Non-Neuraxial Chest and Abdominal Wall Regional Anesthesia for Intensive Care Physicians—A Narrative Review
Abstract
:1. Introduction
2. Special Considerations for Regional Anesthesia in Critically Ill Patients
3. Peripheral Nerve Blocks for the Chest Wall
3.1. Pectoralis Nerve Block
3.1.1. How to Perform the Block
3.1.2. Evidence and Indications
3.1.3. Why the ICU Physician Could Love It
3.2. Serratus Anterior Plane Block
3.2.1. How to Perform the Block
3.2.2. Evidence and Indications
3.2.3. Why the ICU Physician Could Love It
3.3. Erector Spinae Plane Block
3.3.1. How to Perform the Block
3.3.2. Evidence and Indications
3.3.3. Why the ICU Physician Could Love It
3.4. Paravertebral Block
3.4.1. How to Perform the Block
3.4.2. Evidence and Indications
3.4.3. Why the ICU Physician Could Love It
3.5. Parasternal Block
3.5.1. How to Perform the Block
3.5.2. Evidence and Indications
3.5.3. Why the ICU Physician Could Love It
3.6. Intercostal Block
4. Peripheral Nerve Blocks for the Abdominal Wall
4.1. Transversus Abdominis Plane Block
4.1.1. How to Perform the Block
4.1.2. Evidence and Indications
4.1.3. Why the ICU Physician Could Love It
4.2. Quadratus Lumborum Block
4.3. Rectus Sheath Block and Subcostal Tap Block
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanik-Hutt, J.A.; Soeken, K.L.; Belcher, A.E.; Fontaine, D.K.; Gift, A.G. Pain experiences of traumatically injured patients in a critical care setting. Am. J. Crit. Care 2001, 10, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Chanques, G.; Sebbane, M.; Barbotte, E.; Viel, E.; Eledjam, J.J.; Jaber, S. A prospective study of pain at rest: Incidence and characteristics of an unrecognized symptom in surgical and trauma versus medical intensive care unit patients. Anesthesiology 2007, 107, 858–860. [Google Scholar] [CrossRef] [PubMed]
- Moliner Velázquez, S.; Rubio Haro, R.; De Andrés Serrano, C.; De Andrés Ibáñez, J. Regional analgesia in postsurgical critically ill patients. Rev. Esp. Anestesiol. Reanim. 2017, 64, 144–156. [Google Scholar] [CrossRef]
- Ehieli, E.; Yalamuri, S.; Brudney, C.S.; Pyati, S. Analgesia in the surgical intensive care unit. Postgrad. Med. J. 2017, 93, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Turan, A.; Leung, S.; Bajracharya, G.R.; Babazade, R.; Barnes, T.; Schacham, Y.N.; Mao, G.; Zimmerman, N.; Ruetzler, K.; Maheshwari, K.; et al. Acute Postoperative Pain Is Associated With Myocardial Injury After Noncardiac Surgery. Anesth. Analg. 2020, 131, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Baratta, J.L.; Schwenk, E.S.; Viscusi, E.R. Clinical Consequences of Inadequate Pain Relief: Barriers to Optimal Pain Management. Plast. Reconstr. Surg. 2014, 134, 15S–21S. [Google Scholar] [CrossRef]
- McGuire, L.; Heffner, K.; Glaser, R.; Needleman, B.; Malarkey, W.; Dickinson, S.; Lemeshow, S.; Cook, C.; Muscarella, P.; Melvin, W.S.; et al. Pain and wound healing in surgical patients. Ann. Behav. Med. 2006, 31, 165–172. [Google Scholar] [CrossRef]
- Joshi, G.P.; Ogunnaike, B.O. Consequences of inadequate postoperative pain relief and chronic persistent postoperative pain. Anesthesiol. Clin. North. Am. 2005, 23, 21–36. [Google Scholar] [CrossRef]
