One Soul and Several Faces of Evaporative Dry Eye Disease
Abstract
:1. Introduction
2. Physiological Evaporation
3. Evaporation Contributing Factors
3.1. Lipid Layer Thickness
3.2. Lipid Wax Esters
3.3. Blinking
3.4. Aqueous–Mucin Layers
3.5. Oxidative Processes
3.6. Temperature Changes
3.7. Epithelial Alteration
4. Clinical Picture
4.1. Low-Tech Diagnosis
4.2. High-Tech Diagnosis
5. Treatment
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holly, F.; Lemp, M. International Ophthalmology Clinics: The Preocular Tear Film and Dry Eye Syndromes; Little, Brown & Company: Boston, MA, USA, 1973; Volume 11. [Google Scholar]
- Stern, M.E.; Beuerman, R.W.; Fox, R.I.; Gao, J.; Mircheff, A.K.; Pflugfelder, S.C. The Pathology of Dry Eye: The Interaction between the Ocular Surface and Lacrimal Glands. Cornea 1998, 17, 584–589. [Google Scholar] [CrossRef]
- Tutt, R.; Bradley, A.; Begley, C.; Thibos, L.N. Optical and Visual Impact of Tear Break-up in Human Eyes. Investig. Ophthalmol. Vis. Sci. 2000, 41, 4117–4123. [Google Scholar]
- Gipson, I.K.; Argüeso, P.; Beuerman, R.; Bonini, S.; Butovich, I.; Dana, R.; Dartt, D.; Gamache, D.; Ham, B.; Jumblatt, M.; et al. Research in Dry Eye: Report of the Research Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 2007, 5, 179–193. [Google Scholar] [CrossRef]
- Di Zazzo, A.; Coassin, M.; Surico, P.L.; Bonini, S. Age-Related Ocular Surface Failure: A Narrative Review. Exp. Eye Res. 2022, 219, 109035. [Google Scholar] [CrossRef]
- Sack, R.A.; Beaton, A.; Sathe, S.; Morris, C.; Willcox, M.; Bogart, B. Towards a Closed Eye Model of the Pre-Ocular Tear Layer. Prog. Retin. Eye Res. 2000, 19, 649–668. [Google Scholar] [CrossRef]
- Fullard, R.J.; Tucker, D. Tear Protein Composition and the Effects of Stimulus. Adv. Exp. Med. Biol. 1994, 350, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Green-Church, K.B.; Nichols, K.K.; Kleinholz, N.M.; Zhang, L.; Nichols, J.J. Investigation of the Human Tear Film Proteome Using Multiple Proteomic Approaches. Mol. Vis. 2008, 14, 456–470. [Google Scholar]
- Versura, P.; Nanni, P.; Bavelloni, A.; Blalock, W.L.; Piazzi, M.; Roda, A.; Campos, E.C. Tear Proteomics in Evaporative Dry Eye Disease. Eye 2010, 24, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.; Zhou, X.; Ge, L.; Wu, L.; Hong, J.; Xu, J. Impact of Dry Eye Syndrome on Vision-Related Quality of Life in a Non-Clinic-Based General Population. BMC Ophthalmol. 2012, 12, 22. [Google Scholar] [CrossRef]
- Miljanović, B.; Dana, R.; Sullivan, D.A.; Schaumberg, D.A. Impact of Dry Eye Syndrome on Vision-Related Quality of Life. Am. J. Ophthalmol. 2007, 143, 409–415.e2. [Google Scholar] [CrossRef] [PubMed]
- Rolando, M.; Refojo, M.F.; Kenyon, K.R. Increased Tear Evaporation in Eyes with Keratoconjunctivitis Sicca. Arch. Ophthalmol. 1983, 101, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Rolando, M.; Refojo, M.F.; Kenyon, K.R. Tear Water Evaporation and Eye Surface Diseases. Ophthalmologica 1985, 190, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Barabino, S.; Aragona, P.; di Zazzo, A.; Rolando, M.; Berchicci, L.; Bonini, S.; Calabria, G.; Cantera, E.; Gambaro, S.; Leonardi, A.; et al. Updated Definition and Classification of Dry Eye Disease: Renewed Proposals Using the Nominal Group and Delphi Techniques. Eur. J. Ophthalmol. 2021, 31, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; Yokoi, N.; Gaffney, E.; Tiffany, J.M. Predicted Phenotypes of Dry Eye: Proposed Consequences of Its Natural History. Ocul. Surf. 2009, 7, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Isreb, M.A.; Greiner, J.V.; Korb, D.R.; Glonek, T.; Mody, S.S.; Finnemore, V.M.; Reddy, C.V. Correlation of Lipid Layer Thickness Measurements with Fluorescein Tear Film Break-up Time and Schirmer’s Test. Eye 2003, 17, 79–83. [Google Scholar] [CrossRef]
