Mechanical Circulatory Support Systems in Fulminant Myocarditis: Recent Advances and Outlook
Abstract
:1. Introduction
2. Materials and Methods
3. Epidemiology of Myocarditis
3.1. Acute Myocarditis and Transition to Fulminant Forms
3.2. Indication and Timing of Short-Term MCS
3.3. Outcomes in Fulminant Myocarditis with Short-Term MCS
3.4. Ventricular Unloading in Short-Term MCS
3.5. Weaning Strategies and Transition to Long-Term MCS
3.6. MCS and Additional Treatment in Lymphocytic Myocarditis
3.7. MCS and Additional Treatment in Giant Cell Myocarditis
3.8. MCS and Additional Treatment in Eosinophilic Myocarditis
3.9. MCS and Additional Treatment in COVID-19-Associated FM
4. Discussion
5. Conclusions and Future Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooper, L.T., Jr. Myocarditis. N. Engl. J. Med. 2009, 360, 1526–1538. [Google Scholar] [CrossRef]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef]
- Kociol, R.D.; Cooper, L.T.; Fang, J.C.; Moslehi, J.J.; Pang, P.S.; Sabe, M.A.; Shah, R.V.; Sims, D.B.; Thiene, G.; Vardeny, O. Recognition and Initial Management of Fulminant Myocarditis: A Scientific Statement from the American Heart Association. Circulation 2020, 141, e69–e92. [Google Scholar] [CrossRef] [PubMed]
- Golpour, A.; Patriki, D.; Hanson, P.J.; McManus, B.; Heidecker, B. Epidemiological Impact of Myocarditis. J. Clin. Med. 2021, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Kontogeorgos, S.; Thunström, E.; Sandström, T.Z.; Kroon, C.; Bollano, E.; Schaufelberger, M.; Rosengren, A. Trends in myocarditis incidence, complications and mortality in Sweden from 2000 to 2014. Sci. Rep. 2022, 12, 1810. [Google Scholar] [CrossRef] [PubMed]
- Block, J.P.; Boehmer, T.K.; Forrest, C.B.; Carton, T.W.; Lee, G.M.; Ajani, U.A.; Christakis, D.A.; Cowell, L.G.; Draper, C.; Ghildayal, N.; et al. Cardiac Complications After SARS-CoV-2 Infection and mRNA COVID-19 Vaccination—PCORnet, United States, January 2021–January 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 517–523. [Google Scholar] [CrossRef]
- Voleti, N.; Reddy, S.P.; Ssentongo, P. Myocarditis in SARS-CoV-2 infection vs. COVID-19 vaccination: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 951314. [Google Scholar] [CrossRef] [PubMed]
- Merlo, M.; Ammirati, E.; Gentile, P.; Artico, J.; Cannatà, A.; Finocchiaro, G.; Barbati, G.; Sormani, P.; Varrenti, M.; Perkan, A.; et al. Persistent left ventricular dysfunction after acute lymphocytic myocarditis: Frequency and predictors. PLoS ONE 2019, 14, e0214616. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.G.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ. Heart Fail. 2020, 13, e007405. [Google Scholar] [CrossRef]
- Chang, J.-J.; Lin, M.-S.; Chen, T.-H.; Chen, D.-Y.; Chen, S.-W.; Hsu, J.-T.; Wang, P.-C.; Lin, Y.-S. Heart Failure and Mortality of Adult Survivors from Acute Myocarditis Requiring Intensive Care Treatment—A Nationwide Cohort Study. Int. J. Med. Sci. 2017, 14, 1241–1250. [Google Scholar] [CrossRef]
- Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Veronese, G.; Brambatti, M.; Merlo, M.; Cipriani, M.; Potena, L.; Sormani, P.; Aoki, T.; Sugimura, K.; Sawamura, A.; et al. Fulminant Versus Acute Nonfulminant Myocarditis in Patients with Left Ventricular Systolic Dysfunction. J. Am. Coll. Cardiol. 2019, 74, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, N.; Izumi, T.; Hiramori, K.; Isobe, M.; Kawana, M.; Hiroe, M.; Hishida, H.; Kitaura, Y.; Imaizumi, T. National survey of fulminant myocarditis in Japan: Therapeutic guidelines and long-term prognosis of using percutaneous cardiopulmonary support for fulminant myocarditis (special report from a scientific committee). Circ. J. 2002, 66, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Asaumi, Y.; Yasuda, S.; Morii, I.; Kakuchi, H.; Otsuka, Y.; Kawamura, A.; Sasako, Y.; Nakatani, T.; Nonogi, H.; Miyazaki, S. Favourable clinical outcome in patients with cardiogenic shock due to fulminant myocarditis supported by percutaneous extracorporeal membrane oxygenation. Eur. Heart J. 2005, 26, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.H.; Chi, N.H.; Yu, H.Y.; Wang, C.H.; Huang, S.C.; Wang, S.S.; Ko, W.J.; Chen, Y.S. Extracorporeal membranous oxygenation support for acute fulminant myocarditis: Analysis of a single center’s experience. Eur. J. Cardiothorac. Surg. 2011, 40, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Ting, M.; Wang, C.H.; Tsao, C.I.; Huang, S.C.; Chi, N.H.; Chou, N.K.; Chen, Y.S.; Wang, S.S. Heart Transplantation Under Mechanical Circulatory Support for Acute Fulminant Myocarditis with Cardiogenic Shock: 10 Years’ Experience of a Single Center. Transpl. Transplant. Proc. 2016, 48, 951–955. [Google Scholar] [CrossRef]