- Baumbach, P.; Götz, T.; Günther, A.; Weiss, T.; Meissner, W. Prevalence and Characteristics of Chronic Intensive Care-Related Pain: The Role of Severe Sepsis and Septic Shock. Crit. Care Med. 2016, 44, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Battle, C.E.; Lovett, S.; Hutchings, H. Chronic pain in survivors of critical illness: A retrospective analysis of incidence and risk factors. Crit. Care 2013, 17, R101. [Google Scholar] [CrossRef] [PubMed]
- Korosec Jagodic, H.; Jagodic, K.; Podbregar, M. Long-term outcome and quality of life of patients treated in surgical intensive care: A comparison between sepsis and trauma. Crit. Care 2006, 10, R134. [Google Scholar] [CrossRef]
- Kalso, E.; Mennander, S.; Tasmuth, T.; Nilsson, E. Chronic post-sternotomy pain. Acta Anaesthesiol. Scand. 2001, 45, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Pultorak, Y.; Pud, D.; Bar-El, Y. Prevalence and characteristics of post coronary artery bypass graft surgery pain (PCP). Pain 2001, 92, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Drahos, A.L.; Scott, A.M.; Johns, T.J.; Ashley, D.W. Multimodal Analgesia and Decreased Opioid Use in Adult Trauma Patients. Am. Surg. 2020, 86, 950–954. [Google Scholar] [CrossRef]
- Gausche-Hill, M.; Brown, K.M.; Oliver, Z.J.; Sasson, C.; Dayan, P.S.; Eschmann, N.M.; Weik, T.S.; Lawner, B.J.; Sahni, R.; Falck-Ytter, Y.; et al. An Evidence-based Guideline for Prehospital Analgesia in Trauma. Prehospital Emerg. Care 2014, 18, 25–34. [Google Scholar] [CrossRef]
- Jacobi, J.; Fraser, G.L.; Coursin, D.B.; Riker, R.R.; Fontaine, D.; Wittbrodt, E.T.; Chalfin, D.B.; Masica, M.F.; Bjerke, H.S.; Coplin, W.M.; et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit. Care Med. 2002, 30, 119–141. [Google Scholar] [CrossRef]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, e825–e873. [Google Scholar] [CrossRef]
- Chou, R.; Gordon, D.B.; de Leon-Casasola, O.A.; Rosenberg, J.M.; Bickler, S.; Brennan, T.; Carter, T.; Cassidy, C.L.; Chittenden, E.H.; Degenhardt, E.; et al. Management of Postoperative Pain: A Clinical Practice Guideline From the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J. Pain 2016, 17, 131–157. [Google Scholar] [CrossRef]
- Kohler, M.; Chiu, F.; Gelber, K.M.; Webb, C.A.; Weyker, P.D. Pain management in critically ill patients: A review of multimodal treatment options. Pain Manag. 2016, 6, 591–602. [Google Scholar] [CrossRef]
- Xiao, D.L.; Xi, J.W. Efficacy of peripheral nerve blocks for pain management in patients with rib fractures: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 899–910. [Google Scholar] [CrossRef]
- De Pinto, M.; Dagal, A.; O’Donnell, B.; Stogicza, A.; Chiu, S.; Edwards, W.T. Regional anesthesia for management of acute pain in the intensive care unit. Int. J. Crit. Illn. Inj. Sci. 2015, 5, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Saasouh, W.; Turan, A. Ultrasound a Game Changer. Turk. J. Anaesthesiol. Reanim. 2017, 45, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Venkataraju, A.; Bhatia, K. Practice of regional anaesthesia in critical care units in the North West England. Reg. Anesth. Pain. Med. 2013, 38, E149–E150. [Google Scholar]
- Venkataraju, A.; Narayanan, M. Analgesia in intensive care: Part 2. BJA Educ. 2016, 16, 397–404. [Google Scholar] [CrossRef]
- Casati, A.; Baciarello, M.; Di Cianni, S.; Danelli, G.; De Marco, G.; Leone, S.; Rossi, M.; Fanelli, G. Effects of ultrasound guidance on the minimum effective anaesthetic volume required to block the femoral nerve. Br. J. Anaesth. 2007, 98, 823–827. [Google Scholar] [CrossRef]