- Craig, J.P.; Singh, I.; Tomlinson, A.; Morgan, P.B.; Efron, N. The role of tear physiology in ocular surface temperature. Eye 2000, 14, 635–641. [Google Scholar] [CrossRef]
- Tan, J.-H.; Ng, E.Y.K.; Rajendra Acharya, U.; Chee, C. Infrared thermography on ocular surface temperature: A review. Infrared Phys. Technol. 2009, 52, 97–108. [Google Scholar] [CrossRef]
- Ding, J.; Kim, Y.H.; Sarah, M.Y.; Graham, A.D.; Li, W.; Lin, M.C. Ocular surface cooling rate associated with tear film characteristics and the maximum interblink period. Sci. Rep. 2021, 11, 15030. [Google Scholar] [CrossRef]
- Tomlinson, A.; Trees, G.R.; Occhipinti, J.R. Tear production and evaporation in the normal eye. Ophthalmic Physiol. Opt. 1991, 11, 44–47. [Google Scholar] [CrossRef]
- Purslow, C.; Wolffsohn, J. The relation between physical properties of the anterior eye and ocular surface temperature. Optom. Vis. Sci. 2007, 84, 197–201. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, O.; Bech, F.; Gallar, J.; Merayo-Lloves, J.; Belmonte, C. Functional properties of sensory nerve terminals of the mouse cornea. Investig. Ophthalmol. Vis. Sci. 2017, 58, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Monfared, N.; Murphy, P.J. Features and influences on the normal tear evaporation rate. Contact Lens Anterior Eye 2023, 46, 101809. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, R.; Brann, J., Jr.; Fleming, G. Factors affecting the evaporation of water from droplets in airblast spraying. J. Econ. Entomol. 1962, 55, 192–199. [Google Scholar] [CrossRef]
- O’Hare, K.D.; Spedding, P.L. Evaporation of a binary liquid mixture. Chem. Eng. J. 1992, 48, 1–9. [Google Scholar] [CrossRef]
- Mishima, S.; Maurice, D.M. The Oily Layer of the Tear Film and Evaporation from the Corneal Surface. Exp. Eye Res. 1961, 1, 39–45. [Google Scholar] [CrossRef]
- McDonald, J.E. Surface Phenomena of the Tear Film. Am. J. Ophthalmol. 1969, 67, 56–64. [Google Scholar] [CrossRef]
- Craig, J.P.; Tomlinson, A. Importance of the Lipid Layer in Human Tear Film Stability and Evaporation. Optom. Vis. Sci. 1997, 74, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Mathers, W.D.; Daley, T.E. Tear Flow and Evaporation in Patients with and without Dry Eye. Ophthalmology 1996, 103, 664–669. [Google Scholar] [CrossRef]
- Tsubora, K.; Yamadat, M. Tear Evaporation from the Ocular Surface. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2942–2950. [Google Scholar]
- Shimazaki, J.; Sakata, M.; Tsubota, K. Ocular Surface Changes and Discomfort in Patients with Meibomian Gland Dysfunction. Arch. Ophthalmol. 1995, 113, 1266–1270. [Google Scholar] [CrossRef]
- Goto, E.; Endo, K.; Suzuki, A.; Fujikura, Y.; Matsumoto, Y.; Tsubota, K. Tear Evaporation Dynamics in Normal Subjects and Subjects with Obstructive Meibomian Gland Dysfunction. Investig. Ophthalmol. Vis. Sci. 2003, 44, 533–539. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Dogru, M.; Goto, E.; Endo, K.; Tsubota, K. Increased Tear Evaporation in a Patient with Ectrodactyly-Ectodermal Dysplasia-Clefting Syndrome. Jpn. J. Ophthalmol. 2004, 48, 372–375. [Google Scholar] [CrossRef]
- Yokoi, N.; Mossa, F.; Tiffany, J.M.; Bron, A.J. Assessment of Meibomian Gland Function in Dry Eye Using Meibometry. Arch. Ophthalmol. 1999, 117, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Foulks, G.N.; Yappert, M.C.; Mathews, J.; Leake, K.; Bell, J. Factors Affecting Evaporation Rates of Tear Film Components Measured in Vitro. Eye Contact Lens 2009, 35, 32–37. [Google Scholar] [CrossRef]
- Rolando, M.; Refojo, M.F. Tear Evaporimeter for Measuring Water Evaporation Rate from the Tear Film under Controlled Conditions in Humans. Exp. Eye Res. 1983, 36, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Hisatake, K.; Tanaka, S.; Aizawa, Y. Evaporation Rate of Water in a Vessel. J. Appl. Phys. 1993, 73, 7395–7401. [Google Scholar] [CrossRef]
