Glaucoma, Pseudoexfoliation and Hearing Loss: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensorineural Hearing Loss Assessment
2.1.1. Pure-Tone Audiometry
2.1.2. Tympanometry
2.1.3. Otoacoustic Emissions
2.1.4. Auditory Brainstem Response
3. Results
3.1. Pseudoexfoliation Syndrome, Pseudoexfoliative Glaucoma and Hearing Loss
3.1.1. Pseudoexfoliation Syndrome
First Author (Year) | Glaucoma Type | Study Design | N Cases (n Ears) | Mean Age Patients (Mean ± SD) | % Males Patients | Outcome Measured | Main Findings |
---|---|---|---|---|---|---|---|
N Controls (n Ears) | Mean Age Controls (Mean ± SD) | % Males Controls | |||||
Bilgeç M.D. (2021) [66] | XFS | case-control | 16 (32) | 66.12 ± 5.64 | 62.5% | PTA bone conduction 0.5, 1, 2 and 4 KHz, air- conduction at 0.5–8 kHz, tympanometry, bithermal caloric test, VEMP | SNHL at 4 and 8 kHz in XFS patients compared to control group (p < 0.05) |
17 (34) | 61.70 ± 8.46 | 70.6 | |||||
Cahill M. (2002) [46] | XFS, XFG | cross-sectional | 69 (137) | 75.5 | 56.5% | 1, 2 and 3 kHz, ISO 7029 | 73.7% of XFS patients had a higher threshold than ISO 7029 median AAHL1,2,3; no significant difference between XFS and XFG (p = 0.58 for male patients and p = 0.60 for female patients). |
/ | / | / | |||||
Detorakis E.T. (2008) [74] | XFS, XFG | prospective | 54 (108) | 68.11 ± 2.11 | 61.11% | Audiometry, bone and air conduction, PTA 0.25, 1, 2, 3 and 8 kHz; tympanometry | Bone and air audiometric thresholds were significantly increased in XFS patients for 3 kHz (p = 0.04 and p = 0.03) and 8 kHz (p = 0.02 and p = 0.04) but not for 0.25 kHz, 1 kHz and 2 kHz (p ≥ 0.2). Tympanometric peak values were significantly lower in SG compared with CG (p = 0.04) |
48 (96) | 67.14 ± 1.30 | 62.06% | |||||
Gülyeşil F.F. (2023) [75] | POAG XFG | case-control | 24 (24) POAG 22 (22)XFG | 64.50 ± 7 POAG 66.90 ± 4.51 XFG | 50% POAG 50% XFG | PTA 0.25, 0.5, 1, 2, 4, 8, 10 kHz | POAG: higher hearing thresholds at 0.5 (p = 0.011) and 1 kHz (p = 0.003). XFG: higher hearing thresholds at 0.25 (p = 0.009), 0.5 (p = 0.009), 1 (p = 0.001), 2 (p = 0.005), 4 (p = 0.001), 8 (p = 0.010) and 10 kHz (p = 0.009) XFG group: higher hearing threshold at 8 kHz than the POAG group (p = 0.002). |
21 (21) | 64.38 ± 4.36 | 57.1% | |||||
Lee S.Y. (2017) [65] | XFS | case control | 28 (56) | 73.6 ± 7.9 | 28% | PTA 0.5, 1, 2, 4 and 6 kHz; ISO 1964 | statistically significant decrease at 1 and 2 kHz in XFS group; moderate to severe SNHL in 64% of XFS (p = 0.023). |
277 (554) | 64.7 ± 9.8 | 34% | |||||
Muhafiz E. (2021) [71] | XFS | case-control | 36 (n/a) | 71.38 ± 6.88 | 66.7% | PTA 0.25, 0.5, 1, 2, 4, 6 and 8 kHz | no correlation between XFS and HL: no difference in all evaluated frequencies between XFS and controls (p > 0.05). |
39 (n/a) | 68.92 ± 8.74 | 56.4% | |||||
Ozkan B. A. (2006) [69] | XFS, XFG | case-control | 75 (150) | 68.25 ± 7.41 | 60% | PTA 0.5, 1, 2, 4 and 8 kHz, plasma homocysteinemia | HL at speech frequencies (0.5, 1, 2 kHz) was higher in XFS (69%) than controls (52%) (p = 0.01). Homocysteine levels in patients with XFS and HL were not significatively different from XFS without HL (p = 0.5). |
75 (150) | 66.76 ± 8.15 | 52% | |||||
Ozturk F. (2008) [68] | XFS | case-control | 63 (126) | 68.4 ± 10.3 | 55.6% | PTA (air and bone conduction), 0.5, 1, 2, 3, 4 and 6 kHz, laterality of HL | HL in 79% of XFS vs. 26% in the control group; Among XFG patients with HL, 96% showed bilateral HL and 58% showed HL at higher frequencies (2–6 kHz). |
38 (76) | 65.2 ± 12.3 | 47.4% | |||||
Paliobei V.P. (2011) [76] | XFG, POAG | prospective | 85 (170) POAG 110 (220) XFG | 67.4 ± 4.6 XFG 64.8 ± 6.5 POAG | 44.7% POAG 58.2% XFG | PTA 0.25, 0.5, 1, 2, 4 and 8 kHz, tympanometry, stapedial reflex test, ABRs, DPOAEs, ISO 7029 | HL was more prevalent in POAG and XFG compared to the ISO 7029 (XFG > POAG); DPOAs amplitudes at high frequencies were reduced in both POAG and XFG. Pathologic ABR 4 times higher in XFG than POAG (p < 0.001). |
/ | / | / | |||||
Papadopoulos T.A. (2010) [67] | XFS | case-control | 47 (94) | 74.7 ± 6.78 | 48.9% | PTA 0.25, 0.5, 1, 2, 4 and 8 kHz, air and bone conduction | Hearing thresholds were higher in the XFS group than in the control group at 4 kHz (p = 0.004) and even higher at 8 kHz (p = 0.001), but not at frequencies of 0.25 (p = 0.316), 0.5 (p = 0.267), 1 (p = 0.082) and 2 (p = 0.131) kHz |
