Current Insights and Novel Cardiovascular Magnetic Resonance-Based Techniques in the Prognosis of Non-Ischemic Dilated Cardiomyopathy
Abstract
:1. Introduction
2. Evolving Role of CMR in Cardiomyopathy
3. Traditional Risk Stratification Approach in DCM
4. LGE as an Emerging Risk Stratification Method in DCM
5. T1 and ECV Quantification in DCM
6. Advanced LGE-Based Techniques: Gray Zone Fibrosis and Myocardial Entropy
7. Limitations of CMR in DCM
8. Future Directions
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKenna, W.J.; Maron, B.J.; Thiene, G. Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ. Res. 2017, 121, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Koutalas, E.; Kanoupakis, E.; Vardas, P. Sudden Cardiac Death in Non-Ischemic Dilated Cardiomyopathy: A Critical Appraisal of Existing and Potential Risk Stratification Tools. Int. J. Cardiol. 2013, 167, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Merlo, M.; Cannatà, A.; Gobbo, M.; Stolfo, D.; Elliott, P.M.; Sinagra, G. Evolving Concepts in Dilated Cardiomyopathy. Eur. J. Heart Fail. 2018, 20, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, H.-P.; Fairweather, D.; Caforio, A.L.P.; Escher, F.; Hershberger, R.E.; Lipshultz, S.E.; Liu, P.P.; Matsumori, A.; Mazzanti, A.; McMurray, J.; et al. Dilated Cardiomyopathy. Nat. Rev. Dis. Primers 2019, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Porcari, A.; De Angelis, G.; Romani, S.; Paldino, A.; Artico, J.; Cannatà, A.; Gentile, P.; Pinamonti, B.; Merlo, M.; Sinagra, G. Current Diagnostic Strategies for Dilated Cardiomyopathy: A Comparison of Imaging Techniques. Expert. Rev. Cardiovasc. Ther. 2019, 17, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.A.; Ertel, A.; Shah, R.V.; Dandekar, V.; Chung, J.; Bhat, G.; Desai, A.A.; Kwong, R.Y.; Farzaneh-Far, A. Impact of Cardiovascular Magnetic Resonance on Management and Clinical Decision-Making in Heart Failure Patients. J. Cardiovasc. Magn. Reson. 2013, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Francone, M. Role of Cardiac Magnetic Resonance in the Evaluation of Dilated Cardiomyopathy: Diagnostic Contribution and Prognostic Significance. ISRN Radiol. 2014, 2014, 365404. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, S.; Kolm, P.; Ho, C.Y.; Kwong, R.Y.; Desai, M.Y.; Dolman, S.F.; Appelbaum, E.; Desvigne-Nickens, P.; DiMarco, J.P.; Friedrich, M.G.; et al. Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry. J. Am. Coll. Cardiol. 2019, 74, 2333–2345. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the Management of Cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Valbuena-López, S.; Hinojar, R.; Puntmann, V.O. Cardiovascular Magnetic Resonance in Cardiology Practice: A Concise Guide to Image Acquisition and Clinical Interpretation. Rev. Esp. Cardiol. 2016, 69, 202–210. [Google Scholar] [CrossRef]
- Brown, P.F.; Miller, C.; Di Marco, A.; Schmitt, M. Towards Cardiac MRI Based Risk Stratification in Idiopathic Dilated Cardiomyopathy. Heart 2019, 105, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Gulati, A.; Jabbour, A.; Ismail, T.F.; Guha, K.; Khwaja, J.; Raza, S.; Morarji, K.; Brown, T.D.H.; Ismail, N.A.; Dweck, M.R.; et al. Association of Fibrosis with Mortality and Sudden Cardiac Death in Patients with Nonischemic Dilated Cardiomyopathy. JAMA 2013, 309, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Baggiano, A.; Del Torto, A.; Guglielmo, M.; Muscogiuri, G.; Fusini, L.; Babbaro, M.; Collevecchio, A.; Mollace, R.; Scafuri, S.; Mushtaq, S.; et al. Role of CMR Mapping Techniques in Cardiac Hypertrophic Phenotype. Diagnostics 2020, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Ye, M.; Zhang, L.; Jiang, B. Prognostic