmacol. 2016, 789, 313–318. [Google Scholar] [CrossRef]
- Peretz, A.; Siderova, V.; Neve, J. Selenium Supplementation in Rheumatoid Arthritis Investigated in a Double Blind, Placebo-Controlled Trial. Scand J. Rheumatol. 2001, 30, 208–212. [Google Scholar] [CrossRef]
- Thiele, G.M.; Duryee, M.J.; Anderson, D.R.; Klassen, L.W.; Mohring, S.M.; Young, K.A.; Benissan-Messan, D.; Sayles, H.; Dusad, A.; Hunter, C.D.; et al. Malondialdehyde-Acetaldehyde Adducts and Anti-Malondialdehyde-Acetaldehyde Antibodies in Rheumatoid Arthritis. Arthritis Rheumatol. 2015, 67, 645–655. [Google Scholar] [CrossRef]
- Quinonez-Flores, C.M.; Gonzalez-Chavez, S.A.; Del Rio Najera, D.; Pacheco-Tena, C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review. Biomed. Res. Int. 2016, 2016, 6097417. [Google Scholar] [CrossRef]
- Hassan, S.Z.; Gheita, T.A.; Kenawy, S.A.; Fahim, A.T.; El-Sorougy, I.M.; Abdou, M.S. Oxidative Stress in Systemic Lupus Erythematosus and Rheumatoid Arthritis Patients: Relationship to Disease Manifestations and Activity. Int. J. Rheum. Dis. 2011, 14, 325–331. [Google Scholar] [CrossRef]
- Ediz, L.; Hiz, O.; Ozkol, H.; Gulcu, E.; Toprak, M.; Ceylan, M.F. Relationship between Anti-CCP Antibodies and Oxidant and Anti-Oxidant Activity in Patients with Rheumatoid Arthritis. Int. J. Med. Sci. 2011, 8, 139. [Google Scholar] [CrossRef]
- Datta, S.; Kundu, S.; Ghosh, P.; De, S.; Ghosh, A.; Chatterjee, M. Correlation of Oxidant Status with Oxidative Tissue Damage in Patients with Rheumatoid Arthritis. Clin. Rheumatol. 2014, 33, 1557–1564. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid Arthritis Classification Criteria: An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Smolen, J.S.; Breedveld, F.C.; Schiff, M.H.; Kalden, J.R.; Emery, P.; Eberl, G.; van Riel, P.L.; Tugwell, P. A Simplified Disease Activity Index for Rheumatoid Arthritis for Use in Clinical Practice. Rheumatology 2003, 42, 244–257. [Google Scholar] [CrossRef]
- Aletaha, D.; Smolen, J. The Simplified Disease Activity Index (SDAI) and the Clinical Disease Activity Index (CDAI): A Review of Their Usefulness and Validity in Rheumatoid Arthritis. Clin. Exp. Rheumatol. 2005, 23, S100–S108. [Google Scholar]
- Prevoo, M.L.L.; van’t Hof, M.A.; Kuper, H.H.; van Leeuwen, M.A.; van de Putte, L.B.A.; van Riel, P.L.C.M. Modified Disease Activity Scores That Include Twenty-eight-joint Counts Development and Validation in a Prospective Longitudinal Study of Patients with Rheumatoid Arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Kikugawa, K.; Kojima, T.; Yamaki, S.; Kosugi, H. Interpretation of the Thiobarbituric Acid Reactivity of Rat Liver and Brain Homogenates in the Presence of Ferric Ion and Ethylenediaminetetraacetic Acid. Anal. Biochem. 1992, 202, 249–255. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the Thiobarbituric Acid-Reactive-Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Valenzuela, A. The Biological Significance of Malondialdehyde Determination in the Assessment of Tissue Oxidative Stress. Life Sci. 1991, 48, 301–309. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Back, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. J. Prev. Cardiol. 2022, 29, 5–115. [Google Scholar] [CrossRef]