22 (44) | 74.7 ± 7.78 | 40.9% | |||||
Papadopoulos T.A. (2012) [70] | XFS | case-control | 47 (94) | 74.7 ± 6.78 | 49.0% | PTA 0.25, 0.5, 1, 2, 4 and 8 kHz air and bone conduction | Study group subjects displayed more severe sensorineural hearing loss (98%) compared to control group (86%) subjects at high frequencies of 4 and 8 kHz (p < 0.001), but not at low and medium frequencies of 0.25, 0.5 (p = 0.070), 1 and 2 kHz (p = 0.007) |
22 (44) | 74.7 ± 7.78 | 41% | |||||
Samarai V. (2012) [77] | XFS, XFG | prospective | 50 (100) | 60.73 | 46% | PTA 0.5, 1, 2, 3 kHz (speech comprehension), ISO 7029 | SNHL was more common in the study group than in the control group (p = 0.001). 42% of patients in the study group had a higher HTL than the ISO 7029 median AAHL at 1, 2 and 3 kHz, compared to 24% in the control group; no difference in HL between XFS (p = 0.118) and XFG (p = 0.193). |
/ | / | / | |||||
Šarenac-Vulović T. (2014) [78] | XFS, XFG | cross-sectional | 20 (n/a) XFG, 20 (n/a) XFS | 73.41 ± 6.54 (XFS), 77.2 ± 3.9 (XFG) | 25% XFS 30% XFG | PTA from medical history | HL higher in XFS (55%) and XFG (75%) (p = 0.033) than in controls (10%) |
20 (n/a) | 63.4 ± 4.2 | 45% | |||||
Shazly T.A. (2011) [79] | XFS | retrospective | 320 (n/a) | 68.15 ± 8.16 | 58.75% | medical history of HL | 8.1% of XFS had HL vs. 2.3% in non-XFS (p < 0.001) |
/ | / | / | |||||
Singham N.V. (2014) [63] | XFS, XFG | case-control | 68 (136) | 68.5 ± 7.8 | 36.77% | PTA 0.25, 0.5, 1 and kHz | Higher hearing thresholds at 0.5, 1 and 2 kHz in XFS patients than controls (p = 0.01); no difference between right and left ear (p = 0.46). |
55 (110) | 66.3 ± 7.4 | 41.7% | |||||
Tekin S. (2021) [64] | XFS | case-control | 40 (80) | 67.13 ± 8.6 | 50% | PTA air (0.25, 5, 1, 2, 4, 6, kHz) and bone (0.5, 1, 2, 4 kHz) conduction. | PEX group: higher HTL in both air and both conductions compared to controls at 0.25, 0.5, 1, 2, 4 kHz (p ≤ 0.036), but not at 6, 8 kHz (p ≥ 0.151). |
46 (92) | 64.04 ± 10.58 | 48% | |||||
Temporale H. (2016) [62] | XFS | case-control | 28 (56) | 77.5 ± 7.6 | 32.1 | PTA 0.5, 1, 2, 4 kHz, impedance audiometry, DPOAE and ABR | HTL significantly higher in PEX for 2 kHz (p = 0.021). In impedance audiometry tests, the stapedius reflex was identified in a greater proportion of patients in the XFS group than in the control group in all frequency ranges. No difference between the XFS group and the control group in the results of the DPOAE and ABR tests (p > 0.05). |
23 (46) | 77.7 ± 8.8 | 21.7 | |||||
Tryggvason G. (2016) [72] | XFS, XFG, POAG | case-control | 95 (190) POAG 75 (150) XFG 83 (166) XFS | 77.4 ± 5.2 (XFS, XFG) 77.9 ± 5.2 (POAG) | 30.4% (XFS, XFG) 35.8% (POAG) | PTA 0.5, 1, 2, 3, 4, 6 and 8 kHz, low and middle frequencies (PTA512—mean of thresholds at 0.5, 1 and 2 kHz) and high frequencies (PTA3468—mean of thresholds at 3, 4, 6 and 8 kHz), air conduction, tympanometry | No significant association between cases (XFS, XFG and POAG group) and controls (p < 0.05). |
123 (246) | 76.8 ± 4.6 | 46.3% | |||||
Turacli M.E. (2007) [57] | XFS, XFG | case-control | 51 (102) | 67.5 | n/a | PTA 0.25, 0.5, 1, 2, 3, 4 and 6 kHz, bilateral or unilateral XFS | HL higher in XFS (66.7%) than controls (38.6%), no significant correlation with laterality of XFS and HL |
22 (44) | 61 | n/a | |||||
Yazdani S. (2008) [47] | XFS, XFG | case-control | 83 (166) | 70.1 ± 7.7 | 72.3% | PTA 1, 2, 3 kHz, bilateral or unilateral XFS | HL in 88.4% ears in the XFS group vs. 53.6% in the control group without XFS (p < 0.001). The presence of glaucoma was not associated with higher HL both in the XFS group (p = 0.65) and in the control group without XFS (p = 0.48) |
83 (166) | 69.8 ± 7.5 | 72.3% | |||||
Yildirim N. (2017) [80] | XFS, XFG | case-control | 100 (n/a) | 69.1 ± 9.9 | 47.0% | HL%, not specified | HL was 5.4% in non-XFS participants and 34.0% in XFS patients (p < 0.001). 31. out of 34 XFS patients had SNHL, which was mild in 24 cases and moderate in 7. |
1909 (n/a) | 59.2 ± 10.9 | 46.3% | |||||
Zojaji R. (2011) [73] | XFS | case-control | 33 (66) | 72.2 ± 7.3 | 69.7% | PTA 0.25, 0.5, 1, 2, 3, 4 and 6 KHz | SNHL: 75.2% in the XFS group and 40% in the control group (p < 0.001); no significant difference between XFS and XFG (p = 0.768) and laterality of XFS and HL (p = 0.847). |
33 (66) | 72.8 ± 6.1 | 63.6% |
3.1.2. Pseudoexfoliative Glaucoma