Significance of Late Gadolinium Enhancement on Cardiac Magnetic Resonance in Patients with Hypertrophic Cardiomyopathy. Heart Lung 2018, 47, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.H.; Maron, B.J.; Olivotto, I.; Pencina, M.J.; Assenza, G.E.; Haas, T.; Lesser, J.R.; Gruner, C.; Crean, A.M.; Rakowski, H.; et al. Prognostic Value of Quantitative Contrast-Enhanced Cardiovascular Magnetic Resonance for the Evaluation of Sudden Death Risk in Patients with Hypertrophic Cardiomyopathy. Circulation 2014, 130, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhuang, B.; Sirajuddin, A.; Li, S.; Huang, J.; Yin, G.; Song, L.; Jiang, Y.; Zhao, S.; Lu, M. MRI T1 Mapping in Hypertrophic Cardiomyopathy: Evaluation in Patients Without Late Gadolinium Enhancement and Hemodynamic Obstruction. Radiology 2020, 294, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Deac, M.; Alpendurada, F.; Fanaie, F.; Vimal, R.; Carpenter, J.-P.; Dawson, A.; Miller, C.; Roussin, I.; di Pietro, E.; Ismail, T.F.; et al. Prognostic Value of Cardiovascular Magnetic Resonance in Patients with Suspected Arrhythmogenic Right Ventricular Cardiomyopathy. Int. J. Cardiol. 2013, 168, 3514–3521. [Google Scholar] [CrossRef]
- Tamburro, P.; Wilber, D. Sudden Death in Idiopathic Dilated Cardiomyopathy. Am. Heart J. 1992, 124, 1035–1045. [Google Scholar] [CrossRef]
- Priori, S.G.; Blomström-Lundqvist, C. 2015 European Society of Cardiology Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death Summarized by Co-Chairs. Eur. Heart J. 2015, 36, 2757–2759. [Google Scholar] [CrossRef]
- Stecker, E.C.; Vickers, C.; Waltz, J.; Socoteanu, C.; John, B.T.; Mariani, R.; McAnulty, J.H.; Gunson, K.; Jui, J.; Chugh, S.S. Population-Based Analysis of Sudden Cardiac Death with and without Left Ventricular Systolic Dysfunction: Two-Year Findings from the Oregon Sudden Unexpected Death Study. J. Am. Coll. Cardiol. 2006, 47, 1161–1166. [Google Scholar] [CrossRef]
- Køber, L.; Thune, J.J.; Nielsen, J.C.; Haarbo, J.; Videbæk, L.; Korup, E.; Jensen, G.; Hildebrandt, P.; Steffensen, F.H.; Bruun, N.E.; et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N. Engl. J. Med. 2016, 375, 1221–1230. [Google Scholar] [CrossRef]
- Epstein, A.E.; DiMarco, J.P.; Ellenbogen, K.A.; Estes, N.A.M.; Freedman, R.A.; Gettes, L.S.; Gillinov, A.M.; Gregoratos, G.; Hammill, S.C.; Hayes, D.L.; et al. 2012 ACCF/AHA/HRS Focused Update Incorporated into the ACCF/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2013, 61, e6–e75. [Google Scholar] [CrossRef] [PubMed]
- Guaricci, A.I.; Masci, P.G.; Muscogiuri, G.; Guglielmo, M.; Baggiano, A.; Fusini, L.; Lorenzoni, V.; Martini, C.; Andreini, D.; Pavon, A.G.; et al. CarDiac magnEtic Resonance for Prophylactic Implantable-cardioVerter defibrillAtor ThErapy in Non-Ischaemic Dilated CardioMyopathy: An International Registry. Europace 2021, 23, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Juillière, Y.; Buffet, P.; Marie, P.Y.; Berder, V.; Danchin, N.; Cherrier, F. Comparison of Right Ventricular Systolic Function in Idiopathic Dilated Cardiomyopathy and Healed Anterior Wall Myocardial Infarction Associated with Atherosclerotic Coronary Artery Disease. Am. J. Cardiol. 1994, 73, 588–590. [Google Scholar] [CrossRef]
- Olsen, E.G. Special Investigations of COCM: Endomyocardial Biopsies (Morphological Analysis). Postgrad. Med. J. 1978, 54, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.J.; Olsen, E.G.; Jewitt, D.E.; Oram, S. Proceedings: Percutaneous Technique of Left Ventricular Biopsy, and Comparison between Right and Left Ventricular Myocardial Samples. Br. Heart J. 1975, 37, 556. [Google Scholar] [PubMed]
