Correlation of Plasmatic Amyloid Beta Peptides (Aβ-40, Aβ-42) with Myocardial Injury and Inflammatory Biomarkers in Acute Coronary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sampling Method and Sample Size Determination
2.3. Data Collection
2.4. Assessment of Plasmatic Aβ Peptides (Aβ-42, Aβ-40)
2.5. Statistical Methods
3. Results
3.1. Overall Patient Characteristics and Demographics
3.2. Aβ Peptide Correlation Analysis
3.3. Comparison of Aβ-42 and NT-proBNP with Cardiovascular Risk Factors
3.4. Comparison of Demographic, Clinical, and Biochemical Characteristics between Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J.L. Global and Regional Burden of Disease and Risk Factors, 2001: Systematic Analysis of Population Health Data. Lancet 2006, 367, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Heusch, G. Myocardial Ischemia/Reperfusion: Translational Pathophysiology of Ischemic Heart Disease. Med 2024, 5, 10–31. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’amato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; et al. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int. J. Mol. Sci. 2020, 21, 8118. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.V.; Masri, S.C.; Abdallah, M.S.; Chang, A.M.; Cohen, M.G.; Elgendy, I.Y.; Gulati, M.; Lapoint, K.; Madan, N.; Moussa, I.D.; et al. 2022 ACC/AHA Key Data Elements and Definitions for Chest Pain and Acute Myocardial Infarction: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Data Standards. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e000112. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Lopes, R.D.; Harrington, R.A. Diagnosis and Treatment of Acute Coronary Syndromes: A Review. JAMA 2022, 327, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Libby, P.; Pasterkamp, G.; Crea, F.; Jang, I.K. Reassessing the Mechanisms of Acute Coronary Syndromes: The “Vulnerable Plaque” and Superficial Erosion. Circ. Res. 2019, 124, 150–160. [Google Scholar] [CrossRef]
- Nardin, M.; Verdoia, M.; Laera, N.; Cao, D.; De Luca, G. New Insights into Pathophysiology and New Risk Factors for ACS. J. Clin. Med. 2023, 12, 2883. [Google Scholar] [CrossRef]
- Roher, A.E.; Kokjohn, T.A.; Clarke, S.G.; Sierks, M.R.; Maarouf, C.L.; Serrano, G.E.; Sabbagh, M.S.; Beach, T.G. APP/Aβ Structural Diversity and Alzheimer’s Disease Pathogenesis. Neurochem. Int. 2017, 110, 1–13. [Google Scholar] [CrossRef]
- Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef] [PubMed]
- Stakos, D.A.; Stamatelopoulos, K.; Bampatsias, D.; Sachse, M.; Zormpas, E.; Vlachogiannis, N.I.; Tual-Chalot, S.; Stellos, K. The Alzheimer’s Disease Amyloid-Beta Hypothesis in Cardiovascular Aging and Disease: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 952–967. [Google Scholar] [CrossRef] [PubMed]