- Corrales, A.; González-Juanatey, C.; Peiró, M.E.; Blanco, R.; Llorca, J.; González-Gay, M.A. Carotid Ultrasound Is Useful for the Cardiovascular Risk Stratification of Patients with Rheumatoid Arthritis: Results of a Population-Based Study. Ann. Rheum. Dis. 2014, 73, 722–727. [Google Scholar] [CrossRef]
- Touboul, P.-J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; et al. Mannheim Carotid Intima-Media Thickness Consensus (2004–2006). An Update on Behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc. Dis. 2007, 23, 75–80. [Google Scholar] [CrossRef]
- Das, D.C.; Jahan, I.; Uddin, M.G.; Hossain, M.M.; Chowdhury, M.A.Z.; Fardous, Z.; Rahman, M.M.; Kabir, A.K.M.H.; Deb, S.R.; Siddique, M.A.B.; et al. Serum CRP, MDA, Vitamin C, and Trace Elements in Bangladeshi Patients with Rheumatoid Arthritis. Biol. Trace Elem. Res. 2021, 199, 76–84. [Google Scholar] [CrossRef]
- Karaman, A.; Binici, D.N.; Melikoĝlu, M.A. Comet Assay and Analysis of Micronucleus Formation in Patients with Rheumatoid Arthritis. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2011, 721, 1–5. [Google Scholar] [CrossRef]
- Baskol, G.; Demir, H.; Baskol, M.; Kilic, E.; Ates, F.; Kocer, D.; Muhtaroglu, S. Assessment of Paraoxonase 1 Activity and Malondialdehyde Levels in Patients with Rheumatoid Arthritis. Clin. Biochem. 2005, 38, 951–955. [Google Scholar] [CrossRef]
- Shah, D.; Wanchu, A.; Bhatnagar, A. Interaction between Oxidative Stress and Chemokines: Possible Pathogenic Role in Systemic Lupus Erythematosus and Rheumatoid Arthritis. Immunobiology 2011, 216, 1010–1017. [Google Scholar] [CrossRef]
- Mishra, R.; Singh, A.; Chandra, V.; Negi, M.P.S.; Tripathy, B.C.; Prakash, J.; Gupta, V. A Comparative Analysis of Serological Parameters and Oxidative Stress in Osteoarthritis and Rheumatoid Arthritis. Rheumatol. Int. 2012, 32, 2377–2382. [Google Scholar] [CrossRef]
- Jacobson, G.A.; Ives, S.J.; Narkowicz, C.; Jones, G. Plasma Glutathione Peroxidase (GSH-Px) Concentration Is Elevated in Rheumatoid Arthritis: A Case-Control Study. Clin. Rheumatol. 2012, 31, 1543–1547. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; González-Juanatey, C.; López-Mejias, R.; Riancho-Zarrabeitia, L.; González-Gay, M.A. Metabolic Syndrome in Rheumatoid Arthritis. Mediat. Inflamm. 2013, 2013, 710928. [Google Scholar] [CrossRef]