- Ishida, K.; Wada, H.; Sakakura, K.; Kubo, N.; Ikeda, N.; Sugawara, Y.; Ako, J.; Momomura, S.-I. Long-term follow-up on cardiac function following fulminant myocarditis requiring percutaneous extracorporeal cardiopulmonary support. Heart Vessels 2013, 28, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Diddle, J.W.; Almodovar, M.C.; Rajagopal, S.K.; Rycus, P.T.; Thiagarajan, R.R. Extracorporeal membrane oxygenation for the support of adults with acute myocarditis. Crit. Care Med. 2015, 43, 1016–1025. [Google Scholar] [CrossRef]
- Matsumoto, M.; Asaumi, Y.; Nakamura, Y.; Nakatani, T.; Nagai, T.; Kanaya, T.; Kawakami, S.; Honda, S.; Kataoka, Y.; Nakajima, S.; et al. Clinical determinants of successful weaning from extracorporeal membrane oxygenation in patients with fulminant myocarditis. ESC Heart Fail. 2018, 5, 675–684. [Google Scholar] [CrossRef]
- Mirabel, M.; Luyt, C.-E.; Leprince, P.; Trouillet, J.-L.; Léger, P.; Pavie, A.; Chastre, J.; Combes, A. Outcomes, long-term quality of life, and psychologic assessment of fulminant myocarditis patients rescued by mechanical circulatory support. Crit. Care Med. 2011, 39, 1029–1035. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Lee, M.-Y.; Lin, C.-C.; Chang, Y.-S.; Tsai, F.-C.; Lin, P.-J. Resuscitation of non-postcardiotomy cardiogenic shock or cardiac arrest with extracorporeal life support: The role of bridging to intervention. Resuscitation 2012, 83, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Beurtheret, S.; Mordant, P.; Paoletti, X.; Marijon, E.; Celermajer, D.S.; Léger, P.; Pavie, A.; Combes, A.; Leprince, P. Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: A pilot study (the cardiac-RESCUE program). Eur. Heart J. 2013, 34, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.-W.; Wang, C.-H.; Lin, L.-Y.; Chi, N.-H.; Chou, N.-K.; Yu, H.-Y.; Chen, Y.-S. Prognostic factors for heart recovery in adult patients with acute fulminant myocarditis and cardiogenic shock supported with extracorporeal membrane oxygenation. J. Crit. Care 2020, 57, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, N.; Fukushima, S.; Minami, K.; Taguchi, T.; Saito, T.; Kawamoto, N.; Kakuta, T.; Seguchi, O.; Watanabe, T.; Doi, S.N.; et al. Efficacy of central extracorporeal life support for patients with fulminant myocarditis and cardiogenic shock. Eur. J. Cardio-Thorac. Surg. 2021, 60, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Mody, K.P.; Takayama, H.; Landes, E.; Yuzefpolskaya, M.; Colombo, P.C.; Naka, Y.; Jorde, U.P.; Uriel, N. Acute mechanical circulatory support for fulminant myocarditis complicated by cardiogenic shock. J. Cardiovasc. Transl. Res. 2014, 7, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, R.; Centofanti, P.; Gelsomino, S.; Barili, F.; Di Mauro, M.; Orlando, P.; Botta, L.; Milazzo, F.; Dato, G.A.; Casabona, R.; et al. Venoarterial Extracorporeal Membrane Oxygenation for Acute Fulminant Myocarditis in Adult Patients: A 5-Year Multi-Institutional Experience. Ann. Thorac. Surg. 2016, 101, 919–926. [Google Scholar] [CrossRef]
- Saito, S.; Toda, K.; Miyagawa, S.; Yoshikawa, Y.; Hata, H.; Yoshioka, D.; Domae, K.; Tsukamoto, Y.; Sakata, Y.; Sawa, Y. Diagnosis, medical treatment, and stepwise mechanical circulatory support for fulminat myocarditis. J. Artif. Organs 2018, 21, 172–179. [Google Scholar] [CrossRef]
- Annamalai, S.K.; Esposito, M.L.; Jorde, L.; Schreiber, T.; Hall, S.A.; O’Neill, W.W.; Kapur, N.K. The Impella Microaxial Flow Catheter Is Safe and Effective for Treatment of Myocarditis Complicated by Cardiogenic Shock: An Analysis from the Global cVAD Registry. J. Card. Fail. 2018, 24, 706–710. [Google Scholar] [CrossRef]
