The Efficacy of Muscle Energy and Mulligan Mobilization Techniques for the Upper Extremities and Posture after Breast Cancer Surgery with Axillary Dissection: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Treatment Procedures
2.2.1. Mulligan MWM Techniques
2.2.2. MET
2.3. Outcome Measures
2.4. Sample Size Determination
2.5. Randomization, Allocation Concealment, and Blinding
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Rostom, Y.; Abdelmoneim, S.-E.; Shaker, M.; Mahmoud, N. Presentation and Management of Female Breast Cancer in Egypt. East. Mediterr. Health J. 2022, 28, 725–732. [Google Scholar] [CrossRef]
- Magnoni, F.; Galimberti, V.; Corso, G.; Intra, M.; Sacchini, V.; Veronesi, P. Axillary Surgery in Breast Cancer: An Updated Historical Perspective. Semin. Oncol. 2020, 47, 341–352. [Google Scholar] [CrossRef]
- Marazzi, F.; Masiello, V.; Marchesano, D.; Boldrini, L.; Luzi, S.; Ferrara, P.E.; Amabile, E.; Piccari, D.; Landi, F.; Moschella, F.; et al. Shoulder Girdle Impairment in Breast Cancer Survivors: The Role of Range of Motion as Predictive Factor for Dose Distribution and Clinical Outcome. Tumori 2019, 105, 319–330. [Google Scholar] [CrossRef]
- Min, J.; Yeon, S.; Ryu, J.; Kim, J.Y.; Yang, E.J.; il Kim, S.; Park, S.; Jeon, J.Y. Shoulder Function and Health Outcomes in Newly Diagnosed Breast Cancer Patients Receiving Surgery: A Prospective Study. Clin. Breast Cancer 2023, 23, e247–e258. [Google Scholar] [CrossRef]
- McNeely, M.L.; Campbell, K.; Ospina, M.; Rowe, B.H.; Dabbs, K.; Klassen, T.P.; Mackey, J.; Courneya, K. Exercise Interventions for Upper-Limb Dysfunction Due to Breast Cancer Treatment. Cochrane Database Syst. Rev. 2010 16, CD005211. [CrossRef]
- Lin, Y.; Chen, Y.; Liu, R.; Cao, B. Effect of Exercise on Rehabilitation of Breast Cancer Surgery Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nurs. Open 2023, 10, 2030–2043. [Google Scholar] [CrossRef]
- Loh, S.Y.; Musa, A.N. Methods to Improve Rehabilitation of Patients Following Breast Cancer Surgery: A Review of Systematic Reviews. Breast Cancer Targets Ther. 2015, 7, 81–98. [Google Scholar] [CrossRef]
- Bruce, J.; Mazuquin, B.; Mistry, P.; Rees, S.; Canaway, A.; Hossain, A.; Williamson, E.; Padfield, E.J.; Lall, R.; Richmond, H.; et al. Exercise to Prevent Shoulder Problems after Breast Cancer Surgery: The PROSPER RCT. Health Technol. Assess. 2022, 26, 1–124. [Google Scholar] [CrossRef]
- Tommasi, C.; Balsano, R.; Corianò, M.; Pellegrino, B.; Saba, G.; Bardanzellu, F.; Denaro, N.; Ramundo, M.; Toma, I.; Fusaro, A.; et al. Long-Term Effects of Breast Cancer Therapy and Care: Calm after the Storm? J. Clin. Med. 2022, 11, 7239. [Google Scholar] [CrossRef]
