Complete Blood Count (CBC)-Derived Inflammation Indexes Are Useful in Predicting Metabolic Syndrome in Adults with Severe Obesity
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Metabolic Syndrome Definition
- (i)
- Abdominal obesity (WC ≥ 102 cm for males; ≥88 cm for females);
- (ii)
- Elevated triglycerides: ≥150 mg/dL (1.7 mmol/L) or specific treatment for this lipid abnormality;
- (iii)
- Reduced HDL-C: <40 mg/dL (1.0 mmol/L) in males; <50 mg/dL (1.3 mmol/L) in females or specific treatment for this lipid abnormality;
- (iv)
- Increased BP: SBP ≥ 130 mmHg or DBP ≥ 85 mmHg and/or treatment of previously diagnosed hypertension;
- (v)
- Increased fasting plasma glucose (FPG) concentration ≥100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 diabetes mellitus.
2.3. Anthropometric Measurements
2.4. Laboratory Analyses
2.5. Blood Pressure Measurement
2.6. Statistical Analysis
3. Results
Parameters | All Obese (N = 231) | Obese MetS- (N = 68, 29.4%) | Obese MetS+ (N = 163, 70.6%) | p MetS- vs. MetS+ |
---|---|---|---|---|
Age (years) | 52.3 (36.4–63.3) | 44.9 (27.3–62.4) | 52.9 (41.5–63.7) | 0.027 |
Sex (N, %) | M 88, 38; F 143, 62 | M 17, 19; F 51, 36 | M 71, 81; F 92, 64 | 0.942 |
BMI (kg/m2) | 43.6 (40.5–48.3) | 42.7 (40.4–46.1) | 44.2 (40.8–48.9) | 0.052 |
WC (cm) | 121.0 (114.0–132.0) | 115.0 (108.0–126.3) | 125.0 (117.0–134.0) | <0.0001 |
SBP (mmHg) | 135.0 (120.0–145.0) | 125.0 (120.0–140.0) | 140.0 (130.0–150.0) | <0.0001 |
DBP (mmHg) | 80.0 (80.0–90.0) | 80.0 (80.0–80.0) | 80.0 (80.0–90.0) | 0.002 |
TG (mmol/L) | 130.0 (102.0–169.0) | 104.5 (89.2–129.8) | 145.0 (114.0–186.0) | <0.0001 |
FBG (mmol/L) | 5.4 (4.9–6.1) | 5.0 (5.3–4.6) | 5.8 (6.8–5.2) | <0.0001 |
HDL-C (mg/dL) | 44.0 (38.0–53.0) | 51.5 (43.0–59.0) | 42.0 (36.0–49.0) | <0.0001 |
Total Cholesterol (mg/dL) | 183.0 (155.0–210.0) | 179.5 (154.0–199.8) | 183.0 (156.0–214.0) | 0.242 |
Parameters | All Obese (N = 231) | Obese MetS- (N = 68; 29.4%) | Obese MetS+ (N = 163; 70.6%) | p MetS- vs. MetS+ |
---|---|---|---|---|
Leukocytes (109/L) | 7.2 (6.1–8.5) | 6.8 (5.9–8.4) | 7.3 (6.2–8.5) | 0.059 |
Neutrophils (109/L) | 4.1 (3.4–5.0) | 3.7 (3.2–4.7) | 4.3 (3.5–5.2) | 0.023 |
Lymphocytes (109/L) | 2.1 (1.7–2.5) | 2.0 (1.8–2.5) | 2.2 (1.7–2.6) | 0.946 |
Monocytes (109/L) | 0.6 (0.5–0.7) | 0.5 (0.5–0.7) | 0.6 (0.5–0.7) | 0.202 |