- Visser, W.A.; Gielen, M.J.; Giele, J.L. Continuous positive airway pressure breathing increases the spread of sensory blockade after low-thoracic epidural injection of lidocaine. Anesth. Analg. 2006, 102, 268–271. [Google Scholar] [CrossRef]
- Joshi, G.; Gandhi, K.; Shah, N.; Gadsden, J.; Corman, S.L. Peripheral nerve blocks in the management of postoperative pain: Challenges and opportunities. J. Clin. Anesth. 2016, 35, 524–529. [Google Scholar] [CrossRef]
- Hebl, J.R.; Niesen, A.D. Infectious complications of regional anesthesia. Curr. Opin. Anaesthesiol. 2011, 24, 573–580. [Google Scholar] [CrossRef]
- Cook, T.M.; Counsell, D.; Wildsmith, J.A. Major complications of central neuraxial block: Report on the Third National Audit Project of the Royal College of Anaesthetists. Br. J. Anaesth. 2009, 102, 179–190. [Google Scholar] [CrossRef]
- Alshahrani, K.M.; Alhuwaishel, A.Z.; Alangari, N.M.; Asiri, M.A.; Al-Shahrani, N.A.; Alasmari, A.A.; Alzahrani, O.J.; Ayedh, A.Y.; Qitmah, M.M. Clinical Impacts and Risk Factors for Central Line-Associated Bloodstream Infection: A Systematic Review. Cureus 2023, 15, e40954. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Wang, Z.; Wang, Q.; Qin, F.; Pan, H.; Lin, W.; Mu, X.; Wang, Y.; Jiang, Y.; et al. Immunosuppression by opioids: Mechanisms of action on innate and adaptive immunity. Biochem. Pharmacol. 2023, 209, 115417. [Google Scholar] [CrossRef] [PubMed]
- Martyn, J.A.J.; Mao, J.; Bittner, E.A. Opioid Tolerance in Critical Illness. N. Engl. J. Med. 2019, 380, 365–378. [Google Scholar] [CrossRef]
- Horlocker, T.T.; Vandermeuelen, E.; Kopp, S.L.; Gogarten, W.; Leffert, L.R.; Benzon, H.T. Regional Anesthesia in the Patient Receiving Antithrombotic or Thrombolytic Therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Fourth Edition). Reg. Anesth. Pain Med. 2018, 43, 263–309. [Google Scholar] [CrossRef]
- El-Sherbiny, S.M.; Kamal, R.A.; Elhadary, I.H.; Abdallah, M.Y.Y. Erector spinae plane block versus thoracic epidural block as analgesic techniques for chest trauma: A randomized controlled trial. Res. Opin. Anesth. Intensive Care 2022, 9, 220–227. [Google Scholar] [CrossRef]
- Pintaric, T.S.; Potocnik, I.; Hadzic, A.; Stupnik, T.; Pintaric, M.; Novak Jankovic, V. Comparison of continuous thoracic epidural with paravertebral block on perioperative analgesia and hemodynamic stability in patients having open lung surgery. Reg. Anesth. Pain Med. 2011, 36, 256–260. [Google Scholar] [CrossRef]
- Kaur, U.; Shamshery, C.; Agarwal, A.; Prakash, N.; Valiveru, R.C.; Mishra, P. Evaluation of postoperative pain in patients undergoing modified radical mastectomy with pectoralis or serratus-intercostal fascial plane blocks. Korean J. Anesthesiol. 2020, 73, 425–433. [Google Scholar] [CrossRef]
- Abu Elyazed, M.M.; Abdelghany, M.S.; Mostafa, S.F. The Analgesic Efficacy of Pecto-Intercostal Fascial Block Combined with Pectoral Nerve Block in Modified Radical Mastectomy: A Prospective Randomized Trial. Pain Physician 2020, 23, 485–493. [Google Scholar]
- Barrington, M.J.; Seah, G.J.; Gotmaker, R.; Lim, D.; Byrne, K. Quality of Recovery After Breast Surgery: A Multicenter Randomized Clinical Trial Comparing Pectoral Nerves Interfascial Plane (Pectoral Nerves II) Block With Surgical Infiltration. Anesth. Analg. 2020, 130, 1559–1567. [Google Scholar] [CrossRef]