- González-Gay, M.A.; González-Juanatey, C. Inflammation and Lipid Profile in Rheumatoid Arthritis: Bridging an Apparent Paradox. Ann. Rheum. Dis. 2014, 73, 1281–1284. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; García-Dopico, J.A.; Medina-Vega, L.; González-Gay, M.A.; Díaz-González, F. Impaired Beta Cell Function Is Present in Nondiabetic Rheumatoid Arthritis Patients. Arthritis Res. Ther. 2013, 15, R17. [Google Scholar] [CrossRef]
- Tejera-Segura, B.; López-Mejías, R.; de Vera-González, A.M.; Jiménez-Sosa, A.; Olmos, J.M.; Hernández, J.L.; Llorca, J.; González-Gay, M.A.; Ferraz-Amaro, I. Relationship between Insulin Sensitivity and β-Cell Secretion in Nondiabetic Subjects with Rheumatoid Arthritis. J. Rheumatol. 2019, 46, 229–236. [Google Scholar] [CrossRef]
- Slatter, D.A.; Bolton, C.H.; Bailey, A.J. The Importance of Lipid-Derived Malondialdehyde in Diabetes Mellitus. Diabetologia 2000, 43, 550–557. [Google Scholar] [CrossRef]
- Marjani, A. Lipid Peroxidation Alterations in Type 2 Diabetic Patients. Pak. J. Biol. Sci. 2010, 13, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.S.; Lai, Y.; Hee, K.S.; Loh, C.-W.; Lim, J.Y.; Sathiya, S.H.E.; Stress, M.O.; Shen, A.; Kong, Y.; Lai, K.S.; et al. Oxidative Stress Parameters as Biomarkers of Cardiovascular Disease towards the Development and Progression. Antioxidants 2022, 11, 1175. [Google Scholar] [CrossRef] [PubMed]
- Merino de Paz, N.; García-González, M.; Gómez-Bernal, F.; Quevedo-Abeledo, J.C.; de Vera-González, A.; López-Mejias, R.; Abreu-González, P.; Martín-González, C.; González-Gay, M.; Ferraz-Amaro, I. Relationship between Malondialdehyde Serum Levels and Disease Features in a Full Characterized Series of 284 Patients with Systemic Lupus Erythematosus. Antioxidants 2023, 12, 1535. [Google Scholar] [CrossRef]
- Ibrahim-Achi, Z.; Jorge-Pérez, P.; Abreu-González, P.; López-Mejías, R.; Martín-González, C.; González-Gay, M.; Ferraz-Amaro, I. Malondialdehyde Serum Levels in Patients with Systemic Sclerosis Relate to Dyslipidemia and Low Ventricular Ejection Fraction. Antioxidants 2023, 12, 1668. [Google Scholar] [CrossRef]
- Pattison, D.J.; Winyard, P.G. Dietary Antioxidants in Inflammatory Arthritis: Do They Have Any Role in Etiology or Therapy? Nat. Clin. Pract. Rheumatol. 2008, 4, 590–596. [Google Scholar] [CrossRef]
- Abdollahzad, H.; Aghdashi, M.A.; Asghari Jafarabadi, M.; Alipour, B. Effects of Coenzyme Q10 Supplementation on Inflammatory Cytokines (TNF-α, IL-6) and Oxidative Stress in Rheumatoid Arthritis Patients: A Randomized Controlled Trial. Arch. Med. Res. 2015, 46, 527–533. [Google Scholar] [CrossRef]
Rheumatoid Arthritis | |
---|---|
(n = 430) | |
Age, years | 55 ± 10 |
Female, n (%) | 350 (81) |
Hip circumference, cm | 106 ± 11 |
Abdominal circumference, cm | 97 ± 13 |
Waist-to-hip circumference ratio | 0.92 ± 0.08 |
BMI, kg/m2 | 29 ± 15 |
Cardiovascular risk factors | |
Current smoker | 93 (22) |
Obesity | 137 (32) |
Dyslipidemia | 200 (47) |