3.2. Primary Open Angle Glaucoma and Hearing Loss
First Author (Year) | Glaucoma Type | Study Design | N Cases (n Ears) | Mean Age Patients (Mean ± SD) | % Males Patients | Outcome Measured | Main Findings |
---|---|---|---|---|---|---|---|
N Controls (n Ears) | Mean Age Controls (Mean ± SD) | % Males Controls | |||||
Chien H.W. (2019) [84] | POAG, NTG, ACG | Retrospective cohort study | 15,686 SNHL | n/a | 54.06% | HL based on medical history | Higher incidence rate of glaucoma in patients with SNHL (43.36 per 100,000 person–months) than in control group (32.93 per 100,000 person–months). NTG (p = < 0.0001) and ACG (p = 0.0148) > POAG (p = 0.1271). |
/ | n/a | 54.22% | |||||
Gülyeşil F.F. (2023) [75] | POAG XFG | Case-control | 24 (24) POAG 22 (22) XFG | 64.50 ± 7 POAG 66.90 ± 4.51 XFG | 50% POAG 50% XFG | PTA 0.25, 0.5, 1, 2, 4, 8, 1 kHz | Compared to controls: POAG: higher hearing thresholds at 0.5 (p = 0.011) and 1 kHz (p = 0.003). XFG: higher hearing thresholds at 0.25 (p = 0.009), 0.5 (p = 0.009), 1 (p = 0.001), 2 (p = 0.005), 4 (p = 0.001), 8 (p = 0.010) and 10 kHz (p = 0.009); XFG group: higher hearing threshold at 8 kHz than the POAG group (p = 0.002). |
21 (21) | 64.38 ± 4.36 | 57.1% | |||||
Hayreh S.S. (1999) [83] | NTG, POAG, other glaucoma types | Prospective cohort study | 36 NTG 138 POAG | 69.8± 14.6 NTG, 69.8 ± 13.7 POAG | 25% NTG, 51% POAG | HL based on medical history/patients’ interview | No association between glaucoma and HL. Only association of HL with age (p < 0.001). |
/ | / | / | |||||
Kim J.M. (2020) [29] | POAG | Cross-sectional | 236 (472) POAG 51 (102) POAG AND HL 62 (124) HL | 48.5 ± 1 POAG 66.9 ± 1.8 POAG AND HL 62.6 ± 0.6 HL | 55.4% POAG 68.2% POAG AND HL 58.3% HL | 0.5, 1, 2, 3, 4 and 6 kHz | Higher glaucoma prevalence (7.5%) in patients with HL (PTA > 40 dB) than in patients without HL (3.2%). Glaucoma was significantly associated with HL (odds ratio, 3120; 95% confidence interval, 2.25–4.32). |
941 (1882) | 41.2 ±0.2 | 48.4% | |||||
Neacșu A.M. (2023) [82] | POAG | prospective | 16 (32) | 63.69 | 31.3% | PTA 0.125, 0.25, 0.5, 1, 2, 4 and 8 kHz; MD, Cal HOV | Correlation of PTA was indirect, reduced in intensity, both with MD (r = −0.108; p = 0.585), Cal HOV (r = −0.268; p = 0.168) and the slope profile of the right eye. |
12 (24) | 58.92 | 25% | |||||
O’Hare F. (2012) [81] | POAG | Case-control | 25 (50) | n/a | n/a | Auditory low-frequency discrimination, speech perception, visual speed discrimination, visual global motion detection, auditory amplitude modulation detection and auditory frequency discrimination (PTA 0.25, 0.5, 1, 2, 3, 4, 5, 6 kHz) | 36% of POAG participants showed impaired low-frequency discrimination (p = 0.028): (POAG: 14.6 ± 7.1 Hz; control: 10.5 ± 3.5 Hz) 25% of POAG patients had speech perception scores outside the lower limit of the control range (p = 0.029) 39.13% of POAG patients had results outside the lower limit (90th percentile) of the range in control performance (p = 0.029) for slow speed visual discrimination. |
25 (50) | n/a | n/a | |||||
Paliobei V.P. (2011) [76] | XFG, POAG | prospective | 85 (170) POAG 110 (220) XFG | 67.4 ± 4.6 XFG 64.8 ± 6.5 POAG | 44.7% POAG 58.2% XFG | PTA (0.25, 0.5, 1, 2, 4 and 8 kHz), audiometry, tympanometry, stapedial reflex test, ABRs, DPOAEs, ISO 7029 | HL was more prevalent with POAG and XFG compared to the ISO 7029 (XFG > POAG); DPOAs amplitudes reduced in both POAG and XFG. Pathologic ABR was 4 times higher in XFG than POAG. |
/ | / | / | |||||
Tryggvason G. (2016) [72] | XFS, XFG, POAG | Case-control | 95 (190) POAG 75 (150) XFG 83 (166) XFS | 77.4 ± 5.2 (XFS, XFG) 77.9 ± 5.2 (POAG) | 30.4% (XFS, XFG) 35.8% (POAG) | PTA 0.5, 1, 2, 3, 4, 6 and 8 kHz, low and middle frequencies (PTA512—mean of thresholds at 0.5, 1 and 2 kHz) and high frequencies (PTA3468—mean of thresholds at 3, 4, 6 and 8 kHz), air conduction, tympanometry | No significant difference in HL between cases (XSF, XFG and POAG) and controls (p < 0.05) |
123 (246) | 76.8 ± 4.6 | 46.3% |
3.3. Normal Tension Glaucoma and Hearing Loss
First Author (Year) | Glaucoma Type | Study Design | N Cases (n Ears) | Mean Age Patients (Mean ± SD) | % Males Patients | Outcome Measured | Main Findings |
---|---|---|---|---|---|---|---|
N Controls (n Ears) | Mean Age Controls (Mean ± SD) | % Males Controls | |||||