- Invernizzi, M.; Lippi, L.; Folli, A.; Turco, A.; Zattoni, L.; Maconi, A.; de Sire, A.; Fusco, N. Integrating Molecular Biomarkers in Breast Cancer Rehabilitation. What Is the Current Evidence? A Systematic Review of Randomized Controlled Trials. Front. Mol. Biosci. 2022, 9, 930361. [Google Scholar] [CrossRef]
- Bucciarelli, V.; Bianco, F.; Di Blasio, A.; Morano, T.; Tuosto, D.; Mucedola, F.; Di Santo, S.; Cimini, A.; Napolitano, G.; Bucci, I.; et al. Cardiometabolic Profile, Physical Activity, and Quality of Life in Breast Cancer Survivors after Different Physical Exercise Protocols: A 34-Month Follow-Up Study. J. Clin. Med. 2023, 12, 4795. [Google Scholar] [CrossRef]
- Bagcaci, S.; Unuvar, B.S.; Gercek, H.; Ugurlu, I.; Sert, O.A.; Yilmaz, K. A Randomized Controlled Trial on Pain, Grip Strength, and Functionality in Lateral Elbow Pain: Mulligan vs Muscle Energy Techniques. J. Back Musculoskelet. Rehabil. 2023, 36, 419–427. [Google Scholar] [CrossRef]
- El-Din Mahmoud, L.S.; El Meligie, M.M.; Yehia, R.M. Effectiveness of the Muscle Energy Technique on Postpartum Meralgia Paresthetica: A Randomized Controlled Trial. J. Back Musculoskelet. Rehabil. 2023, 36, 677–684. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. J. Clin. Epidemiol. 2010, 63, 834–840. [Google Scholar] [CrossRef]
- Menek, B.; Tarakci, D.; Algun, Z.C. The Effect of Mulligan Mobilization on Pain and Life Quality of Patients with Rotator Cuff Syndrome: A Randomized Controlled Trial. J. Back Musculoskelet. Rehabil. 2019, 32, 171–178. [Google Scholar] [CrossRef]
- Ludewig, P.M.; Braman, J.P. Shoulder Impingement: Biomechanical Considerations in Rehabilitation. Man. Ther. 2011, 16, 33. [Google Scholar] [CrossRef]
- Kolber, M.J.; Mdt, C.; Hanney, W.J. The reliability and concurrent validity of shoulder mobility measurements using a digital inclinometer and goniometer: A technical report. Int. J. Sports Phys. Ther. 2012, 7, 306. [Google Scholar]
- Ferreira, E.A.G.; Duarte, M.; Maldonado, E.P.; Burke, T.N.; Marques, A.P. Postural Assessment Software (PAS/SAPO): Validation and Reliabiliy. Clinics 2010, 65, 675. [Google Scholar] [CrossRef]
- de Bem Fretta, T.; Boing, L.; do Prado Baffa, A.; Borgatto, A.F.; Coutinho de Azevedo Guimarães, A. Mat Pilates Method Improve Postural Alignment Women Undergoing Hormone Therapy Adjunct to Breast Cancer Treatment. Clin. Trial. Complement. Ther. Clin. Pract. 2021, 44, 101424. [Google Scholar] [CrossRef]
- Alnahdi, A.H. Validity and Reliability of the Arabic Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH-Arabic). Musculoskelet. Sci. Pract. 2021, 53, 102372. [Google Scholar] [CrossRef]
- Leblanc, M.; Stineman, M.; Demichele, A.; Stricker, C.; Mao, J.J. Validation of QuickDASH Outcome Measure in Breast Cancer Survivors for Upper Extremity Disability. Arch. Phys. Med. Rehabil. 2014, 95, 493–498. [Google Scholar] [CrossRef]