- Nunez, J.I.; Grandin, E.W.; Reyes-Castro, T.; Sabe, M.; Quintero, P.; Motiwala, S.; Fleming, L.M.; Sriwattanakomen, R.; Ho, J.E.; Kennedy, K.; et al. Outcomes with Peripheral Venoarterial Extracorporeal Membrane Oxygenation for Suspected Acute Myocarditis: 10-Year Experience From the Extracorporeal Life Support Organization Registry. Circ. Heart Fail. 2023, 16, e010152. [Google Scholar] [CrossRef]
- Danial, P.; Olivier, M.-E.; Bréchot, N.; Ponnaiah, M.; Schoell, T.; D’Alessandro, C.; Demondion, P.; Clément, M.; Juvin, C.; Carillion, A.; et al. Association Between Shock Etiology and 5-Year Outcomes After Venoarterial Extracorporeal Membrane Oxygenation. J. Am. Coll. Cardiol. 2023, 81, 897–909. [Google Scholar] [CrossRef]
- Tonna, J.E.; Tan, C.S.; Hryniewicz, K.; Barbaro, R.P.; Brodie, D.; MacLaren, G. Outcomes after extracorporeal life support for COVID-19 myocarditis: An analysis of the Extracorporeal Life Support Organization Registry. Crit. Care 2022, 26, 235. [Google Scholar] [CrossRef]
- Ammirati, E.; Lupi, L.; Palazzini, M.; Hendren, N.S.; Grodin, J.L.; Cannistraci, C.V.; Schmidt, M.; Hekimian, G.; Peretto, G.; Bochaton, T.; et al. Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis. Circulation 2022, 145, 1123–1139. [Google Scholar] [CrossRef]
- Guglin, M.E.; Etuk, A.; Shah, C.; Ilonze, O.J. Fulminant Myocarditis and Cardiogenic Shock Following COVID-19 Infection Versus COVID-19 Vaccination: A Systematic Literature Review. J. Clin. Med. 2023, 12, 1849. [Google Scholar] [CrossRef]
- Sagar, S.; Liu, P.P.; Cooper, L.T., Jr. Myocarditis. Lancet 2012, 379, 738–747. [Google Scholar] [CrossRef]
- Kimura, Y.; Seguchi, O.; Kono, A.K.; Matsumoto, M.; Kumai, Y.; Kuroda, K.; Nakajima, S.; Watanabe, T.; Matsumoto, Y.; Fukushima, S.; et al. Massive Biventricular Myocardial Calcification in a Patient with Fulminant Myocarditis Requiring Ventricular Assist Device Support. Intern. Med. 2019, 58, 1283–1286. [Google Scholar] [CrossRef]
- Adachi, Y.; Kinoshita, O.; Hatano, M.; Shintani, Y.; Naito, N.; Kimura, M.; Nawata, K.; Nitta, D.; Maki, H.; Ueda, K.; et al. Successful bridge to recovery in fulminant myocarditis using a biventricular assist device: A case report. J. Med. Case Rep. 2017, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Aretz, H.T.; E Billingham, M.; Edwards, W.D.; Factor, S.M.; Fallon, J.T.; Fenoglio, J.J.; Olsen, E.G.; Schoen, F.J. Myocarditis. A histopathologic definition and classification. Am. J. Cardiovasc. Pathol. 1987, 1, 3–14. [Google Scholar] [PubMed]
- Baughman, K.L. Diagnosis of myocarditis: Death of Dallas criteria. Circulation 2006, 113, 593–595. [Google Scholar] [CrossRef]
- Montero, S.; Abrams, D.; Ammirati, E.; Huang, F.; Donker, D.W.; Hekimian, G.; García-García, C.; Bayes-Genis, A.; Combes, A.; Schmidt, M. Fulminant myocarditis in adults: A narrative review. J. Geriatr. Cardiol. 2022, 19, 137–151. [Google Scholar] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Rev. Esp. Cardiol. (Engl. Ed.) 2022, 75, 523. [Google Scholar]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2024, 44, 3627–3639. [Google Scholar]
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar] [CrossRef]
- Tehrani, B.N.; Truesdell, A.G.; Sherwood, M.; Desai, S.; Tran, H.A.; Epps, K.C.; Singh, R.; Psotka, M.; Shah, P.; Cooper, L.B.; et al. Standardized Team-Based Care for Cardiogenic Shock. J. Am. Coll. Cardiol. 2019, 73, 1659–1669. [Google Scholar] [CrossRef]
- Basir, M.B.; Kapur, N.K.; Patel, K.; Salam, M.A.; Schreiber, T.; Kaki, A.; Hanson, I.; Almany, S.; Timmis, S.; Dixon, S.; et al. Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative. Catheter. Cardiovasc. Interv. 2019, 93, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Price, S.; Slutsky, A.S.; Brodie, D. Temporary circulatory support for cardiogenic shock. Lancet 2020, 396, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Pahuja, M.; Adegbala, O.; Mishra, T.; Akintoye, E.; Chehab, O.; Mony, S.; Singh, M.; Ando, T.; Abubaker, H.; Yassin, A.; et al. Trends in the Incidence of In-Hospital Mortality, Cardiogenic Shock, and Utilization of Mechanical Circulatory Support Devices in Myocarditis (Analysis of National Inpatient Sample Data, 2005–2014). J. Card. Fail. 2019, 25, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-H.; Kim, H.C.; Ahn, C.