- Alfirevic, A.; Marciniak, D.; Duncan, A.E.; Kelava, M.; Yalcin, E.K.; Hamadnalla, H.; Pu, X.; Sessler, D.I.; Bauer, A.; Hargrave, J.; et al. Serratus anterior and pectoralis plane blocks for robotically assisted mitral valve repair: A randomised clinical trial. Br. J. Anaesth. 2023, 130, 786–794. [Google Scholar] [CrossRef]
- Hoerner, E.; Stundner, O.; Naegele, F.; Fiala, A.; Bonaros, N.; Mair, P.; Holfeld, J.; Gasteiger, L. The impact of PECS II blockade in patients undergoing minimally invasive cardiac surgery-a prospective, randomized, controlled, and triple-blinded trial. Trials 2023, 24, 570. [Google Scholar] [CrossRef] [PubMed]
- Durant, E.; Dixon, B.; Luftig, J.; Mantuani, D.; Herring, A. Ultrasound-guided serratus plane block for ED rib fracture pain control. Am. J. Emerg. Med. 2017, 35, 197.e193–197.e196. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, J.A.; Ahn, H.J.; Yang, M.K.; Son, H.J.; Seong, B.G. A randomised trial of serratus anterior plane block for analgesia after thoracoscopic surgery. Anaesthesia 2018, 73, 1260–1264. [Google Scholar] [CrossRef]
- Blanco, R.; Parras, T.; McDonnell, J.G.; Prats-Galino, A. Serratus plane block: A novel ultrasound-guided thoracic wall nerve block. Anaesthesia 2013, 68, 1107–1113. [Google Scholar] [CrossRef]
- Piracha, M.M.; Thorp, S.L.; Puttanniah, V.; Gulati, A. “A Tale of Two Planes”: Deep Versus Superficial Serratus Plane Block for Postmastectomy Pain Syndrome. Reg. Anesth. Pain Med. 2017, 42, 259–262. [Google Scholar] [CrossRef]
- Bhalla, P.I.; Solomon, S.; Zhang, R.; Witt, C.E.; Dagal, A.; Joffe, A.M. Comparison of serratus anterior plane block with epidural and paravertebral block in critically ill trauma patients with multiple rib fractures. Trauma. Surg. Acute Care Open 2021, 6, e000621. [Google Scholar] [CrossRef]
- Diwan, S.; Nair, A. A retrospective study comparing analgesic efficacy of ultrasound-guided serratus anterior plane block versus intravenous fentanyl infusion in patients with multiple rib fractures. J. Anaesthesiol. Clin. Pharmacol. 2021, 37, 411–415. [Google Scholar] [CrossRef]
- Liu, X.; Song, T.; Xu, H.Y.; Chen, X.; Yin, P.; Zhang, J. The serratus anterior plane block for analgesia after thoracic surgery: A meta-analysis of randomized controlled trails. Medicine 2020, 99, e20286. [Google Scholar] [CrossRef]
- Khalil, A.E.; Abdallah, N.M.; Bashandy, G.M.; Kaddah, T.A. Ultrasound-Guided Serratus Anterior Plane Block Versus Thoracic Epidural Analgesia for Thoracotomy Pain. J. Cardiothorac. Vasc. Anesth. 2017, 31, 152–158. [Google Scholar] [CrossRef]
- Elsabeeny, W.Y.; Ibrahim, M.A.; Shehab, N.N.; Mohamed, A.; Wadod, M.A. Serratus Anterior Plane Block and Erector Spinae Plane Block Versus Thoracic Epidural Analgesia for Perioperative Thoracotomy Pain Control: A Randomized Controlled Study. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2928–2936. [Google Scholar] [CrossRef]
- Statzer, N.J.; Plackis, A.C.; Woolard, A.A.; Allen, B.F.S.; Siegrist, K.K.; Shi, Y.; Shotwell, M. Erector Spinae Plane Catheter Analgesia in Minimally Invasive Mitral Valve Surgery: A Retrospective Case-Control Study for Inclusion in an Enhanced Recovery Program. Semin. Cardiothorac. Vasc. Anesth. 2022, 26, 266–273. [Google Scholar] [CrossRef]