Bachor E. (2005) [91] | NTG | prospective | 34 (n/a) | 65 | 32.3% | APSA, audiograms, stapedial thresholds, otoacoustic emissions, positional and caloric testing | 11/34 NTG patients had SNHL; NTG and progressive SNHL showed higher APSA IgG compared to patients with normal hearing NTG and controls (p< 0.01). IgM APSA were higher in all NTG patients (p < 0.05). |
40 (n/a) | 62 | / | |||||
Chien H.W. (2019) [84] | POAG, NTG, ACG | Retrospective cohort study | 15686 SNHL | n/a | 54.06% | HL based on medical history | Higher incidence rate of glaucoma in patients with SNHL (43.36 per 100,000 person–months) than in control group (32.93 per 100,000 person–months). NTG (p = < 0.0001) and ACG (p = 0.0148) > POAG (p = 0.1271). |
/ | n/a | 54.22% | |||||
Hayreh S.S. (1999) [83] | NTG, POAG, other glaucoma types | Prospective cohort study | 36 NTG 138 POAG | 69.8 ± 14.6 NTG, 69.8 ± 13.7 POAG | 25% NTG, 51% POAG | HL based on medical history/patients’ interview | No association between glaucoma and HL. Only association of HL with age (p < 0.001). |
/ | / | / | |||||
Kremmer S. (2004) [92] | NTG | Cross-sectional | 34 | 65 | 32.3% | PTA, stapedial thresholds and transitory otoacoustic emissions, APSA | 68% of NTG pt had HL; excluding presbiacusis (35%), 32% had HL, defined by age-mached controls. APSA concentrations were significantly higher in NTG compared to controls regardless of HL (p < 0.05). APSA were higher in patients with NTG and HL than iin NTG and normoacusis. |
/ | / | / |
3.4. Angle Closure Glaucoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jutley, G.; Luk, S.M.; Dehabadi, M.H.; Cordeiro, M.F. Management of glaucoma as a neurodegenerative disease. Neurodegener. Dis. Manag. 2017, 7, 157–172. [Google Scholar] [CrossRef]
- Vidal-Sanz, M.; Salinas-Navarro, M.; Nadal-Nicolás, F.M.; Alarcón-Martínez, L.; Valiente-Soriano, F.J.; de Imperial, J.M.; Avilés-Trigueros, M.; Agudo-Barriuso, M.; Villegas-Pérez, M.P. Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas. Prog. Retin. Eye Res. 2012, 31, 1–27. [Google Scholar] [CrossRef]
- Almasieh, M.; Wilson, A.M.; Morquette, B.; Vargas, J.L.C.; Di Polo, A. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 2012, 31, 152–181. [Google Scholar] [CrossRef]
- Coleman, A.L.; Gergana, K. Risk Factors for Glaucoma Needing More Attention. Open Ophthalmol. J. 2009, 3, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Shoeb Ahmad, S.; Ahmad, S.S. Controversies in the vascular theory of glaucomatous optic nerve degeneration. Taiwan J. Ophthalmol. 2016, 6, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Alarcon-Martinez, L.; Shiga, Y.; Villafranca-Baughman, D.; Vargas, J.L.C.; Paredes, I.A.V.; Quintero, H.; Fortune, B.; Danesh-Meyer, H.; Di Polo, A. Neurovascular dysfunction in glaucoma. Prog. Retin. Eye Res. 2023, 97, 101217. [Google Scholar] [CrossRef] [PubMed]
- Wareham, L.K.; Calkins, D.J. The Neurovascular Unit in Glaucomatous Neurodegeneration. Front. Cell Dev. Biol. 2020, 8, 452. [Google Scholar] [CrossRef] [PubMed]
- Resch, H.; Karl, K.; Weigert, G.; Wolzt, M.; Hommer, A.; Schmetterer, L.; Garhöfer, G. Effect of Dual Endothelin Receptor Blockade on Ocular Blood Flow in Patients with Glaucoma and Healthy Subjects. Investig. Opthalmology Vis. Sci. 2009, 50, 358–363. [Google Scholar] [CrossRef]
- Inman, D.M.; Harun-Or-Rashid, M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front. Neurosci. 2017, 11, 146. [Google Scholar] [CrossRef]
- Ito, Y.A.; Di Polo, A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 2017, 36, 186–192. [Google Scholar] [CrossRef]
- Quintero, H.; Shiga, Y.; Belforte, N.; Alarcon-Martinez, L.; El Hajji, S.; Villafranca-Baughman, D.; Dotigny, F.; Di Polo, A. Restoration of mitochondria axonal transport by adaptor Disc1 supplementation prevents neurodegeneration and rescues visual function. Cell Rep. 2022, 40, 111324. [Google Scholar] [CrossRef]
- Su, J.H.; Deng, G.; Cotman, C.W. Transneuronal Degeneration in the Spread of Alzheimer’s Disease Pathology: Immunohistochemical Evidence for the Transmission of Tau Hyperphosphorylation. Neurobiol. Dis. 1997, 4, 365–375. [Google Scholar] [CrossRef]
- Kiernan, J.A.; Hudson, A.J. Changes in sizes of cortical and lower motor neurons in amyotrophic lateral sclerosis. Brain 1991, 114, 843–853. [Google Scholar] [CrossRef]