- Barabino, S.; Shen, L.L.; Chen, L.; Rashid, S.; Rolando, M.; Dana, M.R. The Controlled-Environment Chamber: A New Mouse Model of Dry Eye. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2766–2771. [Google Scholar] [CrossRef] [PubMed]
- Barabino, S.; Rolando, M.; Chen, L.; Dana, M.R. Exposure to a Dry Environment Induces Strain-Specific Responses in Mice. Exp. Eye Res. 2007, 84, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.J.; Mitchell, G.L.; King-Smith, P.E. Thinning Rate of the Precorneal and Prelens Tear Films. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2353–2361. [Google Scholar] [CrossRef]
- Korb, D.R.; Baron, D.F.; Herman, J.P.; Finnemore, V.M.; Exford, J.M.; Hermosa, J.L.; Leahy, C.D.; Glonek, T.; Greiner, J.V. Tear Film Lipid Layer Thickness as a Function of Blinking. Cornea 1994, 13, 354–359. [Google Scholar] [CrossRef]
- Korb, D.R.; Greiner, J.V. Increase in Tear Film Lipid Layer Thickness Following Treatment of Meibomian Gland Dysfunction. Adv. Exp. Med. Biol. 1994, 350, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Korb, D.R. Survey of Preferred Tests for Diagnosis of the Tear Film and Dry Eye. Cornea 2000, 19, 483–486. [Google Scholar] [CrossRef]
- McCulley, J.P.; Shine, W.E. Changing Concepts in the Diagnosis and Management of Blepharitis. Cornea 2000, 19, 650–658. [Google Scholar] [CrossRef]
- Holly, F.J.; Lemp, M.A. Tear Physiology and Dry Eyes. Surv. Ophthalmol. 1977, 22, 69–87. [Google Scholar] [CrossRef]
- Brown, S.I.; Dervichian, D.G. The Oils of the Meibomian Glands. Physical and Surface Characteristics. Arch. Ophthalmol. 1969, 82, 537–540. [Google Scholar] [CrossRef]
- Tiffany, J.M. The Meibomian Lipids of the Rabbit. I. Overall Composition. Exp. Eye Res. 1979, 29, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Tiffany, J.; Marsden, R. The Influence of Composition on Physical Properties of Meibomian Gland Secretion. In The Preocular Tear Film in Health, Disease, and Contact Lens Wear; Holly, F., Ed.; Dry Eye Institute: Lubbock, TX, USA, 1986; pp. 597–608. [Google Scholar]
- Nicolaides, N. Recent Findings on the Chemical Composition of Steer and Human Meibomian Glands. In The Preocular Tear Film in Health, Disease, and Contact Lens Wear; Holly, F., Ed.; Dry Eye Institute: Lubbock, TX, USA, 1986; pp. 570–576. [Google Scholar]
- Brown, S.I.; Dervichian, D.G. Hydrodynamics of Blinking. In Vitro Study of the Interaction of the Superficial Oily Layer and the Tears. Arch. Ophthalmol. 1969, 82, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E. The Mucocutaneous Junction of the Lidmargin and the Distribution of the Tear Fluid. Trans. Ophthalmol. Soc. UK 1946, 66, 291–308. [Google Scholar]
- Dilly, P.N. Structure and Function of the Tear Film. Adv. Exp. Med. Biol. 1994, 350, 239–247. [Google Scholar] [CrossRef]
- Korb, D.R.; Greiner, J.V.; Glonek, T.; Esbah, R.; Finnemore, V.M.; Whalen, A.C. Effect of Periocular Humidity on the Tear Film Lipid Layer. Cornea 1996, 15, 129–134. [Google Scholar] [CrossRef]
- Baudouin, C.; Messmer, E.M.; Aragona, P.; Geerling, G.; Akova, Y.A.; Benítez-Del-Castillo, J.; Boboridis, K.G.; Merayo-Lloves, J.; Rolando, M.; Labetoulle, M. Revisiting the Vicious Circle of Dry Eye Disease: A Focus on the Pathophysiology of Meibomian Gland Dysfunction. Br. J. Ophthalmol. 2016, 100, 300–306. [Google Scholar] [CrossRef]
- Tomlinson, A.; Bron, A.J.; Korb, D.R.; Amano, S.; Paugh, J.R.; Ian Pearce, E.; Yee, R.; Yokoi, N.; Arita, R.; Dogru, M. The International Workshop on Meibomian Gland Dysfunction: Report of the Diagnosis Subcommittee. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2006–2049. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, J.M.; Rantamäki, A.H.; Wiedmer, S.K. Melting Points—The Key to the Anti-Evaporative Effect of the Tear Film Wax Esters. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5211–5217. [Google Scholar] [CrossRef]