- Nagaraja, P.S.; Ragavendran, S.; Singh, N.G.; Asai, O.; Bhavya, G.; Manjunath, N.; Rajesh, K. Comparison of continuous thoracic epidural analgesia with bilateral erector spinae plane block for perioperative pain management in cardiac surgery. Ann. Card. Anaesth. 2018, 21, 323–327. [Google Scholar] [CrossRef]
- Ragavendran, S.; Raghu, C.; Prasad, S.R.; Arasu, T.; Nagaraja, P.S.; Singh, N.G.; Manjunath, N.; Muralikrishna, N.; Yogananth, N. Comparison of epidural analgesia with ultrasound-guided bilateral erector spinae plane block in aorto-femoral arterial bypass surgery. Ann. Card. Anaesth. 2022, 25, 26–33. [Google Scholar] [CrossRef]
- Sørenstua, M.; Zantalis, N.; Raeder, J.; Vamnes, J.S.; Leonardsen, A.L. Spread of local anesthetics after erector spinae plane block: An MRI study in healthy volunteers. Reg. Anesth. Pain Med. 2023, 48, 74–79. [Google Scholar] [CrossRef]
- Toscano, A.; Capuano, P.; Costamagna, A.; Canavosio, F.G.; Ferrero, D.; Alessandrini, E.M.; Giunta, M.; Rinaldi, M.; Brazzi, L. Is continuous Erector Spinae Plane Block (ESPB) better than continuous Serratus Anterior Plane Block (SAPB) for mitral valve surgery via mini-thoracotomy? Results from a prospective observational study. Ann. Card. Anaesth. 2022, 25, 286–292. [Google Scholar] [CrossRef]
- Finnerty, D.T.; McMahon, A.; McNamara, J.R.; Hartigan, S.D.; Griffin, M.; Buggy, D.J. Comparing erector spinae plane block with serratus anterior plane block for minimally invasive thoracic surgery: A randomised clinical trial. Br. J. Anaesth. 2020, 125, 802–810. [Google Scholar] [CrossRef]
- Nair, A.; Saxena, P.; Borkar, N.; Rangaiah, M.; Arora, N.; Mohanty, P.K. Erector spinae plane block for postoperative analgesia in cardiac surgeries—A systematic review and meta-analysis. Ann. Card. Anaesth. 2023, 26, 247–259. [Google Scholar] [CrossRef]
- Morkos, M.; DeLeon, A.; Koeckert, M.; Gray, Z.; Liao, K.; Pan, W.; Tolpin, D.A. The Use of Unilateral Erector Spinae Plane Block in Minimally Invasive Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2023, 37, 432–436. [Google Scholar] [CrossRef]
- Krishna, S.N.; Chauhan, S.; Bhoi, D.; Kaushal, B.; Hasija, S.; Sangdup, T.; Bisoi, A.K. Bilateral Erector Spinae Plane Block for Acute Post-Surgical Pain in Adult Cardiac Surgical Patients: A Randomized Controlled Trial. J. Cardiothorac. Vasc. Anesth. 2019, 33, 368–375. [Google Scholar] [CrossRef]
- D’Hondt, N.; Rex, S.; Verbrugghe, P.; Van den Eynde, R.; Hoogma, D. Erector spinae plane block for enhanced recovery after cardiac surgery in minimally invasive mitral valve surgery. J. Cardiothorac. Vasc. Anesth. 2020, 34, S22–S24. [Google Scholar] [CrossRef]
- Wiech, M.; Żurek, S.; Kurowicki, A.; Horeczy, B.; Czuczwar, M.; Piwowarczyk, P.; Widenka, K.; Borys, M. Erector Spinae Plane Block Decreases Chronic Postoperative Pain Severity in Patients Undergoing Coronary Artery Bypass Grafting. J. Clin. Med. 2022, 11, 5949. [Google Scholar] [CrossRef] [PubMed]
- Syal, R.; Mohammed, S.; Kumar, R.; Jain, N.; Bhatia, P. Continuous erector spinae plane block for analgesia and better pulmonary functions in patients with multiple rib fractures: A prospective descriptive study. Braz. J. Anesthesiol. (Engl. Ed.) 2021, 74, 744289. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.L.; Manickam, B. Erector spinae plane block for pain relief in rib fractures. Br. J. Anaesth. 2017, 118, 474–475. [Google Scholar] [CrossRef] [PubMed]