- Gupta, N.; Yücel, Y.H. What Changes Can We Expect in the Brain of Glaucoma Patients? Surv. Ophthalmol. 2007, 52, S122–S126. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Yücel, Y.H. Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 2007, 18, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, N.; Tuğan, B.Y. Pseudoexfoliation Glaucoma: Clinical Presentation and Therapeutic Options. Turk. J. Ophthalmol. 2023, 53, 247–256. [Google Scholar] [CrossRef]
- Schweitzer, C. Syndrome pseudo-exfoliatif et glaucome exfoliatif. J. Fr. Ophtalmol. 2018, 41, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Ariga, M.; Nivean, M.; Utkarsha, P.; Tuteja, S.; Zeppieri, M.; Chawla, H. Pseudoexfoliation Syndrome. Curr. J. Glaucoma Pract. 2013, 7, 118–120. [Google Scholar] [CrossRef]
- Padhy, B.; Alone, D.P. Is pseudoexfoliation glaucoma a neurodegenerative disorder? J. Biosci. 2021, 46, 97. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Steur, E.N.J.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Liu, L.; Drouet, V.; Wu, J.W.; Witter, M.P.; Small, S.A.; Clelland, C.; Duff, K. Trans-Synaptic Spread of Tau Pathology In Vivo. PLoS ONE 2012, 7, e31302. [Google Scholar] [CrossRef]
- Ambati, J.; Fowler, B.J. Mechanisms of Age-Related Macular Degeneration. Neuron 2012, 75, 26–39. [Google Scholar] [CrossRef]
- Mitchell, P.; Wang, J.J.; Smith, W. Association of Pseudoexfoliation Syndrome With Increased Vascular Risk. Arch. Ophthalmol. 1997, 124, 685–687. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Naumann, G.O. Ocular and Systemic Pseudoexfoliation Syndrome. Am. J. Ophthalmol. 2006, 141, 921–937.e2. [Google Scholar] [CrossRef]
- Schumacher, S.; Schlötzer-Schrehardt, U.; Martus, P.; Lang, W.; Naumann, G. Pseudoexfoliation syndrome and aneurysms of the abdominal aorta. Lancet 2001, 357, 359–360. [Google Scholar] [CrossRef] [PubMed]
- Coexistence of Alzheimer’s Disease with Pseudoexfoliation Syndrome PEX. Available online: https://www.researchgate.net/publication/8489094_Coexistence_of_Alzheimer’s_disease_with_pseudoexfoliation_syndrome_PEX (accessed on 10 February 2024).
- Cumurcu, T.; Dorak, F.; Cumurcu, B.E.; Erbay, L.G.; Ozsoy, E. Is There Any Relation Between Pseudoexfoliation Syndrome and Alzheimer’s Type Dementia? Semin. Ophthalmol. 2013, 28, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Linnér, E.; Popovic, V.; Gottfries, C.; Jonsson, M.; Sjögren, M.; Wallin, A. The exfoliation syndrome in cognitive impairment of cerebrovascular or Alzheimer’s type. Acta Ophthalmol. Scand. 2001, 79, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lee, M.Y.; Kim, J.W.; Lee, J.; Kim, H.J.; Cha, S.C.; Kim, N.R. Open-angle Glaucoma and Sensorineural Hearing Impairment in the Korean Population. Curr. Eye Res. 2020, 45, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef]
- Frisina, R.D.; Ding, B.; Zhu, X.; Walton, J.P. Age-related hearing loss: Prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons. Aging 2016, 8, 2081–2099. [Google Scholar] [CrossRef]
- Bowl, M.R.; Dawson, S.J. Age-Related Hearing Loss. Cold Spring Harb. Perspect. Med. 2019, 9, a033217. [Google Scholar] [CrossRef]
- Wongrakpanich, S.; Petchlorlian, A.; Rosenzweig, A. Sensorineural Organs Dysfunction and Cognitive Decline: A Review Article. Aging Dis. 2016, 7, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Chau, J.K.; Cho, J.J.; Fritz, D.K. Evidence-Based Practice: Management of Adult Sensorineural Hearing Loss. Otolaryngol. Clin. North Am. 2012, 45, 941–958. [Google Scholar] [CrossRef] [PubMed]
- Chern, A.; Golub, J.S. Age-related Hearing Loss and Dementia. Alzheimer Dis. Assoc. Disord. 2019, 33, 285–290. [Google Scholar] [CrossRef]
- Shi, X. Physiopathology of the cochlear microcirculation. Hearth Res. 2011, 282, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, P.B.; Scuteri, A.; Black, S.E.; DeCarli, C.; Greenberg, S.M.; Iadecola, C.; Launer, L.J.; Laurent, S.; Lopez, O.L.; Nyenhuis, D.; et al. Vascular Contributions to Cognitive Impairment and Dementia. Stroke 2011, 42, 2672–2713. [Google Scholar] [CrossRef] [PubMed]
- Ohlemiller, K.K.; Jones, S.M.; Johnson, K.R. Application of Mouse Models to Research in Hearing and Balance. J. Assoc. Res. Otolaryngol. 2016, 17, 493–523. [Google Scholar] [CrossRef]
- Shi, X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hearth Res. 2016, 338, 52–63. [Google Scholar] [CrossRef]
- Tanna, R.J.; Lin, J.W.; Jesus, D.O. Sensorineural Hearing Loss. Available online: https://www.ncbi.nlm.nih.gov/books/NBK565860/ (accessed on 17 December 2023).