Eosinophils (109/L) | 0.2 (0.1–0.2) | 0.2 (0.1–0.2) | 0.2 (0.1–0.3) | 0.974 |
Basophils (109/L) | 0.0 (0.0–0.1) | 0.0 (0.0–0.0) | 0.0 (0.0–0.1) | 0.156 |
Platelets (109/L) | 250.0 (206.0–290.0) | 256.0 (209–302.0) | 247.0 (202.0–283.0) | 0.131 |
MHR | 0.013 (0.009–0.018) | 0.010 (0.008–0.015) | 0.014 (0.011–0.019) | <0.0001 |
LHR | 0.05 (0.04–0.06) | 0.04 (0.03–0.05) | 0.05 (0.04–0.07) | 0.001 |
NHR | 0.09 (0.07–0.13) | 0.07 (0.06–0.11) | 0.10 (0.08–0.13) | <0.0001 |
PHR | 5.4 (4.5–7.0) | 5.2 (3.8–6.3) | 5.6 (4.7–7.1) | 0.011 |
SIRI | 1.1 (0.8–1.6) | 0.9 (0.7–1.4) | 1.1 (0.9–1.7) | 0.022 |
SII | 477.5 (344.1–665.3) | 471.5 (338.3–628.3) | 478.6 (355.2–668.7) | 0.385 |
AISI | 269.5 (184.7–401.5) | 238.9 (169.3–364.1) | 273.1 (191.4–423.0) | 0.169 |
HOMA–IR | 4.8 (3.1–7.0) | 3.4 (2.3–4.8) | 5.1 (3.7–8.1) | <0.0001 |
Non-HDL-C | 138.0 (110.0–164.0) | 126.0 (107.3–146.8) | 142.0 (114.0–166.0) | 0.008 |
TG/HDL-C | 3.0 (2.1–4.2) | 2.1 (1.6–2.6) | 3.4 (2.5–4.8) | <0.0001 |
Independent Variables | OR (95% CI) | p |
---|---|---|
MHR | 7.31 (1.53; 3.49) | 0.000 |
LHR | 7.13 (21.5; 2.36) | 0.002 |
NHR | 18.0 (76.6; 4.61) | 0.000 |
PHR | 1.20 (1.02; 1.41) | 0.022 |
SIRI | 1.66 (1.02; 2.72) | 0.040 |
SII | 1.00 (0.99; 1.00) | 0.585 |
AISI | 1.00 (0.99; 1.00) | 0.303 |
HOMA-IR | Non-HDL-C | TG/HDL-C | ||||
---|---|---|---|---|---|---|
CBC-Index | r | p | r | p | r | p |
MHR | 0.371 | <0.0001 | −0.038 | 0.562 | 0.552 | <0.0001 |
LHR | 0.319 | <0.0001 | 0.108 | 0.099 | 0.550 | <0.0001 |
NHR | 0.317 | <0.0001 | 0.003 | 0.963 | 0.543 | <0.0001 |
PHR | 0.278 | <0.0001 | 0.020 | 0.757 | 0.442 | <0.0001 |
SIRI | 0.231 | 0.000 | −0.117 | 0.075 | 0.178 | 0.006 |
SII | 0.114 | 0.085 | −0.072 | 0.273 | 0.011 | 0.856 |
AISI | 0.220 | 0.000 | −0.094 | 0.153 | 0.093 | 0.154 |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Spinelli, A.; Buoncristiano, M.; Kovacs, V.A.; Yngve, A.; Spiroski, I.; Obreja, G.; Starc, G.; Pérez, N.; Rito, A.I.; Kunešová, M.; et al. Prevalence of Severe Obesity among Primary School Children in 21 European Countries. Obes. Facts 2019, 12, 244–258. [Google Scholar] [CrossRef]
- Grundy, S.M. Metabolic Syndrome Pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Obesity and Overweight. 2021. Available online: Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/ObesiTy-and-Overweight (accessed on 15 September 2023).