-M.; Lee, S.-J.; Hong, S.-J.; Yang, J.H.; Kim, J.-S.; Kim, B.-K.; Ko, Y.-G.; Choi, D.; et al. Association Between Timing of Extracorporeal Membrane Oxygenation and Clinical Outcomes in Refractory Cardiogenic Shock. JACC Cardiovasc. Interv. 2021, 14, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.-J.; Tsai, T.-H.; Lee, F.-Y.; Fang, H.-Y.; Sun, C.-K.; Leu, S.; Yang, C.-H.; Chen, S.-M.; Hang, C.-L.; Hsieh, Y.-K.; et al. Early extracorporeal membrane oxygenator-assisted primary percutaneous coronary intervention improved 30-day clinical outcomes in patients with ST-segment elevation myocardial infarction complicated with profound cardiogenic shock. Crit. Care Med. 2010, 38, 1810–1817. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; Jia, Y.; Zeng, W.; Shi, J.; Hou, X.; Meng, X. Early and intermediate results of rescue extracorporeal membrane oxygenation in adult cardiogenic shock. Ann. Thorac. Surg. 2009, 88, 1897–1903. [Google Scholar] [CrossRef]
- Tschöpe, C.; Van Linthout, S.; Klein, O.; Mairinger, T.; Krackhardt, F.; Potapov, E.V.; Schmidt, G.; Burkhoff, D.; Pieske, B.; Spillmann, F. Mechanical Unloading by Fulminant Myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA Concepts. J. Cardiovasc. Transl. Res. 2019, 12, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Van Linthout, S.; Tschöpe, C. Inflammation—Cause or Consequence of Heart Failure or Both? Curr. Heart Fail. Rep. 2017, 14, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Saegusa, H.; Komatsu, J.; Sugane, H.; Hosoda, H.; Imai, R.-I.; Nakaoka, Y.; Nishida, K.; Seki, S.-I.; Kubokawa, S.-I.; Kawai, K.; et al. Fulminant lymphocytic myocarditis: Prediction of successful weaning from Impella support for cardiogenic shock. J. Cardiol. Cases 2022, 25, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Al-Saloos, H.; Jeewa, A.; Sandor, G.G.; Cheung, A. Facilitated cardiac recovery in fulminant myocarditis: Pediatric use of the Impella LP 5.0 pump. J. Heart Lung Transpl. 2010, 29, 96–97. [Google Scholar] [CrossRef] [PubMed]
- Fox, H.; Farr, M.; Horstkotte, D.; Flottmann, C. Fulminant Myocarditis Managed by Extracorporeal Life Support (Impella(R) CP): A Rare Case. Case Rep. Cardiol. 2017, 2017, 9231959. [Google Scholar] [CrossRef] [PubMed]
- Lamarche, Y.; Cheung, A.; Ignaszewski, A.; Higgins, J.; Kaan, A.; Griesdale, D.E.; Moss, R. Comparative outcomes in cardiogenic shock patients managed with Impella microaxial pump or extracorporeal life support. J. Thorac. Cardiovasc. Surg. 2011, 142, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Narain, S.; Paparcuri, G.; Fuhrman, T.M.; Silverman, R.B.; Peruzzi, W.T. Novel combination of impella and extra corporeal membrane oxygenation as a bridge to full recovery in fulminant myocarditis. Case Rep. Crit. Care 2012, 2012, 459296. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, F.; Schulte, C.; Pieri, M.; Schrage, B.; Contri, R.; Soeffker, G.; Greco, T.; Lembo, R.; Müllerleile, K.; Colombo, A.; et al. Concomitant implantation of Impella((R)) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur. J. Heart Fail. 2017, 19, 404–412. [Google Scholar] [CrossRef]
- Schrage, B.; Westermann, D. Response by Schrage and Westermann to Letters Regarding Article, “Left Ventricular Unloading Is Associated with Lower Mortality in Patients With Cardiogenic Shock Treated With Venoarterial Extracorporeal Membrane Oxygenation: Results From an International, Multicenter Cohort Study”. Circulation 2020, 143, 2095–2106. [Google Scholar] [CrossRef]
- Pappalardo, F.; Scandroglio, A.M.; Latib, A. Full percutaneous biventricular support with two Impella pumps: The Bi-Pella approach. ESC Heart Fail. 2018, 5, 368–371. [Google Scholar] [CrossRef]
- Srichawla, B.S.; Sekhon, M. Biventricular impella (BiPella) utilization in fulminant COVID-19 myopericarditis-mediated cardiogenic shock during pregnancy. Clin. Res. Cardiol. 2023, 112, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
- Kuchibhotla, S.; Esposito, M.L.; Breton, C.; Pedicini, R.; Mullin, A.; O’Kelly, R.; Anderson, M.; Morris, D.L.; Batsides, G.; Ramzy, D.; et al. Acute Biventricular Mechanical Circulatory Support for Cardiogenic Shock. J. Am. Heart Assoc. 2017, 6, e006670. [Google Scholar] [CrossRef] [PubMed]