- Elshazly, M.; El-Halafawy, Y.M.; Mohamed, D.Z.; Wahab, K.A.E.; Mohamed, T.M.K. Feasibility and efficacy of erector spinae plane block versus transversus abdominis plane block in laparoscopic bariatric surgery: A randomized comparative trial. Korean J. Anesthesiol. 2022, 75, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.T.; Chin, S.E.; Gwee, R.; Chong, Y.; Au-Yong, A.; Matthews, A.; Zaw, M.W.; Lie, S.A.; Loh, L.; Koh, D.; et al. Pre-operative erector spinae plane block should be considered a viable option for laparoscopic colectomies. Surg. Endosc. 2023, 37, 7128–7135. [Google Scholar] [CrossRef]
- Kelava, M.; Anthony, D.; Elsharkawy, H. Continuous Erector Spinae Block for Postoperative Analgesia After Thoracotomy in a Lung Transplant Recipient. J. Cardiothorac. Vasc. Anesth. 2018, 32, e9–e11. [Google Scholar] [CrossRef]
- Schnabel, A.; Reichl, S.U.; Kranke, P.; Pogatzki-Zahn, E.M.; Zahn, P.K. Efficacy and safety of paravertebral blocks in breast surgery: A meta-analysis of randomized controlled trials. Br. J. Anaesth. 2010, 105, 842–852. [Google Scholar] [CrossRef]
- Mohta, M.; Verma, P.; Saxena, A.K.; Sethi, A.K.; Tyagi, A.; Girotra, G. Prospective, randomized comparison of continuous thoracic epidural and thoracic paravertebral infusion in patients with unilateral multiple fractured ribs--a pilot study. J. Trauma. 2009, 66, 1096–1101. [Google Scholar] [CrossRef]
- Casati, A.; Alessandrini, P.; Nuzzi, M.; Tosi, M.; Iotti, E.; Ampollini, L.; Bobbio, A.; Rossini, E.; Fanelli, G. A prospective, randomized, blinded comparison between continuous thoracic paravertebral and epidural infusion of 0.2% ropivacaine after lung resection surgery. Eur. J. Anaesthesiol. 2006, 23, 999–1004. [Google Scholar] [CrossRef]
- Karmakar, M.K.; Greengrass, R.A.; Latmore, M.; Levin, M. Thoracic & Lumbar Paravertebral Block. In Hadzic’s Textbook of Regional Anesthesia and Acute Pain Management, 2nd ed.; Hadzic, A., Ed.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Joshi, G.P.; Bonnet, F.; Shah, R.; Wilkinson, R.C.; Camu, F.; Fischer, B.; Neugebauer, E.A.; Rawal, N.; Schug, S.A.; Simanski, C.; et al. A systematic review of randomized trials evaluating regional techniques for postthoracotomy analgesia. Anesth. Analg. 2008, 107, 1026–1040. [Google Scholar] [CrossRef]
- Malekpour, M.; Hashmi, A.; Dove, J.; Torres, D.; Wild, J. Analgesic Choice in Management of Rib Fractures: Paravertebral Block or Epidural Analgesia? Anesth. Analg. 2017, 124, 1906–1911. [Google Scholar] [CrossRef]
- Lai, J.; Situ, D.; Xie, M.; Yu, P.; Wang, J.; Long, H.; Lai, R. Continuous Paravertebral Analgesia versus Continuous Epidural Analgesia after Video-Assisted Thoracoscopic Lobectomy for Lung Cancer: A Randomized Controlled Trial. Ann. Thorac. Cardiovasc. Surg. 2021, 27, 297–303. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, H.; Zhan, B.; Chen, S. Effects of bilateral Pecto-intercostal Fascial Block for perioperative pain management in patients undergoing open cardiac surgery: A prospective randomized study. BMC Anesthesiol. 2021, 21, 175. [Google Scholar] [CrossRef] [PubMed]
- Desire, S.M.; Hayward, G. Transversus Thoracic Muscle Plane Block (TTMPB). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Schiavoni, L.; Nenna, A.; Cardetta, F.; Pascarella, G.; Costa, F.; Chello, M.; Agrò, F.E.; Mattei, A. Parasternal Intercostal Nerve Blocks in Patients Undergoing Cardiac Surgery: Evidence Update and Technical Considerations. J. Cardiothorac. Vasc. Anesth. 2022, 36, 4173–4182. [Google Scholar] [CrossRef] [PubMed]