- Kitazume, S.; Yoshihisa, A.; Yamaki, T.; Oikawa, M.; Tachida, Y.; Ogawa, K.; Imamaki, R.; Takeishi, Y.; Yamamoto, N.; Taniguchi, N. Soluble Amyloid Precursor Protein 770 Is a Novel Biomarker Candidate for Acute Coronary Syndrome. Proteom. Clin. Appl. 2013, 7, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Zamolodchikov, D.; Renné, T.; Strickland, S. The Alzheimer’s Disease Peptide β-Amyloid Promotes Thrombin Generation through Activation of Coagulation Factor XII. J. Thromb. Haemost. 2016, 14, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Stamatelopoulos, K.; Sibbing, D.; Rallidis, L.S.; Georgiopoulos, G.; Stakos, D.; Braun, S.; Gatsiou, A.; Sopova, K.; Kotakos, C.; Varounis, C.; et al. Amyloid-Beta (1-40) and the Risk of Death from Cardiovascular Causes in Patients with Coronary Heart Disease. J. Am. Coll. Cardiol. 2015, 65, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Herczenik, E.; Bouma, B.; Korporaal, S.J.A.; Strangi, R.; Zeng, Q.; Gros, P.; Van Eck, M.; Van Berkel, T.J.C.; Gebbink, M.F.B.G.; Akkerman, J.W.N. Activation of Human Platelets by Misfolded Proteins. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.Y.; Hsiao, G.; Fong, T.H.; Chou, D.S.; Sheu, J.R. Expression of Amyloid Beta Peptide in Human Platelets: Pivotal Role of the Phospholipase Cγ2-Protein Kinase C Pathway in Platelet Activation. Pharmacol. Res. 2008, 57, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Gowert, N.S.; Donner, L.; Chatterjee, M.; Eisele, Y.S.; Towhid, S.T.; Münzer, P.; Walker, B.; Ogorek, I.; Borst, O.; Grandoch, M.; et al. Blood Platelets in the Progression of Alzheimer’s Disease. PLoS ONE 2014, 9, e90523. [Google Scholar] [CrossRef]
- Canobbio, I.; Catricalà, S.; Di Pasqua, L.G.; Guidetti, G.; Consonni, A.; Manganaro, D.; Torti, M. Immobilized Amyloid Aβ Peptides Support Platelet Adhesion and Activation. FEBS Lett. 2013, 587, 2606–2611. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Feng, Y.; Dong, G.; Wang, Y.; Yang, J. The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediat. Inflamm. 2020, 2020, 3872367. [Google Scholar] [CrossRef]
- Chong, Y.H.; Sung, J.H.; Shin, S.A.; Chung, J.H.; Suh, Y.H. Effects of the β-Amyloid and Carboxyl-Terminal Fragment of Alzheimer’s Amyloid Precursor Protein on the Production of the Tumor Necrosis Factor-α and Matrix Metalloproteinase-9 by Human Monocytic THP-1. J. Biol. Chem. 2001, 276, 23511–23517. [Google Scholar] [CrossRef]
- Jang, S.; Chapa-Dubocq, X.R.; Parodi-Rullán, R.M.; Fossati, S.; Javadov, S. Beta-Amyloid Instigates Dysfunction of Mitochondria in Cardiac Cells. Cells 2022, 11, 373. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G * Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Mitsis, A.; Gragnano, F. Myocardial Infarction with and without ST-Segment Elevation: A Contemporary Reappraisal of Similarities and Differences. Curr. Cardiol. Rev. 2020, 17, e230421189013. [Google Scholar] [CrossRef]
- Kokjohn, T.A.; Van Vickle, G.D.; Maarouf, C.L.; Kalback, W.M.; Hunter, J.M.; Daugs, I.D.; Luehrs, D.C.; Lopez, J.; Brune, D.; Sue, L.I.; et al. Chemical Characterization of Pro-Inflammatory Amyloid-Beta Peptides in Human Atherosclerotic Lesions and Platelets. Biochim Biophys. Acta Mol. Basis Dis. 2011, 1812, 1508–1514. [Google Scholar] [CrossRef]
- Troncone, L.; Luciani, M.; Coggins, M.; Wilker, E.H.; Ho, C.-Y.; Codispoti, K.E.; Frosch, M.P.; Kayed, R.; del Monte, F. Aβ Amyloid Pathology Affects the Hearts of Patients with Alzheimer’s Disease: Mind the Heart. J. Am. Coll. Cardiol. 2016, 68, 2395–2407. [Google Scholar] [CrossRef] [PubMed]