- Tiffany, J.M. Composition and Biophysical Properties of the Tear Film: Knowledge and Uncertainty. Adv. Exp. Med. Biol. 1994, 350, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Craig, J.P.; Rupenthal, I.D. Formulation Considerations for the Management of Dry Eye Disease. Pharmaceutics 2021, 13, 207. [Google Scholar] [CrossRef]
- Ewen King-Smith, P.; Hinel, E.A.; Nichols, J.J. Application of a Novel Interferometric Method to Investigate the Relation between Lipid Layer Thickness and Tear Film Thinning. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2418. [Google Scholar] [CrossRef]
- Viitaja, T.; Moilanen, J.; Svedström, K.J.; Ekholm, F.S.; Paananen, R.O. Tear Film Lipid Layer Structure: Self-Assembly of O-Acyl-ω-Hydroxy Fatty Acids and Wax Esters into Evaporation-Resistant Monolayers. Nano Lett. 2021, 21, 7676–7683. [Google Scholar] [CrossRef] [PubMed]
- Paananen, R.O.; Javanainen, M.; Holopainen, J.M.; Vattulainen, I. Crystalline Wax Esters Regulate the Evaporation Resistance of Tear Film Lipid Layers Associated with Dry Eye Syndrome. J. Phys. Chem. Lett. 2019, 10, 3893–3898. [Google Scholar] [CrossRef]
- Sane, P.; Salonen, E.; Falck, E.; Repakova, J.; Tuomisto, F.; Holopainen, J.M.; Vattulainen, I. Probing Biomembranes with Positrons. J. Phys. Chem. B 2009, 113, 1810–1812. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Zuckermann, M.J. Softening of Lipid Bilayers. Eur. Biophys. J. 1985, 12, 75–86. [Google Scholar] [CrossRef]
- Kimball, S.H.; King-Smith, P.E.; Nichols, J.J. Evidence for the Major Contribution of Evaporation to Tear Film Thinning between Blinks. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6294. [Google Scholar] [CrossRef]
- Lemp, M.A.; Baudouin, C.; Baum, J.; Dogru, M.; Foulks, G.N.; Kinoshita, S.; Laibson, P.; McCulley, J.; Murube, J.; Pflugfelder, S.C.; et al. The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 2007, 5, 75–92. [Google Scholar] [CrossRef]
- Potvin, R.; Makari, S.; Rapuano, C.J. Tear Film Osmolarity and Dry Eye Disease: A Review of the Literature. Clin. Ophthalmol. 2015, 9, 2039. [Google Scholar] [CrossRef]
- Tsubota, K. Tear Dynamics and Dry Eye. Prog. Retin. Eye Res. 1998, 17, 565–596. [Google Scholar] [CrossRef]
- Chew, C.K.S.; Jansweijer, C.; Tiffany, J.M.; Dikstein, S.; Bron, A.J. An Instrument for Quantifying Meibomian Lipid on the Lid Margin: The Meibometer. Curr. Eye Res. 1993, 12, 247–254. [Google Scholar] [CrossRef]
- Cui, K.W.; Myung, D.J.; Fuller, G.G. Tear Film Stability as a Function of Tunable Mucin Concentration Attached to Supported Lipid Bilayers. J. Phys. Chem. B 2022, 126, 6338–6344. [Google Scholar] [CrossRef]
- Wizert, A.; Iskander, D.R.; Cwiklik, L. Interaction of Lysozyme with a Tear Film Lipid Layer Model: A Molecular Dynamics Simulation Study. Biochim. Biophys. Acta (BBA)-Biomembr. 2017, 1859, 2289–2296. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.A.; Eftimov, P.; Yokoi, N. Contribution of Mucins towards the Physical Properties of the Tear Film: A Modern Update. Int. J. Mol. Sci. 2019, 20, 6132. [Google Scholar] [CrossRef] [PubMed]
- Ring, M.H.; Rabensteiner, D.F.; Horwath-Winter, J.; Boldin, I.; Hörantner, R.; Haslwanter, T. Introducing a New Parameter for the Assessment of the Tear Film Lipid Layer. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6638–6644. [Google Scholar] [CrossRef] [PubMed]
- Grasso, A.; Di Zazzo, A.; Giannaccare, G.; Sung, J.; Inomata, T.; Shih, K.C.; Micera, A.; Gaudenzi, D.; Spelta, S.; Romeo, M.A.; et al. Sex Hormones Related Ocular Dryness in Breast Cancer Women. J. Clin. Med. 2021, 10, 2620. [Google Scholar] [CrossRef]
- Rolando, M.; Barabino, S.; Mingari, C.; Moretti, S.; Giuffrida, S.; Calabria, G. Distribution of Conjunctival HLA-DR Expression and the Pathogenesis of Damage in Early Dry Eyes. Cornea 2005, 24, 951–954. [Google Scholar] [CrossRef]