- Pascarella, G.; Costa, F.; Nonnis, G.; Strumia, A.; Sarubbi, D.; Schiavoni, L.; Di Pumpo, A.; Mortini, L.; Grande, S.; Attanasio, A.; et al. Ultrasound Guided Parasternal Block for Perioperative Analgesia in Cardiac Surgery: A Prospective Study. J. Clin. Med. 2023, 12, 2060. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Song, W.; Wang, W.; Peng, Y.; Zhai, C.; Yao, L.; Xia, Z. Ultrasound-guided parasternal intercostal nerve block for postoperative analgesia in mediastinal mass resection by median sternotomy: A randomized, double-blind, placebo-controlled trial. BMC Anesthesiol. 2021, 21, 98. [Google Scholar] [CrossRef] [PubMed]
- King, M.; Stambulic, T.; Hassan, S.M.A.; Norman, P.A.; Derry, K.; Payne, D.M.; El Diasty, M. Median sternotomy pain after cardiac surgery: To block, or not? A systematic review and meta-analysis. J. Card. Surg. 2022, 37, 3729–3742. [Google Scholar] [CrossRef] [PubMed]
- Luketich, J.D.; Land, S.R.; Sullivan, E.A.; Alvelo-Rivera, M.; Ward, J.; Buenaventura, P.O.; Landreneau, R.J.; Hart, L.A.; Fernando, H.C. Thoracic epidural versus intercostal nerve catheter plus patient-controlled analgesia: A randomized study. Ann. Thorac. Surg. 2005, 79, 1845–1849. [Google Scholar] [CrossRef] [PubMed]
- De Pinto, M.; Edwards, W. Management of Pain in the Critically Ill Patient in Irwin-Rippe’s Intensive Care Medicine, 6th ed.; Lippincott, Williams & Wilkins: Philadelphia, PA, USA, 2016. [Google Scholar]
- Britt, T.; Sturm, R.; Ricardi, R.; Labond, V. Comparative evaluation of continuous intercostal nerve block or epidural analgesia on the rate of respiratory complications, intensive care unit, and hospital stay following traumatic rib fractures: A retrospective review. Local Reg. Anesth. 2015, 8, 79–84. [Google Scholar] [CrossRef]
- Carney, J.; McDonnell, J.G.; Ochana, A.; Bhinder, R.; Laffey, J.G. The transversus abdominis plane block provides effective postoperative analgesia in patients undergoing total abdominal hysterectomy. Anesth. Analg. 2008, 107, 2056–2060. [Google Scholar] [CrossRef]
- McDonnell, J.G.; Curley, G.; Carney, J.; Benton, A.; Costello, J.; Maharaj, C.H.; Laffey, J.G. The analgesic efficacy of transversus abdominis plane block after cesarean delivery: A randomized controlled trial. Anesth. Analg. 2008, 106, 186–191. [Google Scholar] [CrossRef]
- Belavy, D.; Cowlishaw, P.J.; Howes, M.; Phillips, F. Ultrasound-guided transversus abdominis plane block for analgesia after Caesarean delivery. Br. J. Anaesth. 2009, 103, 726–730. [Google Scholar] [CrossRef]
- Turan, A.; Cohen, B.; Elsharkawy, H.; Maheshwari, K.; Soliman, L.M.; Babazade, R.; Ayad, S.; Hassan, M.; Elkassabany, N.; Essber, H.A.; et al. Transversus abdominis plane block with liposomal bupivacaine versus continuous epidural analgesia for major abdominal surgery: The EXPLANE randomized trial. J. Clin. Anesth. 2022, 77, 110640. [Google Scholar] [CrossRef]
- Niraj, G.; Kelkar, A.; Hart, E.; Kaushik, V.; Fleet, D.; Jameson, J. Four quadrant transversus abdominis plane block and continuous transversus abdominis plane analgesia: A 3-year prospective audit in 124 patients. J. Clin. Anesth. 2015, 27, 579–584. [Google Scholar] [CrossRef]