Diabetes Mellitus | 54 (13) |
Hypertension | 148 (34) |
Statins, n (%) | 139 (32) |
Disease-related data | |
Disease duration, years | 8 (4–15) |
CRP, mg/L | 2.7 (1.3–6.1) |
ESR, mm/1st hour | 18 (7–32) |
IL-6, pg/mL | 5.0 (3.2–8.6) |
ACPA, n (%) | 253 (65) |
Rheumatoid factor, n (%) | 303 (72) |
SDAI | 12 (7–19) |
CDAI | 8 (4–14) |
DAS28-ESR | 3.13 ± 1.35 |
DAS28-CRP | 2.73 ± 1.08 |
Erosions, n (%) | 166 (43) |
History of extraarticular manifestations, n (%) | 38 (10) |
Current drugs, n (%) | |
Prednisone | 155 (36) |
Prednisone doses, mg/day | 5 (3–5) |
DMARDs | 373 (87) |
NSAIDs | 194 (45) |
Hydroxychloroquine | 45 (18) |
Salazopyrin | 28 (7) |
Methotrexate | 316 (73) |
Leflunomide | 94 (22) |
Anti-TNF therapy | 83 (19) |
Tocilizumab | 23 (5) |
Rituximab | 7 (2) |
Abatacept | 12 (3) |
JAK inhibitors | 20 (5) |
Baricitinib | 6 (1) |
Tofacitinib | 11 (3) |
MDA nmol/mL | ||
---|---|---|
Beta Coef. (95%CI) | p | |
Age, years | −0.002 (−0.02–0.02) | 0.85 |
Female, n (%) | −0.09 (−0.5–0.4) | 0.69 |
Hip circumference, cm | 0.00003 (−0.02–0.02) | 0.99 |
Abdominal circumference, cm | −0.0007 (−0.01–0.01) | 0.92 |
Waist-to-hip circumference ratio | −0.2 (−2–2) | 0.88 |
BMI, kg/m2 | −0.002 (−0.01–0.007) | 0.63 |
Cardiovascular risk factors and data | ||
Current smoker | 0.06 (−0.3–0.5) | 0.76 |
Obesity | −0.1 (−0.5–0.2) | 0.45 |
Dyslipidemia | −0.09 (−0.4–0.2) | 0.60 |
Diabetes Mellitus | −0.3 (−0.8–0.2) | 0.20 |
Hypertension | −0.1 (−0.5–0.2) | 0.44 |
Statins, n (%) | −0.1 (−0.5–0.3) | 0.60 |
Disease-related data | ||
Disease duration, years | −0.006 (−0.02–0.01) | 0.49 |
CRP, mg/L | −0.003 (−0.02–0.009) | 0.61 |
ESR, mm/1st hour | 0.01 (0.003–0.02) | 0.010 |
IL-6, pg/mL | 0.01 (−0.0002–0.02) | 0.055 |
ACPA, n (%) | 0.1 (−0.2–0.5) | 0.45 |
Rheumatoid factor, n (%) | 0.04 (−0.3–0.4) | 0.84 |
DAS28-CRP | 0.1 (−0.05–0.3) | 0.19 |
DAS28-ESR | 0.1 (0.008–0.3) | 0.038 |
SDAI | 0.0003 (−0.01–0.01) | 0.96 |
CDAI | 0.01 (−0.01–0.03) | 0.30 |
Erosions, n (%) | −0.2 (−0.5–0.2) | 0.33 |
History of extraarticular manifestations, n (%) | 0.1 (−0.5–0.7) | 0.76 |
Current drugs, n (%) | ||
Prednisone | 0.2 (−0.1–0.6) | 0.21 |
Prednisone doses, mg/day | 0.02 (−0.08–0.1) | 0.70 |
DMARDs | −0.2 (−0.7–0.3) | 0.51 |
NSAIDs | −0.4 (−0.8–(−0.09)) | 0.013 |
Hydroxychloroquine | 0.1 (−0.5–0.7) | 0.77 |
Salazopyrin | 0.08 (−0.7–0.9) | 0.85 |
Methotrexate | −0.1 (−0.5–0.3) | 0.55 |
Leflunomide | −0.03 (−0.5–0.4) | 0.87 |
Anti-TNF therapy | −0.3 (−0.8–0.1) | 0.15 |
Tocilizumab | −0.1 (−0.9–0.7) | 0.75 |
Rituximab | −0.4 (−2–0.8) | 0.47 |
Abatacept | 0.1 (−1–1) | 0.79 |
JAK inhibitors | −0.4 (−1–0.4) | 0.37 |
Baricitinib | −0.4 (−2–1) | 0.60 |
Tofacitinib | −0.2 (−1–1) | 0.68 |
MDA nmol/mL | |||
---|---|---|---|
Beta Coef. (95% CI) | p | ||
SCORE2 | |||
SCORE2, % | 3.7 (1.8–5.9) | 0.006 (−0.04–0.05) | 0.78 |
Low or moderate risk | 265 (62) | ref. | |