- Aragona, P.; Giannaccare, G.; Mencucci, R.; Rubino, P.; Cantera, E.; Rolando, M. Modern Approach to the Treatment of Dry Eye, a Complex Multifactorial Disease: A P.I.C.A.S.S.O. Board Review. Br. J. Ophthalmol. 2021, 105, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Uchino, Y.; Kawakita, T.; Miyazawa, M.; Ishii, T.; Onouchi, H.; Yasuda, K.; Ogawa, Y.; Shimmura, S.; Ishii, N.; Tsubota, K. Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production. PLoS ONE 2012, 7, e45805. [Google Scholar] [CrossRef] [PubMed]
- Beranova, L.; Cwiklik, L.; Jurkiewicz, P.; Hof, M.; Jungwirth, P. Oxidation Changes Physical Properties of Phospholipid Bilayers: Fluorescence Spectroscopy and Molecular Simulations. Langmuir 2010, 26, 6140–6144. [Google Scholar] [CrossRef]
- Wong-Ekkabut, J.; Xu, Z.; Triampo, W.; Tang, I.M.; Tieleman, D.P.; Monticelli, L. Effect of Lipid Peroxidation on the Properties of Lipid Bilayers: A Molecular Dynamics Study. Biophys. J. 2007, 93, 4225–4236. [Google Scholar] [CrossRef]
- Yusupov, M.; Van der Paal, J.; Neyts, E.C.; Bogaerts, A. Synergistic Effect of Electric Field and Lipid Oxidation on the Permeability of Cell Membranes. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Wiczew, D.; Szulc, N.; Tarek, M. Molecular dynamics simulations of the effects of lipid oxidation on the permeability of cell membranes. Bioelectrochemistry 2021, 141, 107869. [Google Scholar] [CrossRef]
- Lis, M.; Wizert, A.; Przybylo, M.; Langner, M.; Swiatek, J.; Jungwirth, P.; Cwiklik, L. The Effect of Lipid Oxidation on the Water Permeability of Phospholipids Bilayers. Phys. Chem. Chem. Phys. 2011, 13, 17555–17563. [Google Scholar] [CrossRef]
- Bruch, R.C.; Thayer, W.S. Differential Effect of Lipid Peroxidation on Membrane Fluidity as Determined by Electron Spin Resonance Probes. Biochim. Biophys. Acta 1983, 733, 216–222. [Google Scholar] [CrossRef]
- Yadav, D.K.; Kumar, S.; Choi, E.H.; Chaudhary, S.; Kim, M.H. Molecular Dynamic Simulations of Oxidized Skin Lipid Bilayer and Permeability of Reactive Oxygen Species. Sci. Rep. 2019, 9, 4496. [Google Scholar] [CrossRef]
- Zhong, J.Y.; Lee, Y.C.; Hsieh, C.J.; Tseng, C.C.; Yiin, L.M. Association between Dry Eye Disease, Air Pollution and Weather Changes in Taiwan. Int. J. Environ. Res. Public Health 2018, 15, 2269. [Google Scholar] [CrossRef]
- Abusharha, A.A.; Pearce, E.I.; Fagehi, R. Effect of Ambient Temperature on the Human Tear Film. Eye Contact Lens 2016, 42, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.T.; Chiu, C.Y.; Chang, S.W. Low Ambient Temperature Correlates with the Severity of Dry Eye Symptoms. Taiwan J. Ophthalmol. 2021, 12, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Butovich, I.A.; Arciniega, J.C.; Wojtowicz, J.C. Meibomian Lipid Films and the Impact of Temperature. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5508–5518. [Google Scholar] [CrossRef]
- Hirata, H.; Meng, I.D. Cold-Sensitive Corneal Afferents Respond to a Variety of Ocular Stimuli Central to Tear Production: Implications for Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3969–3976. [Google Scholar] [CrossRef] [PubMed]
- Wolkoff, P. External Eye Symptoms in Indoor Environments. Indoor Air 2017, 27, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Argüeso, P. Human ocular mucins: The endowed guardians of sight. Adv. Drug Deliv. Rev. 2022, 180, 114074. [Google Scholar] [CrossRef]
- Rolando, M.; Iester, M.; Macrí, A.; Calabria, G. Low Spatial-Contrast Sensitivity in Dry Eyes. Cornea 1998, 17, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Cutrupi, F.; De Luca, A.; Di Zazzo, A.; Micera, A.; Coassin, M.; Bonini, S. Real Life Impact of Dry Eye Disease. Semin. Ophthalmol. 2023, 38, 690–702. [Google Scholar] [CrossRef]
- Ma, J.; Wei, S.; Jiang, X.; Chou, Y.; Wang, Y.; Hao, R.; Yang, J.; Li, X. Evaluation of Objective Visual Quality in Dry Eye Disease and Corneal Nerve Changes. Int. Ophthalmol. 2020, 40, 2995. [Google Scholar] [CrossRef]