- Olusanya, B.O.; Davis, A.C.; Hoffman, H.J. Hearing loss grades and the International classification of functioning, disability and health. Bull. World Health Organ. 2019, 97, 725–728. [Google Scholar] [CrossRef]
- Eggermont, J.J. Chapter 3—Multisensory Processing. Hearing Loss. Available online: https://www.sciencedirect.com/science/article/pii/B9780128053980000037 (accessed on 17 December 2023).
- Kemp, D.T. Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 1978, 64, 1386–1391. [Google Scholar] [CrossRef]
- Richardson, M.P.; Williamson, T.J.; Lenton, S.W.; Tarlow, M.J.; Rudd, P.T. Otoacoustic emissions as a screening test for hearing impairment in children. Arch. Dis. Child. 1995, 72, 294–297. [Google Scholar] [CrossRef]
- Bargen, G.A. Chirp-Evoked Auditory Brainstem Response in Children: A Review. Am. J. Audiol. 2015, 24, 573–583. [Google Scholar] [CrossRef]
- Cahill, M.; Early, A.; Stack, S.; Blayney, A.W.; Eustace, P. Pseudoexfoliation and sensorineural hearing loss. Eye 2002, 16, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, S.; Tousi, A.; Pakravan, M.; Faghihi, A.-R. Sensorineural Hearing Loss in Pseudoexfoliation Syndrome. Ophthalmology 2008, 115, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Citirik, M.; Acaroglu, G.; Batman, C.; Yildiran, L.; Zilelioglu, O. A possible link between the pseudoexfoliation syndrome and coronary artery disease. Eye 2007, 21, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic-Jocic, J.; Jovanovic, P.; Bozic, M.; Tasic, A.; Rancic, Z. Prevalence and Early Detection of Abdominal Aortic Aneurysm in Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. Curr. Eye Res. 2012, 37, 617–623. [Google Scholar] [CrossRef]
- A Gonen, K.; Gonen, T.; Gumus, B. Renal artery stenosis and abdominal aorta aneurysm in patients with pseudoexfoliation syndrome. Eye 2013, 27, 735–741. [Google Scholar] [CrossRef]
- Praveen, M.R.; Vasavada, A.R.; Diwan, R.P.; Shah, S.M.; Zumkhawala, B.R.; Thomas, R. Pseudoexfoliation as a risk factor for peripheral vascular disease: A case-control study. Eye 2011, 25, 174–179. [Google Scholar] [CrossRef]
- Wang, W.; He, M.; Zhou, M.; Zhang, X. Ocular Pseudoexfoliation Syndrome and Vascular Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e92767. [Google Scholar] [CrossRef]
- Shumway, C.; Curtin, K.; Taylor, S.; Sundar, K.M.; Wirostko, B.M.; Ritch, R. Association between Obstructive Sleep Apnea and Exfoliation Syndrome: The Utah Project on Exfoliation Syndrome. Ophthalmol. Glaucoma 2021, 4, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Ritch, R.; Schlötzer-Schrehardt, U. Exfoliation Syndrome. Surv. Ophthalmol. 2001, 45, 265–315. [Google Scholar] [CrossRef] [PubMed]
- Ritch, R.; Schlötzer-Schrehardt, U.; Konstas, A.G. Why is glaucoma associated with exfoliation syndrome? Prog. Retin. Eye Res. 2003, 22, 253–275. [Google Scholar] [CrossRef] [PubMed]
- Vesti, E.; Kivelä, T. Exfoliation syndrome and exfoliation glaucoma. Prog. Retin. Eye Res. 2000, 19, 345–368. [Google Scholar] [CrossRef] [PubMed]
- Turacli, M.E.; Özdemir, F.A.; Tekeli, O.; Gökcan, K.; Gerçeker, M.; Dürük, K. Sensorineural hearing loss in pseudoexfoliation. Can. J. Ophthalmol. 2007, 42, 56–59. [Google Scholar] [CrossRef]
- E Billett, T.; Thorne, P.R.; Gavin, J.B. The nature and progression of injury in the organ of Corti during ischemia. Heart Res. 1989, 41, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, C.; Űnal, B. Cerebral haemodynamics in patients with pseudoexfoliation glaucoma. Eye 2005, 19, 1297–1300. [Google Scholar] [CrossRef] [PubMed]
- Atalar, P.T.; Atalar, E.; Kilic, H.; Abbasoglu, E.; Ozer, N.; Aksöyek, S.; ÖvünÇ, K.; Ozmen, F.; Gürsel, E. Impaired Systemic Endothelial Function in Patients With Pseudoexfoliation Syndrome. Int. Heart J. 2006, 47, 77–84. [Google Scholar] [CrossRef]
- Shaban, R.I.; Asfour, W.M. Ocular pseudoexfoliation associated with hearing loss. Saudi Med. J. 2004, 25, 1254–1257. [Google Scholar]
- Temporale, H.; Karasińska-Kłodowska, A.; Turno-Kręcicka, A.; Morawska-Kochman, M.; Dorobisz, K.; Dudek, K.; Misiuk-Hojło, M.; Kręcicki, T. Evaluating the Hearing of Patients with Pseudoexfoliation Syndrome. Adv. Clin. Exp. Med. 2016, 25, 1215–1221. [Google Scholar] [CrossRef]
- Singham, N.V.; Zahari, M.; Peyman, M.; Prepageran, N.; Subrayan, V. Association between Ocular Pseudoexfoliation and Sensorineural Hearing Loss. J. Ophthalmol. 2014, 2014, 825936. [Google Scholar] [CrossRef]