- Magno, S.; Filippone, A.; Forcina, L.; Maggi, L.; Ronconi, G.; Amabile, E.; Ferrara, P.E. Physical Rehabilitation after Breast Cancer. Transl. Cancer Res. 2018, 7, S351–S355. [Google Scholar] [CrossRef]
- Ghadimi, D.J.; Looha, M.A.; Akbari, M.E.; Akbari, A. Predictors of Postoperative Pain Six Months after Breast Surgery. Sci. Rep. 2023, 13, 8302. [Google Scholar] [CrossRef]
- Greenlee, H.; DuPont-Reyes, M.J.; Balneaves, L.G.; Carlson, L.E.; Cohen, M.R.; Deng, G.; Johnson, J.A.; Mumber, M.; Seely, D.; Zick, S.M.; et al. Clinical Practice Guidelines on the Evidence-Based Use of Integrative Therapies during and Following Breast Cancer Treatment. CA Cancer J. Clin. 2017, 67, 194. [Google Scholar] [CrossRef]
- Ribeiro, I.L.; Moreira, R.F.C.; Ferrari, A.V.; Alburquerque-Sendín, F.; Camargo, P.R.; Salvini, T.F. Effectiveness of Early Rehabilitation on Range of Motion, Muscle Strength and Arm Function after Breast Cancer Surgery: A Systematic Review of Randomized Controlled Trials. Clin. Rehabil. 2019, 33, 1876–1886. [Google Scholar] [CrossRef]
- Shamley, D.R.; Barker, K.; Simonite, V.; Beardshaw, A. Delayed versus Immediate Exercises Following Surgery for Breast Cancer: A Systematic Review. Breast Cancer Res. Treat. 2005, 90, 263–271. [Google Scholar] [CrossRef]
- Namdari, S.; Yagnik, G.; Ebaugh, D.D.; Nagda, S.; Ramsey, M.L.; Williams, G.R.; Mehta, S. Defining Functional Shoulder Range of Motion for Activities of Daily Living. J. Shoulder Elb. Surg. 2012, 21, 1177–1183. [Google Scholar] [CrossRef]
- Stathopoulos, N.; Dimitriadis, Z.; Koumantakis, G.A. Effectiveness of Mulligan’s Mobilization With Movement Techniques on Range of Motion in Peripheral Joint Pathologies: A Systematic Review With Meta-Analysis Between 2008 and 2018. J. Manip. Physiol. Ther. 2019, 42, 439–449. [Google Scholar] [CrossRef]
- Noten, S.; Meeus, M.; Stassijns, G.; Van Glabbeek, F.; Verborgt, O.; Struyf, F. Efficacy of Different Types of Mobilization Techniques in Patients With Primary Adhesive Capsulitis of the Shoulder: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 815–825. [Google Scholar] [CrossRef]
- Doner, G.; Guven, Z.; Atalay, A.; Celiker, R. Evalution of Mulligan’s Technique for Adhesive Capsulitis of the Shoulder. J. Rehabil. Med. 2013, 45, 87–91. [Google Scholar] [CrossRef]
- Kaur, U.; Shrestha, D.; Hussain, M.A.; Dalal, P.; Kalita, M.; Sharma, V.; Sharma, S. Prompt Impact of Muscle Energy Technique on Pectoralis Muscle Tightness in Computer Users: A Quasi-Experimental Study. J. Lifestyle Med. 2023, 13, 123–128. [Google Scholar] [CrossRef]
- Liszka, M.; Samborski, W. Assessment of Biomechanical Parameters of the Shoulder Joint at the Operated Side versus Non-Operated Side in Patients Treated Surgically for Breast Cancer. Rep. Pract. Oncol. Radiother. 2018, 23, 378. [Google Scholar] [CrossRef]