- Mitchell, T.; Murri, M.; Pflugfelder, S.C. Video Viewing Blink Rate in Normal and Dry Eyes. Eye Contact Lens 2021, 47, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Biousse, V.; Skibell, B.C.; Watts, R.L.; Loupe, D.N.; Drews-Botsch, C.; Newman, N.J. Ophthalmologic Features of Parkinson’s Disease. Neurology 2004, 62, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Di Zazzo, A.; Coassin, M.; Micera, A.; Mori, T.; De Piano, M.; Scartozzi, L.; Sgrulletta, R.; Bonini, S. Ocular Surface Diabetic Disease: A Neurogenic Condition? Ocul. Surf. 2021, 19, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Antonini, M.; Gaudenzi, D.; Spelta, S.; Sborgia, G.; Poddi, M.; Micera, A.; Sgrulletta, R.; Coassin, M.; Di Zazzo, A. Ocular Surface Failure in Urban Syndrome. J. Clin. Med. 2021, 10, 3048. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, A.; Lanier, B. Urban eye allergy syndrome: A new clinical entity? Curr. Med. Res. Opin. 2008, 24, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, M.; Lambiase, A.; Aronni, S.; Griggi, T.; Ribatti, V.; Bonini, S.; Bonini, S. Hyperosmolar conjunctival provocation for the evaluation of nonspecific hyperreactivity in healthy patients and patients with allergy. J. Allergy Clin. Immunol. 2006, 118, 872–877. [Google Scholar] [CrossRef]
- Gaudenzi, D.; Mori, T.; Crugliano, S.; Grasso, A.; Frontini, C.; Carducci, A.; Yadav, S.; Sgrulletta, R.; Schena, E.; Coassin, M.; et al. AS-OCT and Ocular Hygrometer as Innovative Tools in Dry Eye Disease Diagnosis. Appl. Sci. 2022, 12, 1647. [Google Scholar] [CrossRef]
- De Luca, A.; Ferraro, A.; De Gregorio, C.; Laborante, M.; Coassin, M.; Sgrulletta, R.; Di Zazzo, A. Promising High-Tech Devices in Dry Eye Disease Diagnosis. Life 2023, 13, 1425. [Google Scholar] [CrossRef]
- Rolando, M.; Cantera, E.; Mencucci, R.; Rubino, P.; Aragona, P. The Correct Diagnosis and Therapeutic Management of Tear Dysfunction: Recommendations of the P.I.C.A.S.S.O. Board. Int. Ophthalmol. 2018, 38, 875–895. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology Report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef] [PubMed]
- Gilbard, J.P.; Farris, R.L.; Santamaria, J. Osmolarity of Tear Microvolumes in Keratoconjunctivitis Sicca. Arch. Ophthalmol. 1978, 96, 677–681. [Google Scholar] [CrossRef]
- McDonald, J.E.; Brubaker, S. Meniscus-Induced Thinning of Tear Films. Am. J. Ophthalmol. 1971, 72, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.E.; Corrsin, S. A Surface Tension Gradient Mechanism for Driving the Pre-Corneal Tear Film after a Blink. J. Biomech. 1974, 7, 225–238. [Google Scholar] [CrossRef]
- Bron, A.J.; Tiffany, J.M.; Yokoi, N.; Gouveia, S.M. Using Osmolarity to Diagnose Dry Eye: A Compartmental Hypothesis and Review of Our Assumptions. Adv. Exp. Med. Biol. 2002, 506, 1087–1095. [Google Scholar] [CrossRef]
- Liu, D.T.S.; Di Pascuale, M.A.; Sawai, J.; Gao, Y.Y.; Tseng, S.C.G. Tear Film Dynamics in Floppy Eyelid Syndrome. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- McCulley, J.P.; Sciallis, G.F. Meibomian Keratoconjunctivitis. Am. J. Ophthalmol. 1977, 84, 788–793. [Google Scholar] [CrossRef] [PubMed]
- Mcmonnies, C.W. Tear instability importance, mechanisms, validity and reliability of assessment. J. Optom. 2018, 11, 203–210. [Google Scholar] [CrossRef]
- Endo, K.; Goto, E.; Suzuki, A.; Fujikura, Y.; Tsubota, K. Innovative Dry Eye Diagnosis System Using Microbalance Technology. Adv. Exp. Med. Biol. 2002, 506, 1165–1169. [Google Scholar] [CrossRef]
- Tomlinson, A.; Doane, M.G.; McFadyen, A. Inputs and Outputs of the Lacrimal System: Review of Production and Evaporative Loss. Ocul. Surf. 2009, 7, 186–198. [Google Scholar] [CrossRef]
- Vera, J.; Redondo, B.; Molina, R.; Jiménez, R. Effects of Wearing Swimming Goggles on Non-Invasive Tear Break-up Time in a Laboratory Setting. J. Optom. 2022, 15, 154. [Google Scholar] [CrossRef]