- Stamatelopoulos, K.; Pol, C.J.; Ayers, C.; Georgiopoulos, G.; Gatsiou, A.; Brilakis, E.S.; Khera, A.; Drosatos, K.; de Lemos, J.A.; Stellos, K. Amyloid-Beta (1-40) Peptide and Subclinical Cardiovascular Disease. J. Am. Coll. Cardiol. 2018, 72, 1060–1061. [Google Scholar] [CrossRef]
- Stellos, K.; Sibbing, D.; Stakos, D.; Braun, S.; Georgiopoulos, G.; Gatsiou, A.; Sopova, K.; Kastrati, A.; Stamatelopoulos, K. Association of Plasma Amyloid-Beta (1-40) Levels with Incident Coronary Artery Disease and Cardiovascular Mortality. Eur. Heart J. 2013, 34 (Suppl. 1), 3145. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Barallat, J.; de Antonio, M.; Domingo, M.; Zamora, E.; Vila, J.; Subirana, I.; Gastelurrutia, P.; Pastor, M.C.; Januzzi, J.L.; et al. Bloodstream Amyloid-Beta (1-40) Peptide, Cognition, and Outcomes in Heart Failure. Rev. Esp. Cardiol. (Engl. Ed.) 2017, 70, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Stamatelopoulos, K.; Mueller-Hennessen, M.; Georgiopoulos, G.; Sachse, M.; Boeddinghaus, J.; Sopova, K.; Gatsiou, A.; Amrhein, C.; Biener, M.; Vafaie, M.; et al. Amyloid-(1-40) and Mortality in Patients with Non–ST-Segment Elevation Acute Coronary Syndrome A Cohort Study. Ann. Intern Med. 2018, 168, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A.; Wallentin, L.; Simoons, M.; Gitt, A.K.; Behar, S.; Battler, A.; Hasdai, D. Cardiovascular Risk Factors and Clinical Presentation in Acute Coronary Syndromes. Heart 2005, 91, 1141–1147. [Google Scholar] [CrossRef]
- Gandhi, S.; Garratt, K.N.; Li, S.; Wang, T.Y.; Bhatt, D.L.; Davis, L.L.; Zeitouni, M.; Kontos, M.C. Ten-Year Trends in Patient Characteristics, Treatments, and Outcomes in Myocardial Infarction from National Cardiovascular Data Registry Chest Pain-MI Registry. Circ. Cardiovasc. Qual. Outcomes 2022, 15, E008112. [Google Scholar] [CrossRef]
- Mandelzweig, L. The Second Euro Heart Survey on Acute Coronary Syndromes: Characteristics, Treatment, and Outcome of Patients with ACS in Europe and the Mediterranean Basin in 2004. Eur. Heart J. 2006, 27, 2285–2293. [Google Scholar] [CrossRef]
- NHIS-Adult Tobacco Use-Glossary. Available online: https://www.cdc.gov/nchs/nhis/tobacco/tobacco_glossary.htm (accessed on 14 December 2023).
- De Meyer, G.R.Y.; De Cleen, D.M.M.; Cooper, S.; Knaapen, M.W.M.; Jans, D.M.; Martinet, W.; Herman, A.G.; Bult, H.; Kockx, M.M. Platelet Phagocytosis and Processing of β-Amyloid Precursor Protein as a Mech anism of Macrophage Activation in Atherosclerosis. Circ. Res. 2002, 90, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kulas, J.A.; Wang, C.; Holtzman, D.M.; Ferris, H.A.; Hansen, S.B. Regulation of Beta-Amyloid Production in Neurons by Astrocyte-Derived Cholesterol. Proc. Natl. Acad. Sci. USA 2021, 118, e2102191118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wolters, F.J.; Yaqub, A.; Leening, M.J.G.; Ghanbari, M.; Boersma, E.; Ikram, M.A.; Kavousi, M. Plasma Amyloid-β in Relation to Cardiac Function and Risk of Heart Failure in General Population. JACC Heart Fail. 