- Shamley, D.; Lascurain-Aguirrebeña, I.; Oskrochi, R. Clinical Anatomy of the Shoulder after Treatment for Breast Cancer. Clin. Anat. 2014, 27, 467–477. [Google Scholar] [CrossRef]
- Satpute, K.; Reid, S.; Mitchell, T.; Mackay, G.; Hall, T. Efficacy of Mobilization with Movement (MWM) for Shoulder Conditions: A Systematic Review and Meta-Analysis. J. Man. Manip. Ther. 2022, 30, 13. [Google Scholar] [CrossRef]
- Głowacka, I.; Nowikiewicz, T.; Siedlecki, Z.; Hagner, W.; Nowacka, K.; Zegarski, W. The Assessment of the Magnitude of Frontal Plane Postural Changes in Breast Cancer Patients After Breast-Conserving Therapy or Mastectomy—Follow-up Results 1 Year After the Surgical Procedure. Pathol. Oncol. Res. 2016, 22, 203–208. [Google Scholar] [CrossRef]
- Cathrine Lauridsen, M.; Overgaard, M.; Overgaard, J.; Hessov, I.B.; Cristiansen, P. Shoulder Disability and Late Symptoms Following Surgery for Early Breast Cancer. Acta. Oncol. 2008, 47, 569–575. [Google Scholar] [CrossRef]
- Chrischilles, E.A.; Riley, D.; Letuchy, E.; Koehler, L.; Neuner, J.; Jernigan, C.; Gryzlak, B.; Segal, N.; McDowell, B.; Smith, B.; et al. Upper Extremity Disability and Quality of Life after Breast Cancer Treatment in the Greater Plains Collaborative Clinical Research Network. Breast Cancer Res. Treat. 2019, 175, 675. [Google Scholar] [CrossRef]
Variable/Outcome | Group (A) Mean ± SD | Group (B) Mean ± SD | Group (C) Mean ± SD | p-Value |
---|---|---|---|---|
Age (year) | 57.2 ± 4.92 | 57.77 ± 4.16 | 57.47 ± 3.98 | 0.88 |
Weight (kg) | 74.03 ± 9.96 | 75.1 ± 9.95 | 76.2 ± 7.25 | 0.66 |
Height (m) | 1.69 ± 0.06 | 1.66 ± 0.08 | 1.68 ± 0.06 | 0.39 |
BMI (Kg/m2) | 26.11 ± 3.43 | 27.31 ± 3.67 | 27.23 ± 2.90 | 0.31 |
Shoulder ROM: | ||||
Shoulder flexion (degree) | 105.97 ± 15.68 | 103.6 ± 14.57 | 105.5 ± 13.73 | 0.80 |
Shoulder abduction (degree) | 102.37 ± 14.35 | 103.37 ± 16.89 | 102.37 ± 14.35 | 0.96 |
Posture alignment: | ||||
Cervical angle (degree) | 38.67 ± 3.67 | 39.7 ± 3.30 | 39.2 ± 3.96 | 0.55 |
Horizontal alignment (mm) | 3.74 ± 0.64 | 3.57 ± 0.72 | 3.86 ± 0.61 | 0.24 |
Upper-extremity disability: | ||||
Quick DASH | 79.43 ± 6.82 | 76.83 ± 8.53 | 76.37 ± 9.72 | 0.32 |
Outcome | Study Groups | Pre- | Post- | Follow-Up | p-Value | Between-Group Variation (F, P) | Post Hoc |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |||||
A—Shoulder ROM: | |||||||
Shoulder flexion (degree) | Group A | 105.97 ± 15.68 | 173.8 ± 3.99 | 176.6 ± 2.66 | <0.001 * | (F [24,7] = 535.77, p ≤ 0.001 *) | A > B A > C B > C |
Group B | 103.6 ± 14.57 | 157.6 ± 7.11 | 156.43 ± 5.99 | <0.001 * | |||
Group C | 105.5 ± 13.73 | 122.77 ± 11.91 | 119.6 ± 13.18 | <0.001 * | |||