- Gulati, A.; Ismail, T.F.; Jabbour, A.; Ismail, N.A.; Morarji, K.; Ali, A.; Raza, S.; Khwaja, J.; Brown, T.D.H.; Liodakis, E.; et al. Clinical Utility and Prognostic Value of Left Atrial Volume Assessment by Cardiovascular Magnetic Resonance in Non-Ischaemic Dilated Cardiomyopathy. Eur. J. Heart Fail. 2013, 15, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Koshy, A.O.; Swoboda, P.P.P.; Gierula, J.; Witte, K.K. Cardiac Magnetic Resonance in Patients with Cardiac Resynchronization Therapy: Is It Time to Scan with Resynchronization On? EP Eur. 2019, 21, 554–562. [Google Scholar] [CrossRef]
- Langman, D.A.; Goldberg, I.B.; Finn, J.P.; Ennis, D.B. Pacemaker Lead Tip Heating in Abandoned and Pacemaker-Attached Leads at 1.5 Tesla MRI. J. Magn. Reson. Imaging 2011, 33, 426–431. [Google Scholar] [CrossRef]
- Bertini, M.; Mele, D.; Malagù, M.; Fiorencis, A.; Toselli, T.; Casadei, F.; Cannizzaro, T.; Fragale, C.; Fucili, A.; Campagnolo, E.; et al. Cardiac Resynchronization Therapy Guided by Multimodality Cardiac Imaging. Eur. J. Heart Fail. 2016, 18, 1375–1382. [Google Scholar] [CrossRef]
- Lowe, M.D.; Plummer, C.J.; Manisty, C.H.; Linker, N.J. British Heart Rhythm Society Safe Use of MRI in People with Cardiac Implantable Electronic Devices. Heart 2015, 101, 1950–1953. [Google Scholar] [CrossRef] [PubMed]
- Hammersley, D.J.; Jones, R.E.; Owen, R.; Mach, L.; Lota, A.S.; Khalique, Z.; De Marvao, A.; Androulakis, E.; Hatipoglu, S.; Gulati, A.; et al. Phenotype, Outcomes and Natural History of Early-Stage Non-Ischaemic Cardiomyopathy. Eur. J. Heart Fail. 2023, 25, 2050–2059. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.A.J.; Cornel, J.H.; van de Ven, P.M.; van Rossum, A.C.; Allaart, C.P.; Germans, T. The Prognostic Value of Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging in Nonischemic Dilated Cardiomyopathy: A Review and Meta-Analysis. JACC Cardiovasc. Imaging 2018, 11, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Alba, A.C.; Gaztañaga, J.; Foroutan, F.; Thavendiranathan, P.; Merlo, M.; Alonso-Rodriguez, D.; Vallejo-García, V.; Vidal-Perez, R.; Corros-Vicente, C.; Barreiro-Pérez, M.; et al. Prognostic Value of Late Gadolinium Enhancement for the Prediction of Cardiovascular Outcomes in Dilated Cardiomyopathy: An International, Multi-Institutional Study of the MINICOR Group. Circ. Cardiovasc. Imaging 2020, 13, e010105. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, A.; Brown, P.F.; Bradley, J.; Nucifora, G.; Claver, E.; de Frutos, F.; Dallaglio, P.D.; Comin-Colet, J.; Anguera, I.; Miller, C.A.; et al. Improved Risk Stratification for Ventricular Arrhythmias and Sudden Death in Patients with Nonischemic Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2021, 77, 2890–2905. [Google Scholar] [CrossRef] [PubMed]
- Assomull, R.G.; Prasad, S.K.; Lyne, J.; Smith, G.; Burman, E.D.; Khan, M.; Sheppard, M.N.; Poole-Wilson, P.A.; Pennell, D.J. Cardiovascular Magnetic Resonance, Fibrosis, and Prognosis in Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2006, 48, 1977–1985. [Google Scholar] [CrossRef]
- Claver, E.; Di Marco, A.; Brown, P.F.; Bradley, J.; Nucifora, G.; Ruiz-Majoral, A.; Dallaglio, P.D.; Rodriguez, M.; Comin-Colet, J.; Anguera, I.; et al. Prognostic Impact of Late Gadolinium Enhancement at the Right Ventricular Insertion Points in Non-Ischaemic Dilated Cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 346–353. [Google Scholar] [CrossRef]
- De Angelis, G.; De Luca, A.; Merlo, M.; Nucifora, G.; Rossi, M.; Stolfo, D.; Barbati, G.; De Bellis, A.; Masè, M.; Santangeli, P.; et al. Prevalence and Prognostic Significance of Ischemic Late Gadolinium Enhancement Pattern in Non-Ischemic Dilated Cardiomyopathy. Am. Heart J. 2022, 246, 117–124. [Google Scholar] [CrossRef]