- Ajello, S.; Calvo, F.; Basso, C.; Nardelli, P.; Scandroglio, A.M. Full myocardial recovery following COVID-19 fulminant myocarditis after biventricular mechanical support with BiPella: A case report. Eur. Heart J. Case Rep. 2022, 6, ytac373. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Lim, Y.; Lee, S.H.; Shin, Y.; Ahn, J.H.; Hyun, D.Y.; Cho, K.H.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; et al. Early Left Ventricular Unloading or Conventional Approach After Venoarterial Extracorporeal Membrane Oxygenation: The EARLY-UNLOAD Randomized Clinical Trial. Circulation 2023, 148, 1570–1581. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Pastore, M.C.; Campora, A.; Lisi, M.; Mandoli, G.E. Donor shortage in heart transplantation: How can we overcome this challenge? Front. Cardiovasc. Med. 2022, 9, 1001002. [Google Scholar] [CrossRef] [PubMed]
- Tschöpe, C.; Spillmann, F.; Potapov, E.; Faragli, A.; Rapis, K.; Nelki, V.; Post, H.; Schmidt, G.; Alogna, A. The “TIDE”-Algorithm for the Weaning of Patients with Cardiogenic Shock and Temporarily Mechanical Left Ventricular Support with Impella Devices. A Cardiovascular Physiology-Based Approach. Front. Cardiovasc. Med. 2021, 8, 563484. [Google Scholar] [CrossRef]
- Den Uil, C.A.; Akin, S.; Jewbali, L.S.; dos Reis Miranda, D.; Brugts, J.J.; Constantinescu, A.A.; Kappetein, A.P.; Caliskan, K. Short-term mechanical circulatory support as a bridge to durable left ventricular assist device implantation in refractory cardiogenic shock: A systematic review and meta-analysis. Eur. J. Cardiothorac. Surg. 2017, 52, 14–25. [Google Scholar] [CrossRef]
- Lee, E.-P.; Chu, S.-C.; Huang, W.-Y.; Hsia, S.-H.; Chan, O.-W.; Lin, C.-Y.; Su, Y.-T.; Chang, Y.-S.; Chung, H.-T.; Wu, H.-P.; et al. Factors Associated with In-hospital Mortality of Children with Acute Fulminant Myocarditis on Extracorporeal Membrane Oxygenation. Front. Pediatr. 2020, 8, 488. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Hsu, P.-S.; Tsai, C.-S.; Tsai, Y.-T.; Lin, C.-Y.; Ke, H.-Y.; Lin, Y.-C.; Yang, H.-Y. Levitronix bilateral ventricular assist device, a bridge to recovery in a patient with acute fulminant myocarditis and concomitant cerebellar infarction. Cardiovasc. J. Afr. 2018, 29, e1–e4. [Google Scholar] [CrossRef]
- Jaroszewski, D.E.; Marranca, M.C.; Pierce, C.N.; Wong, R.K.; Steidley, E.D.; Scott, R.L.; DeValeria, P.A.; Arabia, F. Successive circulatory support stages: A triple bridge to recovery from fulminant myocarditis. J. Heart Lung Transplant. 2009, 28, 984–986. [Google Scholar] [CrossRef]
- Lam, L.; Sathirareuangchai, S.; Oyama, J.; Devendra, G.; Hong, R. Lymphocytic Myocarditis and Cardiogenic Shock in Hawai’i: A Case Series. Hawaii J. Health Soc. Welf. 2019, 78, 223–229. [Google Scholar] [PubMed]
- Olinde, K.D.; O’Connell, J.B. Inflammatory heart disease: Pathogenesis, clinical manifestations, and treatment of myocarditis. Annu. Rev. Med. 1994, 45, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Massilamany, C.; Huber, S.A.; Cunningham, M.W.; Reddy, J. Relevance of molecular mimicry in the mediation of infectious myocarditis. J. Cardiovasc. Transl. Res. 2014, 7, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Atluri, P.; Ullery, B.W.; MacArthur, J.W.; Goldstone, A.B.; Fairman, A.S.; Hiesinger, W.; Acker, M.A.; Woo, Y.J. Rapid onset of fulminant myocarditis portends a favourable prognosis and the ability to bridge mechanical circulatory support to recovery. Eur. J. Cardio-Thorac. Surg. 2013, 43, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.W.; O’Connell, J.B.; Herskowitz, A.; Rose, N.R.; McManus, B.M.; Billingham, M.E.; Moon, T.E. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N. Engl. J. Med. 1995, 333, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Blauwet, L.A.; Cooper, L.T. Idiopathic giant cell myocarditis and cardiac sarcoidosis. Heart Fail. Rev. 2013, 18, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.T.; Berry, G.J.; Shabetai, R. Idiopathic giant-cell myocarditis—Natural history and treatment. Multicenter Giant Cell Myocarditis Study Group Investigators. N. Engl. J. Med. 1997, 336, 1860–1866. [Google Scholar] [CrossRef]