- Samson, S.L.; Garber, A.J. Metabolic Syndrome. Endocrinol. Metab. Clin. North Am. 2014, 43, 1–23. [Google Scholar] [CrossRef]
- Lemieux, I.; Després, J.-P. Metabolic Syndrome: Past, Present and Future. Nutrients 2020, 12, 3501. [Google Scholar] [CrossRef]
- Tune, J.D.; Goodwill, A.G.; Sassoon, D.J.; Mather, K.J. Cardiovascular Consequences of Metabolic Syndrome. Transl. Res. J. Lab. Clin. Med. 2017, 183, 57–70. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhan, L.; Wang, Y.; Bai, C.; Guo, J.; Lin, Q.; Liang, D.; Xu, E. Metabolic Syndrome and the Short-Term Prognosis of Acute Ischemic Stroke: A Hospital-Based Retrospective Study. Lipids Health Dis. 2015, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Brede, S.; Serfling, G.; Klement, J.; Schmid, S.M.; Lehnert, H. Clinical Scenario of the Metabolic Syndrome. Visc. Med. 2016, 32, 336–341. [Google Scholar] [CrossRef] [PubMed]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the Metabolic Syndrome. Clin. Dermatol. 2018, 36, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic Syndrome Is an Inflammatory Disorder: A Conspiracy between Adipose Tissue and Phagocytes. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 496, 35–44. [Google Scholar] [CrossRef]
- Kahn, C.R.; Wang, G.; Lee, K.Y. Altered Adipose Tissue and Adipocyte Function in the Pathogenesis of Metabolic Syndrome. J. Clin. Investig. 2019, 129, 3990–4000. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory Mechanisms Linking Obesity and Metabolic Disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef]
- Cannon, C.P. High-Density Lipoprotein Cholesterol and Residual Cardiometabolic Risk in Metabolic Syndrome. Clin. Cornerstone 2007, 8, S14–S23. [Google Scholar] [CrossRef]
- Wu, S.; Lin, H.; Zhang, C.; Zhang, Q.; Zhang, D.; Zhang, Y.; Meng, W.; Zhu, Z.; Tang, F.; Xue, F.; et al. Association between Erythrocyte Parameters and Metabolic Syndrome in Urban Han Chinese: A Longitudinal Cohort Study. BMC Public Health 2013, 13, 989. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, G.W.; Rye, K.-A.; Gamble, J.R.; Vadas, M.A.; Barter, P.J. High-Density Lipoproteins Inhibit Cytokine-Induced Expression of Endothelial Cell Adhesion Molecules. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity. Prog. Cardiovasc. Dis. 2015, 58, 32–40. [Google Scholar] [CrossRef]
- Barter, P.; Gotto, A.M.; LaRosa, J.C.; Maroni, J.; Szarek, M.; Grundy, S.M.; Kastelein, J.J.P.; Bittner, V.; Fruchart, J.-C. HDL Cholesterol, Very Low Levels of LDL Cholesterol, and Cardiovascular Events. N. Engl. J. Med. 2007, 357, 1301–1310. [Google Scholar] [CrossRef]
- Marra, A.; Bondesan, A.; Caroli, D.; Grugni, G.; Sartorio, A. The Neutrophil to Lymphocyte Ratio (NLR) Positively Correlates with the Presence and Severity of Metabolic Syndrome in Obese Adults, but Not in Obese Children/Adolescents. BMC Endocr. Disord. 2023, 23, 121. [Google Scholar] [CrossRef]
- Akboga, M.K.; Canpolat, U.; Yuksel, M.; Yayla, C.; Yilmaz, S.; Turak, O.; Ozeke, O.; Topaloglu, S.; Aras, D. Platelet to Lymphocyte Ratio as a Novel Indicator of Inflammation Is Correlated with the Severity of Metabolic Syndrome: A Single Center Large-Scale Study. Platelets 2016, 27, 178–183. [Google Scholar] [CrossRef]
- Podeanu, M.-A.; Turcu-Stiolica, A.; Subțirelu, M.S.; Stepan, M.D.; Ionele, C.-M.; Gheonea, D.-I.; Vintilescu, B.Ș.; Sandu, R.E. C-Reactive Protein as a Marker of Inflammation in Children and Adolescents with Metabolic Syndrome: A Systematic Review and Meta-Analysis. Biomedicines 2023, 11, 2961. [Google Scholar] [CrossRef]