- Sanjay, K.; Prasad, D.J.H. Phenotype, Outcomes and Natural History of Early-Stage Non Ischaemic Cardiomyopathy. Eur. J. Heart Fail. 2023, 25, 2050–2059. [Google Scholar]
- Cadour, F.; Quemeneur, M.; Biere, L.; Donal, E.; Bentatou, Z.; Eicher, J.-C.; Roubille, F.; Lalande, A.; Giorgi, R.; Rapacchi, S.; et al. Prognostic Value of Cardiovascular Magnetic Resonance T1 Mapping and Extracellular Volume Fraction in Nonischemic Dilated Cardiomyopathy. J. Cardiovasc. Magn. Reson. 2023, 25, 7. [Google Scholar] [CrossRef]
- Li, S.; Zhou, D.; Sirajuddin, A.; He, J.; Xu, J.; Zhuang, B.; Huang, J.; Yin, G.; Fan, X.; Wu, W.; et al. T1 Mapping and Extracellular Volume Fraction in Dilated Cardiomyopathy: A Prognosis Study. JACC Cardiovasc. Imaging 2022, 15, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Rubiś, P.P.; Dziewięcka, E.M.; Banyś, P.; Urbańczyk-Zawadzka, M.; Krupiński, M.; Mielnik, M.; Łach, J.; Ząbek, A.; Wiśniowska-Śmiałek, S.; Podolec, P.; et al. Extracellular Volume Is an Independent Predictor of Arrhythmic Burden in Dilated Cardiomyopathy. Sci. Rep. 2021, 11, 24000. [Google Scholar] [CrossRef] [PubMed]
- Leyva, F.; Zegard, A.; Okafor, O.; Foley, P.; Umar, F.; Taylor, R.J.; Marshall, H.; Stegemann, B.; Moody, W.; Steeds, R.P.; et al. Myocardial Fibrosis Predicts Ventricular Arrhythmias and Sudden Death After Cardiac Electronic Device Implantation. J. Am. Coll. Cardiol. 2022, 79, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Antiochos, P.; Ge, Y.; van der Geest, R.J.; Madamanchi, C.; Qamar, I.; Seno, A.; Jerosch-Herold, M.; Tedrow, U.B.; Stevenson, W.G.; Kwong, R.Y. Entropy as a Measure of Myocardial Tissue Heterogeneity in Patients with Ventricular Arrhythmias. JACC Cardiovasc. Imaging 2022, 15, 783–792. [Google Scholar] [CrossRef]
- Amzulescu, M.S.; De Craene, M.; Langet, H.; Pasquet, A.; Vancraeynest, D.; Pouleur, A.C.; Vanoverschelde, J.L.; Gerber, B.L. Myocardial Strain Imaging: Review of General Principles, Validation, and Sources of Discrepancies. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Hong, Z.; Peng, Q.; Zhou, X.; Zhang, T.; Wang, J.; Zheng, C. A Machine-Learning-Based Method to Predict Adverse Events in Patients with Dilated Cardiomyopathy and Severely Reduced Ejection Fractions. Br. J. Radiol. 2021, 94, 20210259. [Google Scholar] [CrossRef] [PubMed]
- Pi, S.-H.; Kim, S.M.; Choi, J.-O.; Kim, E.K.; Chang, S.-A.; Choe, Y.H.; Lee, S.-C.; Jeon, E.-S. Prognostic Value of Myocardial Strain and Late Gadolinium Enhancement on Cardiovascular Magnetic Resonance Imaging in Patients with Idiopathic Dilated Cardiomyopathy with Moderate to Severely Reduced Ejection Fraction. J. Cardiovasc. Magn. Reson. 2018, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Carr-White, G.; Jabbour, A.; Yu, C.-Y.; Gebker, R.; Kelle, S.; Hinojar, R.; Doltra, A.; Varma, N.; Child, N.; et al. T1-Mapping and Outcome in Nonischemic Cardiomyopathy: All-Cause Mortality and Heart Failure. JACC Cardiovasc. Imaging 2016, 9, 40–50. [Google Scholar] [CrossRef]
- Kiaos, A.; Antonakaki, D.; Bazmpani, M.-A.; Karvounis, C.; Rimoldi, O.; Karamitsos, T.D. Prognostic Value of Cardiovascular Magnetic Resonance T1 Mapping Techniques in Non-Ischemic Dilated Cardiomyopathy: A Systematic Review and Meta-Analysis. Int. J. Cardiol. 2020, 312, 110–116. [Google Scholar] [CrossRef]
- Vita, T.; Gräni, C.; Abbasi, S.A.; Neilan, T.G.; Rowin, E.; Kaneko, K.; Coelho-Filho, O.; Watanabe, E.; Mongeon, F.-P.; Farhad, H.; et al. Comparing CMR Mapping Methods and Myocardial Patterns Toward Heart Failure Outcomes in Nonischemic Dilated Cardiomyopathy. JACC Cardiovasc. Imaging 2019, 12, 1659–1669. [Google Scholar] [CrossRef]