- Niraj, G.; Kelkar, A.; Jeyapalan, I.; Graff-Baker, P.; Williams, O.; Darbar, A.; Maheshwaran, A.; Powell, R. Comparison of analgesic efficacy of subcostal transversus abdominis plane blocks with epidural analgesia following upper abdominal surgery. Anaesthesia 2011, 66, 465–471. [Google Scholar] [CrossRef]
- Fusco, P.; Scimia, P.; Paladini, G.; Fiorenzi, M.; Petrucci, E.; Pozone, T.; Vacca, F.; Behr, A.; Micaglio, M.; Danelli, G.; et al. Transversus abdominis plane block for analgesia after Cesarean delivery. A systematic review. Minerva Anestesiol. 2015, 81, 195–204. [Google Scholar]
- Liheng, L.; Siyuan, C.; Zhen, C.; Changxue, W. Erector Spinae Plane Block versus Transversus Abdominis Plane Block for Postoperative Analgesia in Abdominal Surgery: A Systematic Review and Meta-Analysis. J. Investig. Surg. 2022, 35, 1711–1722. [Google Scholar] [CrossRef]
- Uppal, V.; Retter, S.; Kehoe, E.; McKeen, D.M. Quadratus lumborum block for postoperative analgesia: A systematic review and meta-analysis. Can. J. Anaesth. 2020, 67, 1557–1575. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H.J.; Kim, N.; Lee, B.; Song, J.; Choi, Y.S. Effectiveness of quadratus lumborum block for postoperative pain: A systematic review and meta-analysis. Minerva Anestesiol. 2020, 86, 554–564. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhang, K. Effects of transversus abdominis plane block versus quadratus lumborum block on postoperative analgesia: A meta-analysis of randomized controlled trials. BMC Anesthesiol. 2020, 20, 103. [Google Scholar] [CrossRef]
- Long, X.; Yin, Y.; Guo, W.; Tang, L. Ultrasound-guided quadratus lumborum block: A powerful way for reducing postoperative pain. Ann. Med. Surg. 2023, 85, 4947–4953. [Google Scholar] [CrossRef]
PNB/FPB | Dosage Recommendation |
PECS I | Bupivacaine 0.25% or Ropivacaine 0.5%: 10 mL |
PECS II | Bupivacaine 0.25% or Ropivacaine 0.5%: 20 mL |
SAPB | Bupivacaine 0.25%: 30–40 mL Continuous Catheter Infusion: Ropivacaine 0.2%: 6–10 mL/h; Bolus 8 mL; Lockout interval 30 min |
ESPB | Bupivacaine 0.25% or Ropivacaine 0.5% Unilateral: 50–70 kg: 30 mL; ≥70 kg: 40 mL Bilateral (each side): 50–70 kg: 20 mL; ≥70–100 kg: 25 mL; ≥100 kg: 30 mL Continuous Catheter Infusion: Ropivacaine 0.2%: 8–10 mL/h; Bolus 5 mL, Lockout interval 60 min Alternative: Intermittent Bolus of 15 mL each 2–3 h |
PIFB/TTPB | Bupivacaine 0.25% or Ropivacaine 0.5%: 20 mL/side |
Intercostal Block | Ropivacaine 0.2%: 3–5 mL per level |
TAPB | Bupivacaine 0.25% or Ropivacaine 0.5%: 20 mL Continuous Catheter Infusion: Ropivacaine 0.2%: 6–10 mL/h; Bolus 12 mL; Lockout interval 60 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ott, S.; Müller-Wirtz, L.M.; Sertcakacilar, G.; Tire, Y.; Turan, A. Non-Neuraxial Chest and Abdominal Wall Regional Anesthesia for Intensive Care Physicians—A Narrative Review. J. Clin. Med. 2024, 13, 1104. https://doi.org/10.3390/jcm13041104
Ott S, Müller-Wirtz LM, Sertcakacilar G, Tire Y, Turan A. Non-Neuraxial Chest and Abdominal Wall Regional Anesthesia for Intensive Care Physicians—A Narrative Review. Journal of Clinical Medicine. 2024; 13(4):1104. https://doi.org/10.3390/jcm13041104
Chicago/Turabian StyleOtt, Sascha, Lukas M. Müller-Wirtz, Gokhan Sertcakacilar, Yasin Tire, and Alparslan Turan. 2024. "Non-Neuraxial Chest and Abdominal Wall Regional Anesthesia for Intensive Care Physicians—A Narrative Review" Journal of Clinical Medicine 13, no. 4: 1104. https://doi.org/10.3390/jcm13041104