- Tekin, S.; Batur, M.; Düzenli, U.; Seven, E.; Ozer, M.D. Relationship between ocular pseudoexfoliation and sensorineural hearing loss. East. J. Med. 2021, 26, 151–156. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, S.; Kim, J.H.; Hong, S.-C.; Lee, K.H.; Lee, H.-S.; Shin, A.; Jeong, J. Prevalence of Pseudoexfoliation Syndrome in an Isolated Island Population of Korea: The Woodo Study. Eur. J. Gastroenterol. Hepatol. 2017, 26, 730–734. [Google Scholar] [CrossRef]
- Bilgeç, M.D.; Küçükcan, N.E.; Birdane, L.; İncesulu, A.; Yıldırım, N. Evaluation of the Vestibulocochlear System in Patients with Pseudoexfoliation Syndrome. Turk. J. Ophthalmol. 2021, 51, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, T.; Naxakis, S.S.; Charalabopoulou, M.; Vathylakis, I.; Goumas, P.D.; Gartaganis, S.P. Exfoliation syndrome related to sensorineural hearing loss. Clin. Exp. Ophthalmol. 2010, 38, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, F.; Kurt, E.; Inan, U.U.; Derekoy, S.; Ermis, S.S.; Asagidag, A. Is pseudoexfoliation associated with sensorineural hearing loss? Neurosciences 2008, 13, 61–64. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L351132859&from=export (accessed on 9 September 2023). [PubMed]
- Ozkan, B.A.; Yüksel, N.; Keskin, G.; Altintaş, Ö.; Karabaş, V.; Çağlar, Y.; Almaç, A. Homocysteine levels in plasma and sensorineural hearing loss in patients with pseudoexfoliation syndrome. Eur. J. Ophthalmol. 2006, 16, 542–547. [Google Scholar] [CrossRef]
- Papadopoulos, T.A.; Charalabopoulou, M.; Vathylakis, I.; Goumas, P.; Gartaganis, S.; Naxakis, S. Prevalence and severity of sensorineural hearing loss in patients with exfoliation syndrome. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 902–907. [Google Scholar] [PubMed]
- Muhafiz, E.; Çetin, Y.S. Nasal mucociliary clearance and hearing loss in pseudoexfoliation syndrome. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Tryggvason, G.; Jonasson, F.; Cotch, M.F.; Li, C.; Hoffman, H.J.; Themann, C.L.; Eiriksdottir, G.; Sverrisdottir, J.E.; Harris, T.B.; Launer, L.J.; et al. Hearing in older adults with exfoliation syndrome/exfoliation glaucoma or primary open-angle glaucoma. Acta Ophthalmol. 2016, 94, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Zojaji, R.; Alesheykh, A.; Sedaghat, M.R.; Navia, K.; Baf, M.M.F.; Khaki, M.; Raouf, A. Pseudoexfoliation Syndrome and Sensorineural Hearing Loss. Iran J. Otorhinolaryngol. 2011, 23, 149–158. [Google Scholar]
- Detorakis, E.; Chrysochoou, F.; Paliobei, V.; Konstas, A.; Daniilidis, V.; Balatsouras, D.; Kefalidis, G.; Kozobolis, V. Evaluation of the acoustic function in pseudoexfoliation syndrome and exfoliation glaucoma: Audiometric and tympanometric findings. Eur. J. Ophthalmol. 2008, 18, 71–76. [Google Scholar] [CrossRef]
- Gülyeşil, F.F.; Doğan, M.; Sabaner, M.C.; Gobeka, H.H.; Kınar, A.; Ulu, Ş. Audiometric Evaluation of the Relationship between Sensorineural Hearing Loss and Chronic Glaucoma. Turk. J. Ophthalmol. 2023, 53, 105–110. [Google Scholar] [CrossRef]
- Paliobei, V.P.; Psillas, G.K.; Mikropoulos, D.G.; Haidich, A.; Constantinidis, J.; Konstas, A.G.P. Hearing Evaluation in Patients with Exfoliative and Primary Open-Angle Glaucoma. Otolaryngol. Neck Surg. 2011, 145, 125–130. [Google Scholar] [CrossRef]
- Samarai, V.; Samarei, R.; Haghighi, N.; Jalili, E. Sensory-neural hearing loss in pseudoexfoliation syndrome. Int. Eye Sci. 2012, 12, 1438–1441. [Google Scholar] [CrossRef]
- Sarenac-Vulovic, T.S.; Petrovic, M.A.J.; Vulovic, D.D.; Pavlovic, S.M.; Simovic, S.; Zdravkovic, N.S. Systemic Manifestations of Pseudoexfoliation. Serbian J. Exp. Clin. Res. 2014, 15, 29–32. [Google Scholar] [CrossRef]
- Shazly, T.A.; Farrag, A.N.; Kamel, A.; Al-Hussaini, A.K. Prevalence of Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma in Upper Egypt. BMC Ophthalmol. 2011, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, N.; Yasar, E.; Gursoy, H.; Colak, E. Prevalence of pseudoexfoliation syndrome and its association with ocular and systemic diseases in Eskisehir, Turkey. Int. J. Ophthalmol. 2017, 10, 128–134. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, F.; Rance, G.; Crowston, J.G.; McKendrick, A.M. Auditory and Visual Temporal Processing Disruption in Open Angle Glaucoma. Investig. Opthalmology Vis. Sci. 2012, 53, 6512–6518. [Google Scholar] [CrossRef] [PubMed]