- Eriksson, J.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.-J. Assessment of Left Ventricular Hemodynamic Forces in Healthy Subjects and Patients with Dilated Cardiomyopathy Using 4D Flow MRI. Physiol. Rep. 2016, 4, e12685. [Google Scholar] [CrossRef]
- Frydrychowicz, A.; Harloff, A.; Jung, B.; Zaitsev, M.; Weigang, E.; Bley, T.A.; Langer, M.; Hennig, J.; Markl, M. Time-Resolved, 3-Dimensional Magnetic Resonance Flow Analysis at 3 T: Visualization of Normal and Pathological Aortic Vascular Hemodynamics. J. Comput. Assist. Tomogr. 2007, 31, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Hammersley, D.J.; Zaidi, H.A.; Jones, R.E.; Hatipoglu, S.; Androulakis, E.; Mach, L.; Lota, A.S.; Tayal, U.; Khalique, Z.; De Marvao, A.; et al. 13 Myocardial Fibrosis Entropy Is Associated with Life-Threatening Arrhythmia in Non-Ischaemic Cardiomyopathy. Heart 2023, 109 (Suppl. S1), A1–A28. [Google Scholar]
- Halliday, B.P.; Gulati, A.; Ali, A.; Guha, K.; Newsome, S.; Arzanauskaite, M.; Vassiliou, V.S.; Lota, A.; Izgi, C.; Tayal, U.; et al. Association Between Midwall Late Gadolinium Enhancement and Sudden Cardiac Death in Patients with Dilated Cardiomyopathy and Mild and Moderate Left Ventricular Systolic Dysfunction. Circulation 2017, 135, 2106–2115. [Google Scholar] [CrossRef] [PubMed]
- Im, D.J.; Hong, S.J.; Park, E.A.; Kim, E.Y.; Jo, Y.; Kim, J.; Park, C.H.; Yong, H.S.; Lee, J.W.; Hur, J.H.; et al. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 3: Perfusion, Delayed Enhancement, and T1- and T2 Mapping. Korean J. Radiol. 2019, 20, 1562–1582. [Google Scholar] [CrossRef] [PubMed]
- Buss, S.J.; Breuninger, K.; Lehrke, S.; Voss, A.; Galuschky, C.; Lossnitzer, D.; Andre, F.; Ehlermann, P.; Franke, J.; Taeger, T.; et al. Assessment of Myocardial Deformation with Cardiac Magnetic Resonance Strain Imaging Improves Risk Stratification in Patients with Dilated Cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Judd, R.M.; Kim, R.J.; Kim, H.W.; Klem, I.; Heitner, J.F.; Shah, D.J.; Jue, J.; White, B.E.; Indorkar, R.; et al. Feature-Tracking Global Longitudinal Strain Predicts Death in a Multicenter Population of Patients with Ischemic and Nonischemic Dilated Cardiomyopathy Incremental to Ejection Fraction and Late Gadolinium Enhancement. JACC Cardiovasc. Imaging 2018, 11, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
Technique | Description | Current Use | Clinical Applications |
A. Traditional techniques | |||
1. Echocardiogram [19] Priori, S.G. et.al | EF measured by U/S (2D) | To determine if the patient is eligible for ICD implantation for prevention of SCD | NYHA status is taken into consideration, but overall inadequate risk stratification method |
2. Non contrast CMR [23] Guaricci, A.I., et al. | Gold standard technique for LV volume and function assessment providing tissue characterization | Assessment of fibrosis and its location gives predisposition for symptoms or events may be observed | Calculates RVEF, LVEDi which are useful mortality predictors. LAVi is an important predictor of transplant-free survival and HF risk. |
B. Recent and advanced imaging techniques | |||
1. LGE-based fibrosis [32] Hammersley et al. [36] Assomull, et al. | Gadolinium-based myocardial fibrosis. | It is present in 1/3 patients with DCM, and the non-ischemic pattern is the most common with a midwall or subepicardial distribution usually identified | Increased risk of adverse cardiovascular events when detected. Strong predictor of cardiovascular mortality across the entire LVEF. Site of distribution modifies the prognosis. |