Shoulder abduction (degree) | Group A | 102.37 ± 14.35 | 174.5 ± 3.29 | 177.13 ± 2.52 | <0.001 * | (F [24,7] = 592.89, p ≤ 0.001 *) | A > B A > C B > C |
Group B | 103.37 ± 16.89 | 158.77 ± 4.91 | 159.93 ± 4.54 | <0.001 * | |||
Group C | 102.37 ± 14.35 | 117.17 ± 12.44 | 117.87 ± 12.04 | <0.001 * | |||
B—Posture alignment: | |||||||
Cervical angle (degree) | Group A | 38.67 ± 3.67 | 59.1 ± 3.46 | 59.6 ± 3.18 | <0.001 * | (F [24,7] = 225.29, p ≤ 0.001 *) | A > B A > C |
Group B | 39.7 ± 3.30 | 49.69 ± 4.57 | 49.43 ± 4.31 | <0.001 * | |||
Group C | 39.2 ± 3.96 | 44.93 ± 5.95 | 45.17 ± 6.26 | <0.001 * | |||
Horizontal alignment of acromion (mm) | Group A | 3.74 ± 0.64 | 2.28 ± 0.65 | 2.18 ± 0.60 | <0.001 * | (F [24,7] = 277.87, p ≤ 0.001 *) | A > B A > C |
Group B | 3.57 ± 0.72 | 2.53 ± 0.24 | 2.49 ± 0.21 | <0.001 * | |||
Group C | 3.86 ± 0.61 | 2.79 ± 0.81 | 2.70 ± 0.80 | <0.001 * | |||
C—Upper-extremity disability: | |||||||
QuickDASH | Group A | 79.43 ± 6.82 | 17.43 ± 4.44 | 16.7 ± 4.74 | <0.001 * | (F [24,7] = 943.33, p ≤ 0.001 *) | A < B A < C B < C |
Group B | 76.83 ± 8.53 | 41.13 ± 7.35 | 40.67 ± 6.61 | <0.001 * | |||
Group C | 76.37 ± 9.72 | 51.1 ± 8.38 | 51.17 ± 7.86 | <0.001 * |
Outcome | Study Groups | Time Measurement | Mean Change (95% CI for Differences) | p-Value | Time × Groups (F, p) |
---|---|---|---|---|---|
A—Shoulder ROM: | |||||
Shoulder flexion (degree) | Group A | Pre * Post | 67 (62–73.66) | <0.001 * | (F [24,7] = 64.152, p ≤ 0.001 *) |
Pre * Follow-up | 70.63 (64.81–76.46) | <0.001 * | |||
Post * Follow-up | 2.8 (−3.02–8.63) | 0.49 | |||
Group B | Pre * Post | 54 (47.86–60.14) | <0.001 * | ||
Pre * Follow-up | 52.83 (46.69–58.98) | <0.001 * | |||
Post * Follow-up | −1.16 (−7.31–4.98) | 0.89 | |||
Group C | Pre * Post | 17.27 (9.29–25.24) | <0.001 * | ||
Pre * Follow-up | 14.1 (6.12–22.08) | <0.001 * | |||
Post * Follow-up | −3.17 (−11.15–4.81) | 0.61 | |||
Shoulder abduction (degree) | Group A | Pre * Post | 72.13 (66.82–77.44) | <0.001 * | (F [24,7] = 76.18, p ≤ 0.001 *) |
Pre * Follow-up | 74.77 (69.46–89.08) | <0.001 * | |||
Post * Follow-up | 2.63 (−2.68–7.94) | 0.47 | |||
Group B | Pre * Post | 55.4 (48.94–61.86) | <0.001 * | ||
Pre * Follow-up | 56.57 (50.11–63.02) | <0.001 * | |||
Post * Follow-up | 1.17 (−5.29–7.62) | 0.90 | |||
Group C | Pre * Post | 14.8 (6.81–22.79) | <0.001 * | ||
Pre * Follow-up | 15.5 (7.51–23.49) | <0.001 * | |||
Post * Follow-up | 0.7 (−7.29–8.69) | 0.97 | |||
B—Posture Alignment: | |||||
Cervical angle | Group A | Pre * Post | 20.43 (18.32–22.55) | <0.001 * | (F [24,7] = 30.16, p ≤ 0.001 *) |
Pre * Follow-up | 20.93 (18.82–23.05) | <0.001 * | |||
Post * Follow-up | 0.5 (−1.62–2.62) | 0.83 | |||
Group B | Pre * Post | 9.93 (7.41–12.46) | <0.001 * | ||
Pre * Follow-up | 9.73 (7.21–12.26) | <0.001 * | |||
Post * Follow-up | −0.2 (−2.72–2.32) | 0.98 | |||