2023, 11, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.A.; Morrell, C.N.; Ling, F.S.; Simlote, P.; Fernandez, G.; Rich, D.Q.; Adler, D.; Gervase, J.; Cameron, S.J. The Platelet Phenotype in Patients with ST-Segment Elevation Myocardial Infarction Is Different from Non–ST-Segment Elevation Myocardial Infarction. Transl. Res. 2018, 195, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wolska, N.; Celikag, M.; Failla, A.V.; Tarafdar, A.; Renné, T.; Torti, M.; Canobbio, I.; Pula, G. Human Platelets Release Amyloid Peptides Β1-40 and Β1-42 in Response to Hemostatic, Immune, and Hypoxic Stimuli. Res. Pract. Thromb. Haemost. 2023, 7, 100154. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Nair, A.P.; Misra, A.; Scott, C.Z.; Mahar, J.H.; Fedson, S. Neprilysin Inhibitors in Heart Failure: The Science, Mechanism of Action, Clinical Studies, and Unanswered Questions. JACC Basic Transl. Sci. 2023, 8, 88–105. [Google Scholar] [CrossRef]
- Burrinha, T.; Martinsson, I.; Gomes, R.; Terrasso, A.P.; Gouras, G.K.; Almeida, C.G. Upregulation of APP Endocytosis by Neuronal Aging Drives Amyloid-Dependent Synapse Loss. J. Cell Sci. 2021, 134, jcs255752. [Google Scholar] [CrossRef] [PubMed]
- Zecca, C.; Pasculli, G.; Tortelli, R.; Dell’Abate, M.T.; Capozzo, R.; Barulli, M.R.; Barone, R.; Accogli, M.; Arima, S.; Pollice, A.; et al. The Role of Age on Beta-Amyloid1–42 Plasma Levels in Healthy Subjects. Front. Aging Neurosci. 2021, 13, 698571. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Jering, K.S.; Claggett, B.L.; Pfeffer, M.A.; Granger, C.B.; Køber, L.; Lewis, E.F.; Maggioni, A.P.; Mann, D.L.; McMurray, J.J.V.; Prescott, M.F.; et al. Prognostic Importance of NT-ProBNP (N-Terminal Pro-B-Type Natriuretic Peptide) Following High-Risk Myocardial Infarction in the PARADISE-MI Trial. Circ. Heart Fail. 2023, 16, e010259. [Google Scholar] [CrossRef]
- Kim, J.W.; Byun, M.S.; Lee, J.H.; Yi, D.; Jeon, S.Y.; Sohn, B.K.; Lee, J.Y.; Shin, S.; Kim, Y.K.; Kang, K.M.; et al. Serum Albumin and Beta-Amyloid Deposition in the Human Brain. Neurology 2020, 95, e815–e826. [Google Scholar] [CrossRef] [PubMed]
- Lazar, D.R.; Lazar, F.L.; Homorodean, C.; Cainap, C.; Focsan, M.; Cainap, S.; Olinic, D.M. High-Sensitivity Troponin: A Review on Characteristics, Assessment, and Clinical Implications. Dis. Mark. 2022, 2022, 9713326. [Google Scholar] [CrossRef] [PubMed]
- Kleemeier, S.; Abildgaard, A.; Ladefoged, S.A.; Thorsted Sørensen, J.; Stengaard, C.; Adelborg, K. High-Sensitivity Troponin T and I in Patients Suspected of Acute Myocardial Infarction. Scand. J. Clin. Lab. Investig. 2022, 82, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Hilal, S.; Ikram, M.A.; Verbeek, M.M.; Franco, O.H.; Stoops, E.; Vanderstichele, H.; Niessen, W.J.; Vernooij, M.W. C-Reactive Protein, Plasma Amyloid-β Levels, and Their Interaction with Magnetic Resonance Imaging Markers. Stroke 2018, 49, 2692–2698. [Google Scholar] [CrossRef] [PubMed]
Variable | Aβ-42 (pg/mL) | Aβ-40 (pg/mL) | Aβ-42/40 Ratio | |||
---|---|---|---|---|---|---|
Rho | p-Value | Rho | p-Value | Rho | p-Value | |
Age (years) | 0.303 | 0.014 | 0.389 | 0.001 | −0.224 | 0.073 |