2. Non-contrast (native) T1 mapping [40] F. Cadour et al. [41] S. Li et al. | Non-contrast parametric mapping to assess myocardial microstructure based on T1 tissue properties | Method used increasingly in patients with cardiomyopathy | Independent predictor of arrhythmogenic events in DCM patients [40]. Associated with cardiac death and heart transplantation in patients with both positive and negative LGE test [41]. |
3. ECV Quantification [40] F. Cadour et al. [42] P. P. Rubiś et al. | Parametric mapping pre-(native) and post contrast administration | A method for the evaluation of focal and diffuse myocardial fibrosis | Independent predictor of ventricular tachycardia in DCM patients. Independent predictor and associated with a four-fold increase in risk of heart failure events. Improves risk stratification in DCM patients, due to a more advanced characterizing process particularly when LGE test is negative. |
4. Gray Zone Fibrosis [43] Leyva F., et al. | Advanced LGE quantification method | An admixture of fibrosis and viable tissue thought to be a substrate for ventricular arrhythmias | Role in prediction of life-threatening arrhythmias and prognosis. |
5. Myocardial Entropy [44] P. Antiochos et al. | Measurement derived from Shannon’s entropy mathematical models | Advanced texture analysis of fibrosis | Role in prediction of life-threatening arrhythmias and prognosis. |
6. MR feature tracking (MR-FT) [45] M. S. Amzulescu et al. | Myocardial deformation in addition to EF traditionally measured | CMR-FT is a method with great potential, as tracking can be applied to standard cine images, and no additional sequences are needed. | GLS and mean longitudinal strain impaired—may be an independent prognostic parameter. |
C. Novel Imaging Assessment | |||
7. Machine Learning Techniques- (ML) [46] S. Shu et al. | The understudied ML model included systolic blood pressure, left ventricular end-systolic, end-diastolic volume indices and late gadolinium enhancement (LGE) extents on CMR imaging. | Most ML techniques are not yet established due to limited amount of clinical studies performed. | The particular model showed excellent performance in predicting adverse events in DCM patients with severely reduced LVEF [47]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perone, F.; Dentamaro, I.; La Mura, L.; Alifragki, A.; Marketou, M.; Cavarretta, E.; Papadakis, M.; Androulakis, E. Current Insights and Novel Cardiovascular Magnetic Resonance-Based Techniques in the Prognosis of Non-Ischemic Dilated Cardiomyopathy. J. Clin. Med. 2024, 13, 1017. https://doi.org/10.3390/jcm13041017
Perone F, Dentamaro I, La Mura L, Alifragki A, Marketou M, Cavarretta E, Papadakis M, Androulakis E. Current Insights and Novel Cardiovascular Magnetic Resonance-Based Techniques in the Prognosis of Non-Ischemic Dilated Cardiomyopathy. Journal of Clinical Medicine. 2024; 13(4):1017. https://doi.org/10.3390/jcm13041017
Chicago/Turabian StylePerone, Francesco, Ilaria Dentamaro, Lucia La Mura, Angeliki Alifragki, Maria Marketou, Elena Cavarretta, Michael Papadakis, and Emmanuel Androulakis. 2024. "Current Insights and Novel Cardiovascular Magnetic Resonance-Based Techniques in the Prognosis of Non-Ischemic Dilated Cardiomyopathy" Journal of Clinical Medicine 13, no. 4: 1017. https://doi.org/10.3390/jcm13041017
APA StylePerone, F., Dentamaro, I., La Mura, L., Alifragki, A., Marketou, M., Cavarretta, E., Papadakis, M., & Androulakis, E. (2024). Current Insights and Novel Cardiovascular Magnetic Resonance-Based Techniques in the Prognosis of Non-Ischemic Dilated Cardiomyopathy. Journal of Clinical Medicine, 13(4), 1017. https://doi.org/10.3390/jcm13041017