- Sarbijani, H.M.; Khoshnia, M.; Marjani, A. The Association between Metabolic Syndrome and Serum Levels of Lipid Peroxidation and Interleukin-6 in Gorgan. Diabetes Metab. Syndr. 2016, 10, S86–S89. [Google Scholar] [CrossRef]
- Sethi, J.K.; Hotamisligil, G.S. Metabolic Messengers: Tumour Necrosis Factor. Nat. Metab. 2021, 3, 1302–1312. [Google Scholar] [CrossRef]
- Lin, K.; Fan, F.; Cai, M.; Yu, Y.; Fu, C.; Ding, L.; Sun, Y.; Sun, J.; Shi, Y.; Dong, Z.; et al. Systemic Immune Inflammation Index and System Inflammation Response Index Are Potential Biomarkers of Atrial Fibrillation among the Patients Presenting with Ischemic Stroke. Eur. J. Med. Res. 2022, 27, 106. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, C.; Wu, L.; Li, Z.; Li, H.; Zhang, J. Systemic Immune Inflammation Index (SII), System Inflammation Response Index (SIRI) and Risk of All-Cause Mortality and Cardiovascular Mortality: A 20-Year Follow-Up Cohort Study of 42,875 US Adults. J. Clin. Med. 2023, 12, 1128. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Y.; Shu, Y.; Zhang, L.; Cheng, W.; Wang, L.; Shu, M.; Xue, B.; Wang, R.; Feng, Z.; et al. Combination Model of Neutrophil to High-Density Lipoprotein Ratio and System Inflammation Response Index Is More Valuable for Predicting Peripheral Arterial Disease in Type 2 Diabetic Patients: A Cross-Sectional Study. Front. Endocrinol. 2023, 14, 1100453. [Google Scholar] [CrossRef]
- Guo, W.; Song, Y.; Sun, Y.; Du, H.; Cai, Y.; You, Q.; Fu, H.; Shao, L. Systemic Immune-Inflammation Index Is Associated with Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients: Evidence from NHANES 2011-2018. Front. Endocrinol. 2022, 13, 1071465. [Google Scholar] [CrossRef]
- Ren, H.; Zhu, B.; Zhao, Z.; Li, Y.; Deng, G.; Wang, Z.; Ma, B.; Feng, Y.; Zhang, Z.; Zhao, X.; et al. Neutrophil to High-Density Lipoprotein Cholesterol Ratio as the Risk Mark in Patients with Type 2 Diabetes Combined with Acute Coronary Syndrome: A Cross-Sectional Study. Sci. Rep. 2023, 13, 7836. [Google Scholar] [CrossRef]
- Ertem, A.G.; Yayla, C.; Acar, B.; Kirbas, O.; Unal, S.; Uzel Sener, M.; Akboga, M.K.; Efe, T.H.; Sivri, S.; Sen, F.; et al. Relation between Lymphocyte to Monocyte Ratio and Short-Term Mortality in Patients with Acute Pulmonary Embolism. Clin. Respir. J. 2018, 12, 580–586. [Google Scholar] [CrossRef]
- Nicoară, D.-M.; Munteanu, A.-I.; Scutca, A.-C.; Mang, N.; Juganaru, I.; Brad, G.-F.; Mărginean, O. Assessing the Relationship between Systemic Immune-Inflammation Index and Metabolic Syndrome in Children with Obesity. Int. J. Mol. Sci. 2023, 24, 8414. [Google Scholar] [CrossRef]
- Vahit, D.; Akboga, M.K.; Samet, Y.; Hüseyin, E. Assessment of Monocyte to High Density Lipoprotein Cholesterol Ratio and Lymphocyte-to-Monocyte Ratio in Patients with Metabolic Syndrome. Biomark. Med. 2017, 11, 535–540. [Google Scholar] [CrossRef]
- Zhao, Y.; Shao, W.; Zhu, Q.; Zhang, R.; Sun, T.; Wang, B.; Hu, X. Association between Systemic Immune-Inflammation Index and Metabolic Syndrome and Its Components: Results from the National Health and Nutrition Examination Survey 2011–2016. J. Transl. Med. 2023, 21, 691. [Google Scholar] [CrossRef]
- Uslu, A.U.; Sekin, Y.; Tarhan, G.; Canakcı, N.; Gunduz, M.; Karagulle, M. Evaluation of Monocyte to High-Density Lipoprotein Cholesterol Ratio in the Presence and Severity of Metabolic Syndrome. Clin. Appl. Thromb. 2018, 24, 828–833. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, C.; Shao, X.; Ning, J.; Gao, P.; Xiao, H.; Chen, Y.; Zou, Z.; Hong, G.; Li, X.; et al. Lymphocyte To High-Density Lipoprotein Ratio As A New Indicator Of Inflammation And Metabolic Syndrome. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2117–2123. [Google Scholar] [CrossRef]