- Neacșu, A.M.; Anton, N.; Lăpușneanu, L.; Mușat, O.; Andrei, M.C.; Coșman, M.; Țovănac, N.A.; Ferechide, D. Dynamics of the association between visual and auditory functional changes in glaucoma. Preliminary results. Rom. J. Ophthalmol. 2023, 67, 117–127. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Podhajsky, P.; Zimmerman, M. Ocular and optic nerve head ischemic disorders and hearing loss. Am. J. Ophthalmol. 1999, 128, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.-W.; Wu, P.-H.; Wang, K.; Sun, C.-C.; Huang, J.-Y.; Yang, S.-F.; Chen, H.-C.; Lee, C.-Y. Increased Incidence of Glaucoma in Sensorineural Hearing Loss: A Population-Based Cohort Study. Int. J. Environ. Res. Public Health 2019, 16, 2907. [Google Scholar] [CrossRef]
- Drance, S.M.; Sweeney, V.P.; Morgan, R.W.; Feldman, F. Studies of Factors Involved in the Production of Low Tension Glaucoma. Arch. Ophthalmol. 1973, 89, 457–465. [Google Scholar] [CrossRef]
- Flammer, J.; Orgül, S.; Costa, V.P.; Orzalesi, N.; Krieglstein, G.K.; Serra, L.M.; Renard, J.-P.; Stefánsson, E. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002, 21, 359–393. [Google Scholar] [CrossRef]
- Grunwald, J.E.; Piltz, J.; Hariprasad, S.M.; Dupont, J.; Maguire, M.G. Optic nerve blood flow in glaucoma: Effect of systemic hypertension. Arch. Ophthalmol. 1999, 127, 516–522. [Google Scholar] [CrossRef]
- Hayreh, S.S. The Role of Age and Cardiovascular Disease in Glaucomatous Optic Neuropathy. Surv. Ophthalmol. 1999, 43, S27–S42. [Google Scholar] [CrossRef]
- Kremmer, S.; Selbach, J.M.; Schäfers, R.F. Cardiovascular risk profile in the progression of glaucomatous damage. Dt Ärztebl. 2000, 97, A2241–A2245. [Google Scholar]
- Wax, M.B. Is there a role for the immune system in glaucomatous optic neuropathy? Curr. Opin. Ophthalmol. 2000, 11, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Bachor, E.; Kremmer, S.; Kreuzfelder, E.; Jahnke, K.; Seidahmadi, S. Antiphospholipid antibodies in patients with sensorineural hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 2005, 262, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Kremmer, S.; Kreuzfelder, E.; Bachor, E.; Jahnke, K.; Selbach, J.M.; Seidahmadi, S. Coincidence of normal tension glaucoma, progressive sensorineural hearing loss, and elevated antiphosphatidylserine antibodies. Br. J. Ophthalmol. 2004, 88, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Schoenwolf, G.C.; Bleyl, S.B.; Brauer, P.R.; Francis-West, P.H. Larsen’s Human Embriology. In Larsen’s Human Embryology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015; pp. 155–171. [Google Scholar]
- Pavlidis, A.N.; Kallistratos, M.S.; Tousoulis, D.; Stefanadis, C.; Manolis, A.J.; Kallikazaros, I.; Fitsios, A.; Bratsas, A.; Katsi, V. Cardiovascular repercussions of the pseudoexfoliation syndrome. N. Am. J. Med. Sci. 2013, 5, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Wattamwar, K.; Qian, Z.J.; Otter, J.; Leskowitz, M.J.; Caruana, F.F.; Siedlecki, B.; Spitzer, J.B.; Lalwani, A.K. Association of Cardiovascular Comorbidities With Hearing Loss in the Older Old. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Ritch, R.; Wolosin, J.M. Exfoliation Syndrome: A Disease of Autophagy and LOXL1 Proteopathy. J. Glaucoma 2018, 27, S44–S53. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.C.S.; Johnson, J.C.S.; Marshall, C.R.; Marshall, C.R.; Weil, R.S.; Weil, R.S.; Bamiou, D.-E.; Bamiou, D.-E.; Hardy, C.J.D.; Hardy, C.J.D.; et al. Hearing and dementia: From ears to brain. Brain 2020, 144, 391–401. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meliante, L.A.; Piccotti, G.; Tanga, L.; Giammaria, S.; Manni, G.; Coco, G. Glaucoma, Pseudoexfoliation and Hearing Loss: A Systematic Literature Review. J. Clin. Med. 2024, 13, 1379. https://doi.org/10.3390/jcm13051379
Meliante LA, Piccotti G, Tanga L, Giammaria S, Manni G, Coco G. Glaucoma, Pseudoexfoliation and Hearing Loss: A Systematic Literature Review. Journal of Clinical Medicine. 2024; 13(5):1379. https://doi.org/10.3390/jcm13051379
Chicago/Turabian StyleMeliante, Laura Antonia, Giulia Piccotti, Lucia Tanga, Sara Giammaria, Gianluca Manni, and Giulia Coco. 2024. "Glaucoma, Pseudoexfoliation and Hearing Loss: A Systematic Literature Review" Journal of Clinical Medicine 13, no. 5: 1379. https://doi.org/10.3390/jcm13051379
APA StyleMeliante, L. A., Piccotti, G., Tanga, L., Giammaria, S., Manni, G., & Coco, G. (2024). Glaucoma, Pseudoexfoliation and Hearing Loss: A Systematic Literature Review. Journal of Clinical Medicine, 13(5), 1379. https://doi.org/10.3390/jcm13051379