BMI (kg/m2) | −0.050 | 0.694 | −0.084 | 0.507 | −0.031 | 0.805 |
One or more SMuRF | 0.167 | 0.184 | 0.298 | 0.016 | −0.251 | 0.044 |
High-sensitivity troponin I (pg/mL) | −0.021 | 0.869 | 0.063 | 0.617 | −0.142 | 0.260 |
CRP (mg/dL) | 0.073 | 0.584 | 0.174 | 0.190 | −0.155 | 0.247 |
NT-proBNP | 0.417 | 0.001 | 0.374 | 0.002 | −0.129 | 0.305 |
Albumin (g/dL) | −0.284 | 0.048 | −0.173 | 0.234 | 0.048 | 0.741 |
Total cholesterol (mg/dL) | −0.153 | 0.274 | −0.089 | 0.526 | 0.061 | 0.664 |
HDL (mg/dL) | −0.005 | 0.972 | 0.061 | 0.657 | −0.043 | 0.757 |
LDL (mg/dL) | −0.147 | 0.285 | −0.096 | 0.484 | 0.090 | 0.515 |
Triglycerides | −0.074 | 0.611 | −0.051 | 0.726 | −0.051 | 0.725 |
AIP | −0.073 | 0.617 | −0.079 | 0.585 | −0.024 | 0.869 |
Symptom-to-blood sample † | 0.012 | 0.923 | −0.142 | 0.259 | 0.049 | 0.697 |
Variable | All Subjects (n = 65) | |||
---|---|---|---|---|
Aβ-42 (pg/mL) | p-Value | NT-proBNP (pg/mL) | p-Value | |
Diabetes | ||||
Yes: No: | 42.50 (36.51–47.75) 37.64 (35.01–43.63) | 0.075 | 3978.0 (226.0–7611.0) 277.0 (110.0–690.0) | 0.004 |
Hypertension | ||||
Yes: No: | 39.70 (36.51–49.62) 36.14 (34.64–39.51) | 0.006 | 551.0 (181.0–1862.0) 231.0 (110.0–522.0) | 0.056 |
Dyslipidemia | ||||
Yes: No: | 37.07 (35.58–39.13) 38.76 (35.39–44.38) | 0.393 | 415.5 (76.7–1192.5) 342.0 (125.0–974.0) | 0.819 |
Smoking | ||||
Yes: No: | 38.39 (35.39–43.25) 38.57 (35.76–48.68) | 0.624 | 226.0 (99.0–975.0) 642.5 (257.5–1125.0) | 0.060 |
Prior MI | ||||
Yes: No: | 40.26 (36.14–53.37) 37.45 (35.01–41.76) | 0.066 | 516.0 (199.0–1862.0) 257.5 (110.0–766.0) | 0.197 |
SMuRF | ||||
≥One: None: | 38.76 (35.76–45.13) 35.01 (33.52–37.64) | 0.039 | 315.0 (110.0–978.0) 470.0 (234.0–642.0) | 0.910 |
Variable | STEMI (n = 34) | NSTEMI (n = 31) | p-Value |
---|---|---|---|
Age (years) | 58 ± 12 | 60 ± 12 | 0.503 |
Sex | |||
Male Female | 29 (85.3%) 5 (14.7%) | 22 (71.1%) 9 (29.9%) | 0.135 |
Body mass index (kg/m2) Overweight Obesity Overweight/Obesity | 28.28 ± 4.15 14 (41.2%) 12 (35.3%) 26 (76.5%) | 27.83 ± 3.70 14 (45.2%) 9 (29.0%) 23 (74.0%) | 0.652 |
Diabetes | 4 (11.8%) | 10 (32.3%) | 0.043 |
Hypertension | 18 (52.9%) | 24 (77.4%) | 0.039 |
Dyslipidemia | 6 (17.6%) | 6 (19.4%) | 0.859 |
Previous myocardial infarction | 9 (26.5%) | 18 (58.1%) | 0.010 |
Smoking status | |||
Current smoker Former smoker Nonsmoker | 16 (47.1%) 6 (17.6%) 12 (35.3%) | 5 (16.1%) 17 (54.8%) 9 (29.1%) | 0.003 |
Number of SMuRFs | |||
One or more None | 29 (85.3%) 5 (14.7%) | 30 (96.3%) 1 (3.7%) | 0.121 |
Killip–Kimball | |||
≥2 Class | 9 (26.5%) | 5 (16.1%) | 0.240 |
GRACE | |||
Intermediate–High Risk | 22 (64.7%) | 18 (58.1%) | 0.583 |
TIMI | |||
Intermediate–High Risk | 21 (61.8%) | 21 (67.7%) | 0.615 |
CRUSADE | |||
Moderate–High Risk | 14 (41.2%) | 15 (48.4%) | 0.559 |
LVEF | |||
Mid-range ejection fraction Reduced ejection fraction | 9 (27.3%) 11 (33.3%) | 6 (20.7%) 8 (27.6%) | 0.618 |
Symptom-to-door time (minutes) | 392 ± 196 | 280 ± 171 | 0.018 |
Symptom-to-blood sample time (minutes) | 418 ± 198 | 364 ± 193 | 0.221 |
Door-to-electrocardiogram time (minutes) | 6 (5–8) | 5 (5–7) | 0.143 |