- Chen, T.; Chen, H.; Xiao, H.; Tang, H.; Xiang, Z.; Wang, X.; Wang, X.; Zou, H. Comparison of the Value of Neutrophil to High-Density Lipoprotein Cholesterol Ratio and Lymphocyte to High-Density Lipoprotein Cholesterol Ratio for Predicting Metabolic Syndrome Among a Population in the Southern Coast of China. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 597–605. [Google Scholar] [CrossRef]
- Yu, S.; Guo, X.; Li, G.; Yang, H.; Zheng, L.; Sun, Y. Lymphocyte to High-Density Lipoprotein Ratio but Not Platelet to Lymphocyte Ratio Effectively Predicts Metabolic Syndrome Among Subjects From Rural China. Front. Cardiovasc. Med. 2021, 8, 583320. [Google Scholar] [CrossRef]
- Jialal, I.; Jialal, G.; Adams-Huet, B.; Ramakrishnan, N. Neutrophil and Monocyte Ratios to High-Density Lipoprotein-Cholesterol and Adiponectin as Biomarkers of Nascent Metabolic Syndrome. Horm. Mol. Biol. Clin. Investig. 2020, 41, 20190070. [Google Scholar] [CrossRef]
- Jialal, I.; Jialal, G.; Adams-Huet, B. The Platelet to High Density Lipoprotein -cholesterol Ratio Is a Valid Biomarker of Nascent Metabolic Syndrome. Diabetes Metab. Res. Rev. 2021, 37, e3403. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Bollati, V.; Favero, C.; Albetti, B.; Caroli, D.; Abbruzzese, L.; Cella, S.G.; Sartorio, A. Effect of a 3-Week Multidisciplinary Body Weight Reduction Program on the Epigenetic Age Acceleration in Obese Adults. J. Clin. Med. 2022, 11, 4677. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The Metabolic Syndrome in Children and Adolescents—An IDF Consensus Report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988; ISBN 0-87322-121-4. [Google Scholar]
- Ma, W.-Y.; Yang, C.-Y.; Shih, S.-R.; Hsieh, H.-J.; Hung, C.S.; Chiu, F.-C.; Lin, M.-S.; Liu, P.-H.; Hua, C.-H.; Hsein, Y.-C.; et al. Measurement of Waist Circumference: Midabdominal or Iliac Crest? Diabetes Care 2013, 36, 1660–1666. [Google Scholar] [CrossRef]
- Kwon, H.; Pessin, J.E. Adipokines Mediate Inflammation and Insulin Resistance. Front. Endocrinol. 2013, 4, 71. [Google Scholar] [CrossRef]
- Kanneganti, T.-D.; Dixit, V.D. Immunological Complications of Obesity. Nat. Immunol. 2012, 13, 707–712. [Google Scholar] [CrossRef]
- Feingold, K.R.; Grunfeld, C. The Role of HDL in Innate Immunity. J. Lipid Res. 2011, 52, 1–3. [Google Scholar] [CrossRef]
- Jiang, M.; Sun, J.; Zou, H.; Li, M.; Su, Z.; Sun, W.; Kong, X. Prognostic Role of Neutrophil to High-Density Lipoprotein Cholesterol Ratio for All-Cause and Cardiovascular Mortality in the General Population. Front. Cardiovasc. Med. 2022, 9, 807339. [Google Scholar] [CrossRef]
- Wang, R.-H.; Wen, W.-X.; Jiang, Z.-P.; Du, Z.-P.; Ma, Z.-H.; Lu, A.-L.; Li, H.-P.; Yuan, F.; Wu, S.-B.; Guo, J.-W.; et al. The Clinical Value of Neutrophil-to-Lymphocyte Ratio (NLR), Systemic Immune-Inflammation Index (SII), Platelet-to-Lymphocyte Ratio (PLR) and Systemic Inflammation Response Index (SIRI) for Predicting the Occurrence and Severity of Pneumonia in Patients with Intracerebral Hemorrhage. Front. Immunol. 2023, 14, 1115031. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Z.; Zhou, K.; Jiang, S. The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clin. Interv. Aging 2021, 16, 1997–2007. [Google Scholar] [CrossRef]
- Selvaggio, S.; Brugaletta, G.; Abate, A.; Musso, C.; Romano, M.; Di Raimondo, D.; Pirera, E.; Dattilo, G.; Signorelli, S.S. Platelet-to-lymphocyte Ratio, Neutrophil-to-lymphocyte Ratio and monocyte-to-HDL Cholesterol Ratio as Helpful Biomarkers for Patients Hospitalized for Deep Vein Thrombosis. Int. J. Mol. Med. 2023, 51, 52. [Google Scholar] [CrossRef]