- Imhof, R.E.; De Jesus, M.E.P.; Xiao, P.; Ciortea, L.I.; Berg, E.P. Closed-Chamber Transepidermal Water Loss Measurement: Microclimate, Calibration and Performance. Int. J. Cosmet. Sci. 2009, 31, 97–118. [Google Scholar] [CrossRef]
- Purslow, C.; Wolffsohn, J.S. Ocular Surface Temperature: A Review. Eye Contact Lens 2005, 31, 117–123. [Google Scholar] [CrossRef]
- Mengher, L.S.; Bron, A.J.; Tonge, S.R.; Gilbert, D.J. A Non-Invasive Instrument for Clinical Assessment of the Pre-Corneal Tear Film Stability. Curr. Eye Res. 1985, 4, 1–7. [Google Scholar] [CrossRef]
- King-Smith, P.E.; Nichols, J.J.; Nichols, K.K.; Fink, B.A.; Braun, R.J. Contributions of Evaporation and Other Mechanisms to Tear Film Thinning and Break-Up. Optom. Vis. Sci. 2008, 85, 623–630. [Google Scholar] [CrossRef] [PubMed]
- King-Smith, P.E.; Fink, B.A.; Nichols, J.J.; Nichols, K.K.; Braun, R.J.; McFadden, G.B. The Contribution of Lipid Layer Movement to Tear Film Thinning and Breakup. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2747–2756. [Google Scholar] [CrossRef] [PubMed]
- Korb, D.; Herman, J. Corneal Staining Subsequent to Sequential Fluorescein Instillations. J. Am. Optom. Assoc. 1979, 50, 361–367. [Google Scholar]
- Goto, E.; Tseng, S.C.G. Kinetic Analysis of Tear Interference Images in Aqueous Tear Deficiency Dry Eye before and after Punctal Occlusion. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1897–1905. [Google Scholar] [CrossRef]
- Arita, R.; Morishige, N.; Fujii, T.; Fukuoka, S.; Chung, J.L.; Seo, K.Y.; Itoh, K. Tear Interferometric Patterns Reflect Clinical Tear Dynamics in Dry Eye Patients. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3928–3934. [Google Scholar] [CrossRef]
- Arita, R. Meibography: A Japanese Perspective. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES48–DES55. [Google Scholar] [CrossRef] [PubMed]
- Rolando, M.; Valente, C.; Barabino, S. New Test to Quantify Lipid Layer Behavior in Healthy Subjects and Patients with Keratoconjunctivitis Sicca. Cornea 2008, 27, 866–870. [Google Scholar] [CrossRef]
- Korb, D.R.; Blackie, C.A. Meibomian Gland Diagnostic Expressibility: Correlation with Dry Eye Symptoms and Gland Location. Cornea 2008, 27, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Di Cello, L.; Pellegrini, M.; Vagge, A.; Borselli, M.; Desideri, L.F.; Scorcia, V.; Traverso, C.E.; Giannaccare, G. Advances in the Noninvasive Diagnosis of Dry Eye Disease. Appl. Sci. 2021, 11, 10384. [Google Scholar] [CrossRef]
- Norm, M. Semiquantitative Interference Study of Fatty Layer of Precorneal Film. Acta Ophthalmol. 1979, 57, 766–774. [Google Scholar] [CrossRef]
- Hamano, H.; Hori, M.; Kawabe, M. Clinical Applications of Biodifferential Interference Microscope. Contact Intraocular Lens Med. J. 1980, 6, 229–235. [Google Scholar]
- Hamano, H.; Hori, M.; Kawabe, M. Biodifferential Interference Microscopic Observations on Anterior Segment of Eye. J. Jpn. Contact Lens Soc. 1979, 21, 229–231. [Google Scholar]
- Kilp, H.; Schmidt, E.; Kirchner, L.; Zipf-Pohl, A. Tear Film Observation by Reflecting Microscopy and Differential Interference Contrast Microscopy. In The Preocular Tear Film in Health, Disease, and Contact Lens Wear; Holly, F., Ed.; Dry Eye Institute: Lubbock, TX, USA, 1986; pp. 564–569. [Google Scholar]
- Josephson, J. Appearance of the Preocular Tear Film Lipid Layer. Am. J. Optom. Physiol. Opt. 1983, 60, 883–887. [Google Scholar] [CrossRef]
- Guillon, J.P. Tear Film Photography and Contact Lens Wear. J. Br. Contact Lens Assoc. 1982, 5, 84–87. [Google Scholar] [CrossRef]
- Doane, M.G.; Lee, M.E. Tear Film Interferometry as a Diagnostic Tool for Evaluating Normal and Dry-Eye Tear Film. Adv. Exp. Med. Biol. 1998, 438, 297–303. [Google Scholar] [CrossRef]
- Guillon, M.; Styles, E.; Guillon, J.P.; Cécile Maïssa, M. Preocular Tear Film Characteristics of Nonwearers and Soft Contact Lens Wearers. Optom. Vis. Sci. 1997, 74, 273–279. [Google Scholar] [CrossRef]