Group C | Pre * Post | 5.73 (2.36–9.11) | <0.001 * | ||
Pre * Follow-up | 5.97 (2.59–9.34) | <0.001 * | |||
Post * Follow-up | 0.23 (−3.14–3.61) | 0.99 | |||
Horizontal alignment of acromia (mm) | Group A | Pre * Post | −3.08 (−3.36–2.79) | <0.001 * | (F [24,7] = 27.45, p ≤ 0.001 *) |
Pre * Follow-up | −3.04 (−3.22–2.76) | <0.001 * | |||
Post * Follow-up | 0.04 (−0.24–0.32) | 0.94 | |||
Group B | Pre * Post | −1.46 (−1.85–1.07) | <0.001 * | ||
Pre * Follow-up | −1.56 (−1.94–1.17) | <0.001 * | |||
Post * Follow-up | −0.09 (−0.48–0.29) | 0.82 | |||
Group C | Pre * Post | −1.07 (−1.53–0.61) | <0.001 * | ||
Pre * Follow-up | −1.15 (−1.61–0.69) | <0.001 * | |||
Post * Follow-up | −0.08 (−0.55–0.38) | 0.89 | |||
C—Upper-extremity disability: | |||||
Quick DASH | Group A | Pre * Post | −62 (−65.35–58.65) | <0.001 * | (F [24,7] = 67.77, p ≤ 0.001 *) |
Pre * Follow-up | −62.73 (−66.08–59.39) | <0.001 * | |||
Post * Follow-up | −0.73 (−4.08–2.61) | 0.86 | |||
Group B | Pre * Post | −35.7 (−40.34–31.06) | <0.001 * | ||
Pre * Follow-up | −36.17 (−40.81–31.53) | <0.001 * | |||
Post * Follow-up | −0.47 (−5.11–4.17) | 0.97 | |||
Group C | Pre * Post | −25.27 (−30.61–19.92) | <0.001 * | ||
Pre * Follow-up | −25.2 (−30.55–19.85) | <0.001 * | |||
Post * Follow-up | 0.07 (−5.28–5.41) | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elabd, O.M.; Etoom, M.; Jahan, A.M.; Elabd, A.M.; Khedr, A.M.; Elgohary, H.M. The Efficacy of Muscle Energy and Mulligan Mobilization Techniques for the Upper Extremities and Posture after Breast Cancer Surgery with Axillary Dissection: A Randomized Controlled Trial. J. Clin. Med. 2024, 13, 980. https://doi.org/10.3390/jcm13040980
Elabd OM, Etoom M, Jahan AM, Elabd AM, Khedr AM, Elgohary HM. The Efficacy of Muscle Energy and Mulligan Mobilization Techniques for the Upper Extremities and Posture after Breast Cancer Surgery with Axillary Dissection: A Randomized Controlled Trial. Journal of Clinical Medicine. 2024; 13(4):980. https://doi.org/10.3390/jcm13040980
Chicago/Turabian StyleElabd, Omar M., Mohammad Etoom, Alhadi M. Jahan, Aliaa M. Elabd, Alaa M. Khedr, and Hany M. Elgohary. 2024. "The Efficacy of Muscle Energy and Mulligan Mobilization Techniques for the Upper Extremities and Posture after Breast Cancer Surgery with Axillary Dissection: A Randomized Controlled Trial" Journal of Clinical Medicine 13, no. 4: 980. https://doi.org/10.3390/jcm13040980
APA StyleElabd, O. M., Etoom, M., Jahan, A. M., Elabd, A. M., Khedr, A. M., & Elgohary, H. M. (2024). The Efficacy of Muscle Energy and Mulligan Mobilization Techniques for the Upper Extremities and Posture after Breast Cancer Surgery with Axillary Dissection: A Randomized Controlled Trial. Journal of Clinical Medicine, 13(4), 980. https://doi.org/10.3390/jcm13040980