- Okura, Y.; Dec, G.; Hare, J.M.; Kodama, M.; Berry, G.J.; Tazelaar, H.D.; Bailey, K.R.; Cooper, L.T. A clinical and histopathologic comparison of cardiac sarcoidosis and idiopathic giant cell myocarditis. J. Am. Coll. Cardiol. 2003, 41, 322–329. [Google Scholar] [CrossRef]
- Kandolin, R.; Lehtonen, J.; Salmenkivi, K.; Räisänen-Sokolowski, A.; Lommi, J.; Kupari, M. Diagnosis, treatment, and outcome of giant-cell myocarditis in the era of combined immunosuppression. Circ. Heart Fail. 2013, 6, 15–22. [Google Scholar] [CrossRef]
- Brilakis, E.S.; Olson, L.J.; Berry, G.J.; Daly, R.C.; Loisance, D.; Zucker, M.; Cooper, L.T. Survival outcomes of patients with giant cell myocarditis bridged by ventricular assist devices. ASAIO J. 2000, 46, 569–572. [Google Scholar] [CrossRef]
- Elamm, C.A.; Al-Kindi, S.G.; Bianco, C.M.; Dhakal, B.P.; Oliveira, G.H. Heart Transplantation in Giant Cell Myocarditis: Analysis of the United Network for Organ Sharing Registry. J. Card. Fail. 2017, 23, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.A.; Veinot, J.P.; Smith, S.; Struthers, C.; Hendry, P.; Masters, R. Giant cell myocarditis: Clinical presentation, bridge to transplantation with mechanical circulatory support, and long-term outcome. J. Heart Lung Transplant. 2002, 21, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.T.; Hare, J.M.; Tazelaar, H.D.; Edwards, W.D.; Starling, R.C.; Deng, M.C.; Menon, S.; Mullen, G.M.; Jaski, B.; Bailey, K.R.; et al. Usefulness of Immunosuppression for Giant Cell Myocarditis. Am. J. Cardiol. 2008, 102, 1535–1539. [Google Scholar] [CrossRef] [PubMed]
- Ekström, K.; Lehtonen, J.; Kandolin, R.; Räisänen-Sokolowski, A.; Salmenkivi, K.; Kupari, M. Long-term outcome and its predictors in giant cell myocarditis. Eur. J. Heart Fail. 2016, 18, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.M.; Saxena, A.; Wood, C.T.; O’malley, T.J.; Maynes, E.J.; Entwistle, J.W.C.; Massey, H.T.; Pirlamarla, P.R.; Alvarez, R.J.; Cooper, L.T.; et al. Outcomes of Mechanical Circulatory Support for Giant Cell Myocarditis: A Systematic Review. J. Clin. Med. 2020, 9, 3905. [Google Scholar] [CrossRef]
- Ashikaga, K.; Kida, K.; Akashi, Y.J. A case of fully recovered giant cell myocarditis treated with immunosuppression therapy. Int. J. Cardiol. 2013, 167, e149–e151. [Google Scholar] [CrossRef] [PubMed]
- Löffler, W. Scientific raisins from 125 years SMW (Swiaa Medical Weekly). 2nd international medical week dedicated in Switzerland. Luzern, 31 August-5 September 1936. Fibroplastic parietal endocarditis with eosinophilia. An unusual disease. 1936. Schweiz. Med. Wochenschr. 1995, 125, 1837–1840. [Google Scholar] [PubMed]
- Pieroni, M.; Cavallaro, R.; Chimenti, C.; Smeraldi, E.; Frustaci, A. Clozapine-induced hypersensitivity myocarditis. Chest 2004, 126, 1703–1705. [Google Scholar] [CrossRef]
- Ammirati, E.; Cipriani, M.; Musca, F.; Bonacina, E.; Pedrotti, P.; Roghi, A.; Astaneh, A.; Schroeder, J.W.; Nonini, S.; Russo, C.F.; et al. A life-threatening presentation of eosinophilic granulomatosis with polyangiitis. J. Cardiovasc. Med. 2016, 17 (Suppl. S2), e109–e111. [Google Scholar] [CrossRef]
- Roehrl, M.H.A.; Alexander, M.P.; Hammond, S.B.; Ruzinova, M.; Wang, J.Y.; O’Hara, C.J. Eosinophilic myocarditis in hypereosinophilic syndrome. Am. J. Hematol. 2011, 86, 607–608. [Google Scholar] [CrossRef]
- Enko, K.; Tada, T.; Ohgo, K.O.; Nagase, S.; Nakamura, K.; Ohta, K.; Ichiba, S.; Ujike, Y.; Nawa, Y.; Maruyama, H.; et al. Fulminant eosinophilic myocarditis associated with visceral larva migrans caused by Toxocara canis infection. Circ. J. 2009, 73, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Stucchi, M.; Brambatti, M.; Spanò, F.; Bonacina, E.; Recalcati, F.; Cerea, G.; Vanzulli, A.; Frigerio, M.; Oliva, F. Eosinophilic myocarditis: A paraneoplastic event. Lancet 2015, 385, 2546. [Google Scholar] [CrossRef] [PubMed]
- Brambatti, M.; Matassini, M.V.; Adler, E.D.; Klingel, K.; Camici, P.G.; Ammirati, E. Eosinophilic Myocarditis: Characteristics, Treatment, and Outcomes. J. Am. Coll. Cardiol. 2017, 70, 2363–2375. [Google Scholar] [CrossRef] [PubMed]