- Paulsen, F.P.; Schaudig, U.; Thale, A.B. Drainage of Tears: Impact on the Ocular Surface and Lacrimal System. Ocul. Surf. 2003, 1, 180–191. [Google Scholar] [CrossRef]
- Drouault-Holowacz, S.; Bieuvelet, S.; Burckel, A.; Rigal, D.; Dubray, C.; Lichon, J.L.; Bringer, P.; Pilon, F.; Chiambaretta, F. Antioxidants Intake and Dry Eye Syndrome: A Crossover, Placebo-Controlled, Randomized Trial. Eur. J. Ophthalmol. 2009, 19, 337–342. [Google Scholar] [CrossRef]
- Doan, S.; Chiambaretta, F.; Baudouin, C. Evaluation of an Eyelid Warming Device (Blephasteam) for the Management of Ocular Surface Diseases in France: The ESPOIR Study. J. Français Ophtalmol. 2014, 37, 763–772. [Google Scholar] [CrossRef]
- Lane, S.S.; Dubiner, H.B.; Epstein, R.J.; Ernest, P.H.; Greiner, J.V.; Hardten, D.R.; Holland, E.J.; Lemp, M.A.; Mcdonald Ii, J.E.; Silbert, D.I.; et al. A New System, the LipiFlow, for the Treatment of Meibomian Gland Dysfunction (MGD). Cornea 2012, 31, 396–404. [Google Scholar] [CrossRef]
- Lee, S.Y.; Tong, L. Lipid-Containing Lubricants for Dry Eye: A Systematic Review. Optom. Vis. Sci. 2012, 89, 1654–1661. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Sánchez-Hidalgo, M.; Rosillo, M.Á.; Castejón, M.L.; Alarcón-De-La-Lastra, C. Extra Virgin Olive Oil: A Key Functional Food for Prevention of Immune-Inflammatory Diseases. Food Funct. 2016, 7, 4492–4505. [Google Scholar] [CrossRef]
- George, E.S.; Marshall, S.; Mayr, H.L.; Trakman, G.L.; Tatucu-Babet, O.A.; Lassemillante, A.C.M.; Bramley, A.; Reddy, A.J.; Forsyth, A.; Tierney, A.C.; et al. The Effect of High-Polyphenol Extra Virgin Olive Oil on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 2772–2795. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Pellegrini, M.; Sebastiani, S.; Bernabei, F.; Roda, M.; Taroni, L.; Versura, P.; Campos, E.C. Efficacy of Omega-3 Fatty Acid Supplementation for Treatment of Dry Eye Disease: A Meta-Analysis of Randomized Clinical Trials. Cornea 2019, 38, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Taroni, L.; Senni, C.; Scorcia, V. Intense Pulsed Light Therapy In The Treatment Of Meibomian Gland Dysfunction: Current Perspectives. Clin. Optom. 2019, 11, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Cote, S.; Zhang, A.C.; Ahmadzai, V.; Maleken, A.; Li, C.; Oppedisano, J.; Nair, K.; Busija, L.; Downie, L.E. Intense Pulsed Light (IPL) Therapy for the Treatment of Meibomian Gland Dysfunction. Cochrane Database Syst. Rev. 2020, 3, CD013559. [Google Scholar] [CrossRef]
- Magno, M.; Moschowits, E.; Arita, R.; Vehof, J.; Utheim, T.P. Intraductal Meibomian Gland Probing and Its Efficacy in the Treatment of Meibomian Gland Dysfunction. Surv. Ophthalmol. 2021, 66, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Blackie, C.A.; Korb, D.R. A Novel Lid Seal Evaluation: The Korb-Blackie Light Test. Eye Contact Lens 2015, 41, 98–100. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Zazzo, A.; Barabino, S.; Fasciani, R.; Aragona, P.; Giannaccare, G.; Villani, E.; Rolando, M. One Soul and Several Faces of Evaporative Dry Eye Disease. J. Clin. Med. 2024, 13, 1220. https://doi.org/10.3390/jcm13051220
Di Zazzo A, Barabino S, Fasciani R, Aragona P, Giannaccare G, Villani E, Rolando M. One Soul and Several Faces of Evaporative Dry Eye Disease. Journal of Clinical Medicine. 2024; 13(5):1220. https://doi.org/10.3390/jcm13051220
Chicago/Turabian StyleDi Zazzo, Antonio, Stefano Barabino, Romina Fasciani, Pasquale Aragona, Giuseppe Giannaccare, Edoardo Villani, and Maurizio Rolando. 2024. "One Soul and Several Faces of Evaporative Dry Eye Disease" Journal of Clinical Medicine 13, no. 5: 1220. https://doi.org/10.3390/jcm13051220
APA StyleDi Zazzo, A., Barabino, S., Fasciani, R., Aragona, P., Giannaccare, G., Villani, E., & Rolando, M. (2024). One Soul and Several Faces of Evaporative Dry Eye Disease. Journal of Clinical Medicine, 13(5), 1220. https://doi.org/10.3390/jcm13051220