High risk | 108 (25) | 0.3 (−0.1–0.7) | 0.21 |
Very high risk | 57 (13) | 0.06 (−0.5–0.6) | 0.82 |
Carotid ultrasound | |||
cIMT, microns | 696 ± 131 | 0.5 (−1–2) | 0.47 |
Carotid plaque, n (%) | 180 (42) | 0.03 (−0.3–0.4) | 0.84 |
Lipid profile | |||
Total cholesterol, mg/dL | 205 ± 38 | 0.002 (−0.002–0.007) | 0.40 |
Triglycerides, mg/dL | 147 ± 86 | 0.00005 (−0.0003–0.0002) | 0.68 |
Apolipoprotein A1, mg/dL | 173 ± 31 | −0.0006 (−0.006–0.005) | 0.84 |
Apolipoprotein B, mg/dL | 106 ± 26 | −0.0005 (−0.007–0.006) | 0.89 |
Apo B:Apo A1 ratio | 0.63 ± 0.24 | −0.04 (−1–1) | 0.94 |
Apolipoprotein C3, mg/dL | 4.8 (2.2–8.7) | −0.002 (−0.03–0.02) | 0.83 |
LDL-cholesterol, mg/dL | 120 ± 34 | 0.0005 (−0.0008–0.002) | 0.43 |
HDL-cholesterol, mg/dL | 57 ± 15 | −0.007 (−0.02–0.004) | 0.19 |
LDL:HDL cholesterol ratio | 2.27 ± 0.93 | 0.05 (−0.03–0.1) | 0.23 |
Non-HDL cholesterol, mg/dL | 149 ± 39 | 0.003 (−0.001–0.008) | 0.17 |
Lipoprotein (a), mg/dL | 34 (11–107) | −0.001 (−0.004–0.0008) | 0.21 |
Insulin resistance values * | |||
Glucose, mg/dL | 95 ± 24 | −0.00009 (−0.009–0.008) | 0.98 |
C-peptide, ng/mL | 2.5 (1.6–4.0) | 0.02 (−0.07–0.1) | 0.70 |
Insulin, µU/mL | 8.6 (5.5–15.1) | −0.002 (−0.008–0.005) | 0.62 |
HOMA2-IR | 1.09 (0.7–2.0) | 0.02 (−0.1–0.2) | 0.76 |
HOMA2-S% | 92 (51–142) | 0.0006 (−0.004–0.005) | 0.80 |
HOMA2-B%-C-peptide | 162 ± 77 | −0.0003 (−0.004–0.003) | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merino de Paz, N.; Quevedo-Abeledo, J.C.; Gómez-Bernal, F.; de Vera-González, A.; Abreu-González, P.; Martín-González, C.; González-Gay, M.Á.; Ferraz-Amaro, I. Malondialdehyde Serum Levels in a Full Characterized Series of 430 Rheumatoid Arthritis Patients. J. Clin. Med. 2024, 13, 901. https://doi.org/10.3390/jcm13030901
Merino de Paz N, Quevedo-Abeledo JC, Gómez-Bernal F, de Vera-González A, Abreu-González P, Martín-González C, González-Gay MÁ, Ferraz-Amaro I. Malondialdehyde Serum Levels in a Full Characterized Series of 430 Rheumatoid Arthritis Patients. Journal of Clinical Medicine. 2024; 13(3):901. https://doi.org/10.3390/jcm13030901
Chicago/Turabian StyleMerino de Paz, Nayra, Juan Carlos Quevedo-Abeledo, Fuensanta Gómez-Bernal, Antonia de Vera-González, Pedro Abreu-González, Candelaria Martín-González, Miguel Ángel González-Gay, and Iván Ferraz-Amaro. 2024. "Malondialdehyde Serum Levels in a Full Characterized Series of 430 Rheumatoid Arthritis Patients" Journal of Clinical Medicine 13, no. 3: 901. https://doi.org/10.3390/jcm13030901
APA StyleMerino de Paz, N., Quevedo-Abeledo, J. C., Gómez-Bernal, F., de Vera-González, A., Abreu-González, P., Martín-González, C., González-Gay, M. Á., & Ferraz-Amaro, I. (2024). Malondialdehyde Serum Levels in a Full Characterized Series of 430 Rheumatoid Arthritis Patients. Journal of Clinical Medicine, 13(3), 901. https://doi.org/10.3390/jcm13030901