- Xiu, J.; Lin, X.; Chen, Q.; Yu, P.; Lu, J.; Yang, Y.; Chen, W.; Bao, K.; Wang, J.; Zhu, J.; et al. The Aggregate Index of Systemic Inflammation (AISI): A Novel Predictor for Hypertension. Front. Cardiovasc. Med. 2023, 10, 1163900. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Liu, S.; Lu, P.; Zhou, H.; Yang, M. The Systemic Inflammation Indexes Predict All-Cause Mortality in Peritoneal Dialysis Patients. Ren. Fail. 2023, 45, 2160348. [Google Scholar] [CrossRef]
- Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of Obesity and Metabolic Syndrome on Immunity. Adv. Nutr. 2016, 7, 66–75. [Google Scholar] [CrossRef]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic Syndrome and Cardiovascular Diseases: Going beyond Traditional Risk Factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef]
- Gast, K.B.; Tjeerdema, N.; Stijnen, T.; Smit, J.W.A.; Dekkers, O.M. Insulin Resistance and Risk of Incident Cardiovascular Events in Adults without Diabetes: Meta-Analysis. PLoS ONE 2012, 7, e52036. [Google Scholar] [CrossRef]
- Vladu, I.; Forțofoiu, M.; Clenciu, D.; Forțofoiu, M.-C.; Pădureanu, R.; Radu, L.; Cojan, Ș.; Rădulescu, P.; Pădureanu, V. Insulin Resistance Quantified by the Value of HOMA-IR and Cardiovascular Risk in Patients with Type 2 Diabetes. Exp. Ther. Med. 2021, 23, 73. [Google Scholar] [CrossRef]
- Castillo Costa, Y.; Mauro, V.; Fairman, E.; Charask, A.; Olguín, L.; Cáceres, L.; Barrero, C. Prognostic Value of Insulin Resistance Assessed by HOMA-IR in Non-Diabetic Patients with Decompensated Heart Failure. Curr. Probl. Cardiol. 2023, 48, 101112. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Rodriguez Polanco, S.; Bousvarou, M.D.; Papakonstantinou, E.J.; Peña Genao, E.; Guzman, E.; Kostara, C.E. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023, 13, 929. [Google Scholar] [CrossRef]
- Che, B.; Zhong, C.; Zhang, R.; Pu, L.; Zhao, T.; Zhang, Y.; Han, L. Triglyceride-Glucose Index and Triglyceride to High-Density Lipoprotein Cholesterol Ratio as Potential Cardiovascular Disease Risk Factors: An Analysis of UK Biobank Data. Cardiovasc. Diabetol. 2023, 22, 34. [Google Scholar] [CrossRef]
- Raja, V.; Aguiar, C.; Alsayed, N.; Chibber, Y.S.; ElBadawi, H.; Ezhov, M.; Hermans, M.P.; Pandey, R.C.; Ray, K.K.; Tokgözoglu, L.; et al. Non-HDL-Cholesterol in Dyslipidemia: Review of the State-of-the-Art Literature and Outlook. Atherosclerosis 2023, 383, 117312. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marra, A.; Bondesan, A.; Caroli, D.; Sartorio, A. Complete Blood Count (CBC)-Derived Inflammation Indexes Are Useful in Predicting Metabolic Syndrome in Adults with Severe Obesity. J. Clin. Med. 2024, 13, 1353. https://doi.org/10.3390/jcm13051353
Marra A, Bondesan A, Caroli D, Sartorio A. Complete Blood Count (CBC)-Derived Inflammation Indexes Are Useful in Predicting Metabolic Syndrome in Adults with Severe Obesity. Journal of Clinical Medicine. 2024; 13(5):1353. https://doi.org/10.3390/jcm13051353
Chicago/Turabian StyleMarra, Alice, Adele Bondesan, Diana Caroli, and Alessandro Sartorio. 2024. "Complete Blood Count (CBC)-Derived Inflammation Indexes Are Useful in Predicting Metabolic Syndrome in Adults with Severe Obesity" Journal of Clinical Medicine 13, no. 5: 1353. https://doi.org/10.3390/jcm13051353
APA StyleMarra, A., Bondesan, A., Caroli, D., & Sartorio, A. (2024). Complete Blood Count (CBC)-Derived Inflammation Indexes Are Useful in Predicting Metabolic Syndrome in Adults with Severe Obesity. Journal of Clinical Medicine, 13(5), 1353. https://doi.org/10.3390/jcm13051353