- Al Ali, A.M.; Straatman, L.P.; Allard, M.F.; Ignaszewski, A.P. Eosinophilic myocarditis: Case series and review of literature. Can. J. Cardiol. 2006, 22, 1233–1237. [Google Scholar] [CrossRef] [PubMed]
- Kontani, M.; Takashima, S.-I.; Okura, K.; Takemori, H.; Maeno, K.; Tanaka, N.; Ohashi, H.; Noriki, S. Survival after acute necrotizing eosinophilic myocarditis complicating a massive left ventricular mural thrombus: A case report. J. Cardiol. 2007, 50, 127–133. [Google Scholar] [PubMed]
- Allderdice, C.; Marcu, C.; Kabirdas, D. Intracardiac Thrombus in Leukemia: Role of Cardiac Magnetic Resonance Imaging in Eosinophilic Myocarditis. CASE 2018, 2, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Callan, P.D.; Baltabaeva, A.; Kamal, M.; Wong, J.; Lane, R.; Robertus, J.L.; Banner, N.R. Acute fulminant necrotizing eosinophilic myocarditis: Early diagnosis and treatment. ESC Heart Fail. 2017, 4, 660–664. [Google Scholar] [CrossRef]
- Yonenaga, A.; Hasumi, E.; Fujiu, K.; Ushiku, A.; Hatano, M.; Ando, J.; Morita, H.; Watanabe, M.; Komuro, I. Prognostic Improvement of Acute Necrotizing Eosinophilic Myocarditis (ANEM) Through a Rapid Pathological Diagnosis and Appropriate Therapy. Int. Heart J. 2018, 59, 641–646. [Google Scholar] [CrossRef]
- Cooper, L.T.; Zehr, K.J. Biventricular assist device placement and immunosuppression as therapy for necrotizing eosinophilic myocarditis. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 544–548. [Google Scholar] [CrossRef]
- Koehler, U.; Ghahremann, M.; Jerrentrup, A.; Just, M.; Löwer, R.; Moll, R.; Portig, I.; von Wichert, P. Eosinophilic myocarditis in Churg-Strauss syndrome. A rare cause of left heart decompensation with lung edema. Dtsch. Med. Wochenschr. 2000, 125, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Howell, E.; Paivanas, N.; Stern, J.; Vidula, H. Treatment of Acute Necrotizing Eosinophilic Myocarditis with Immunosuppression and Mechanical Circulatory Support. Circ. Heart Fail. 2016, 9, e003665. [Google Scholar] [CrossRef] [PubMed]
- Heidecker, B.; Dagan, N.; Balicer, R.; Eriksson, U.; Rosano, G.; Coats, A.; Tschöpe, C.; Kelle, S.; Poland, G.A.; Frustaci, A.; et al. Myocarditis following COVID-19 vaccine: Incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases. Eur. J. Heart Fail. 2022, 24, 2000–2018. [Google Scholar] [CrossRef] [PubMed]
- Asakura, R.; Kuroshima, T.; Kokita, N.; Okada, M. A case of COVID-19-associated fulminant myocarditis successfully treated with mechanical circulatory support. Clin. Case Rep. 2022, 10, e6185. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, S.; Tada, T.; Sasaki, W.; Osakada, K.; Kawase, Y.; Kadota, K. COVID-19 fulminant myocarditis recovered with veno-arterial extracorporeal membrane oxygenation and Impella CP. J. Cardiol. Cases 2023, 28, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Maunier, L.; Charbel, R.; Lambert, V.; Barreault, S.; Beggaz, M.; Belli, E.; Claude, C.; Durand, P.; Galeotti, C.; Hascoet, S.; et al. Anakinra in pediatric acute fulminant myocarditis. Ann. Intensiv. Care 2022, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef]
- Van Diepen, S.; Morrow, D.A. Potential growth in cardiogenic shock research though an international registry collaboration: The merits and challenges of a Hub-of-Spokes model. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 3–5. [Google Scholar] [CrossRef]
Authors | Time Period | Patients (n) | Type of MCS | Median Age | Outcomes |
---|---|---|---|---|---|
Aoyama, N., et al. [13] | 1989–2000 | 52 | VA-ECMO | ~48 years | 57.7% survival and return to normal life |
Asaumi, Y., et al. [14] | 1993–2001 | 14 | VA-ECMO | ~38 years | 71.4% were weaned and survived to discharge |
Hsu, K.H., et al. [15] | 1994–2009 | 75 | VA-ECMO | ~30 years | 61% survival to discharge |
Ting, M., et al. [16] | 1994–2014 | 93 | VA-ECMO | ~42 years | 50.1% transplant-free survival |
Ishida, K., et al. [17] | 1995–2010 | 20 | VA-ECMO | ~45 years | 60% survival to discharge |
Diddle, J.W., et al. [18] | 1995–2011 | 147 | mainly VA-ECMO | ~31 years | 61% survival to discharge (9 HTx) |
Matsumoto, M., et al. [19] | 1995–2014 | 37 | VA-ECMO | ~43 years | 59% successfully weaned from VA-ECMO |
Chang, J.J., et al. [10] | 1997–2011 | 294 | 99 IABP/195 VA-ECMO | ~45/41 years | 81%/61% survival to discharge |