Door-to-balloon time (minutes) | 508 (98–2377) (n = 31) | 2030 (1085–3576) (n = 16) | 0.001 |
Symptom-to-catheter time (minutes) | 1700 ± 1889 | 3070 ± 2562 | 0.992 |
Variable |
STEMI (n = 34) |
NSTEMI (n = 31) | p-Value |
---|---|---|---|
Aβ-42 (pg/mL) | 35.96 (34.27–39.14) | 41.76 (38.99–47.75) | 0.001 |
Aβ-40 (pg/mL) | 169.38 ± 88.26 | 183.68 ± 68.96 | 0.472 |
Aβ-42/40 ratio | 0.25 (0.21–0.30) | 0.24 (0.20–0.38) | 0.708 |
High-sensitivity troponin I (pg/mL) | 368.5 (67.1–4742.0) | 249 (65.3–1299.0) | 0.281 |
NT-proBNP (pg/mL) | 257.5 (104.0–643.0) | 516.0 (199.0–643.0) | 0.097 |
High-sensitivity CRP (mg/dL) | 4.98 (2.47–9.50) | 4.46 (1.63–10.40) | 0.569 |
Albumin (g/dL) | 4.14 ± 0.42 | 3.95 ± 0.52 | 0.149 |
Total cholesterol (mg/dL) | 170.3 ± 43.7 | 157.5 ± 35.7 | 0.264 |
Triglycerides (mg/dL) | 162.2 ± 65.8 | 149.4 ± 60.3 | 0.490 |
HDL (mg/dL) | 38.65 ± 8.81 | 36.21 ± 7.65 | 0.285 |
LDL (mg/dL) | 112.9 ± 41.4 | 98.1 ± 32.3 | 0.155 |
AIP | 0.23 ± 0.23 | 0.23 ± 0.20 | 0.992 |
Variable | All Patients (n = 65) | Without Outliers (n = 57) | ||||
---|---|---|---|---|---|---|
β Coefficient | OR (95% CI) | p-Value | β Coefficient | OR (95% CI) | p-Value | |
Aβ-42 ≥ 38 pg/mL | 2.579 | 13.184 (2.943–59.053) | 0.001 | 3.672 | 39.313 (4.479–345.063) | 0.001 |
Diabetes | 1.593 | 4.918 (0.820–29.510) | 0.081 | 1.996 | 7.361 (0.714–75.859) | 0.093 |
Hypertension | −0.696 | 0.499 (0.090–2.753) | 0.425 | −0.795 | 0.451 (0.071–2.856) | 0.398 |
Previous myocardial infarction | 1.292 | 3.639 (0.763–17.351) | 2.131 | 8.424 | 8.424 (1.087–65.268) | 0.041 |
Smoking status * Former smoker Nonsmoker | 1.582 −0.916 | 4.863 (0.915–25.838) 0.400 (0.083–1.940) | 0.063 0.256 | 2.333 −1.004 | 10.308 (1.210–87.783) 0.366 (0.056–2.427) | 0.033 0.298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Moral, L.E.; Lerma, C.; González-Pacheco, H.; Chávez-Lázaro, A.C.; Massó, F.; Rodriguez, E. Correlation of Plasmatic Amyloid Beta Peptides (Aβ-40, Aβ-42) with Myocardial Injury and Inflammatory Biomarkers in Acute Coronary Syndrome. J. Clin. Med. 2024, 13, 1117. https://doi.org/10.3390/jcm13041117
Del Moral LE, Lerma C, González-Pacheco H, Chávez-Lázaro AC, Massó F, Rodriguez E. Correlation of Plasmatic Amyloid Beta Peptides (Aβ-40, Aβ-42) with Myocardial Injury and Inflammatory Biomarkers in Acute Coronary Syndrome. Journal of Clinical Medicine. 2024; 13(4):1117. https://doi.org/10.3390/jcm13041117
Chicago/Turabian StyleDel Moral, Luis Eduardo, Claudia Lerma, Héctor González-Pacheco, Alan Cristhian Chávez-Lázaro, Felipe Massó, and Emma Rodriguez. 2024. "Correlation of Plasmatic Amyloid Beta Peptides (Aβ-40, Aβ-42) with Myocardial Injury and Inflammatory Biomarkers in Acute Coronary Syndrome" Journal of Clinical Medicine 13, no. 4: 1117. https://doi.org/10.3390/jcm13041117
APA StyleDel Moral, L. E., Lerma, C., González-Pacheco, H., Chávez-Lázaro, A. C., Massó, F., & Rodriguez, E. (2024). Correlation of Plasmatic Amyloid Beta Peptides (Aβ-40, Aβ-42) with Myocardial Injury and Inflammatory Biomarkers in Acute Coronary Syndrome. Journal of Clinical Medicine, 13(4), 1117. https://doi.org/10.3390/jcm13041117