Mirabel, M., et al. [20] | 2002–2009 | 35 | VA-ECMO | ~38 years | 68.6% survival to discharge |
Wu, M.Y., et al. [21] | 2003–2010 | 16 | VA-ECMO | N/A | 87.5% survival to discharge |
Beurtheret, S., et al. [22] | 2005–2009 | 14 | VA-ECMO | N/A | 65% survival to discharge |
Chou, H.W., et al. [23] | 2006–2018 | 88 | VA-ECMO | ~42 years | 46.6% successful weaning and discharge |
Tadokoro, N., et al. [24] | 2006–2020 | 70 | VA-ECMO cent. 48/periph.22 | ~44/50 years | 62%/95% weaning from VA-ECMO (total cohort survival 5 years: 76%) |
Mody, K.P., et al. [25] | 2007–2013 | 11 | 3 VA-ECMO/8 Bi-VAD | ~48 years | 73% survival to discharge (2 permanent VAD) |
Lorusso, R., et al. [26] | 2008–2013 | 57 | VA-ECMO | ~38 years | 72% survival to discharge |
Saito, S., et al. [27] | 2009–2015 | 25 | 23 VA-ECMO/2 t-VAD | ~39 years | 83.3% survival to discharge (6 permanent VAD) |
Annamalai, S.K., et al. [28] | 2009–2016 | 34 | Impella (2.5, CP, 5.0, or RP) | ~42 years | 61.8% survival to discharge (15 weaned, 5 transferred, 1 HTx) |
Nunez, J.I., et al. [29] | 2011–2020 | 850 | VA-ECMO | ~41 years | 65.1% survival to discharge |
Danial, P., et al. [30] | 2015–2018 | 47 | VA-ECMO | ~46 years | 37.9% survival to discharge |
Tonna, J.E., et al. [31] | 2020–2021 | 88 | VA-ECMO | ~48 years | 49% survival to discharge (FM + COVID-19) |
Ammirati, E., et al. [32] | 2020–2021 | 10 | IABP/VA-ECMO | ~38 years | 78.5% survival after 120 days (FM + COVID-19) |
Subtype | Histopathology | Aetiology | MCS | Additional Treatment |
---|---|---|---|---|
Lymphocytic myocarditis (LM) | Mononuclear cellular infiltrates (T lymphocytes) | Virus/autoimmune-mediated (molecular mimicry) | Particularly rapid-onset variants may profit from immediate haemodynamic support, as spontaneous myocardial recovery was reported in some cases | No clear data on corticosteroids and immunosuppressive therapy, but often used as an eminence-based therapeutic approach |
Giant cell myocarditis (GCM) | Multifocal inflammatory infiltrates, including lymphocytes and multinucleated giant cells | Unknown, potentially associated with autoimmune disorders | Survival benefits of early immunosuppression compared to prior or exclusive treatment with MCS systems. However, MCS is often required to provide haemodynamic stability needed for diagnosis | Corticosteroids and immunosuppressive therapy recommended |
Eosinophilic myocarditis (EM) | Eosinophilic infiltration of the myocardium | Hypersensitivity reactions, hypereosinophilic syndromes, autoimmune disorders, infections, and active malignancies | Importance in providing haemodynamic stability until diagnosis is found or triggering medication can be stopped | Corticosteroids (±immunosuppressive therapy) recommended |
COVID-19-associated myocarditis | Heterogeneous histological presentations | Infection with SARS-CoV-2 | According to histological presentation. Often requirement of VA-ECMO due to additional need for oxygenation | According to histological presentation. Sometimes Remdesivir or Hydroxy chloroquine, no clear data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenz, M.; Krychtiuk, K.A.; Zilberszac, R.; Heinz, G.; Riebandt, J.; Speidl, W.S. Mechanical Circulatory Support Systems in Fulminant Myocarditis: Recent Advances and Outlook. J. Clin. Med. 2024, 13, 1197. https://doi.org/10.3390/jcm13051197
Lenz M, Krychtiuk KA, Zilberszac R, Heinz G, Riebandt J, Speidl WS. Mechanical Circulatory Support Systems in Fulminant Myocarditis: Recent Advances and Outlook. Journal of Clinical Medicine. 2024; 13(5):1197. https://doi.org/10.3390/jcm13051197
Chicago/Turabian StyleLenz, Max, Konstantin A. Krychtiuk, Robert Zilberszac, Gottfried Heinz, Julia Riebandt, and Walter S. Speidl. 2024. "Mechanical Circulatory Support Systems in Fulminant Myocarditis: Recent Advances and Outlook" Journal of Clinical Medicine 13, no. 5: 1197. https://doi.org/10.3390/jcm13051197
APA StyleLenz, M., Krychtiuk, K. A., Zilberszac, R., Heinz, G., Riebandt, J., & Speidl, W. S. (2024). Mechanical Circulatory Support Systems in Fulminant Myocarditis: Recent Advances and Outlook. Journal of Clinical Medicine, 13(5), 1197. https://doi.org/10.3390/jcm13051197