Thrombosis and Bleeding Risk Scores Are Strongly Associated with Mortality in Hospitalized Patients with COVID-19: A Multicenter Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Definition
2.2. Data Analysis
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Thrombosis and Bleeding Prognostic Scores Could Predict Thrombosis and Bleeding
3.3. Thrombosis and Bleeding Prognostic Scores Could Predict Mortality
3.4. Low Molecular Weight Heparin Prophylaxis and Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadid, T.; Kafri, Z.; Al-Katib, A. Coagulation and anticoagulation in COVID-19. Blood Rev. 2021, 47, 100761. [Google Scholar] [CrossRef]
- Dorgalaleh, A. Bleeding and Bleeding Risk in COVID-19. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2020; Volume 46, pp. 815–818. [Google Scholar] [CrossRef]
- Kaptein, F.H.J.; Stals, M.A.M.; Huisman, M.V.; Klok, F.A. Prophylaxis and treatment of COVID-19 related venous thromboembolism. Postgrad. Med. 2021, 133, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Demelo-Rodriguez, P.; Farfan-Sedano, A.I.; Pedrajas, J.M.; Llamas, P.; Siguenza, P.; Jaras, M.J.; Quintana-Diaz, M.; Fernandez-Capitan, C.; Bikdeli, B.; Jimenez, D.; et al. Bleeding risk in hospitalized patients with COVID-19 receiving intermediate- or therapeutic doses of thromboprophylaxis. J. Thromb. Haemost. 2021, 19, 1981–1989. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, T.; Wang, S.; Yu, Y.; Wang, P.; Song, Y.; Jiang, J. Association between risk of venous thromboembolism and mortality in patients with COVID-19. Int. J. Infect. Dis. 2021, 108, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.X.; Xu, J.L.; Mao, Q.X.; Liu, R.; Zhang, W.Y.; Qian, H.Y.; Xu, L. Association of Padua prediction score with in-hospital prognosis in COVID-19 patients. QJM Int. J. Med. 2020, 113, 789–793. [Google Scholar] [CrossRef]
- National Institutes of Health. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. In Panel C-TG; National Institutes of Health: Bethesda, MD, USA, 2023. [Google Scholar]
- Barbar, S.; Noventa, F.; Rossetto, V.; Ferrari, A.; Brandolin, B.; Perlati, M.; De Bon, E.; Tormene, D.; Pagnan, A.; Prandoni, P. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: The Padua Prediction Score. J. Thromb. Haemost. 2010, 8, 2450–2457. [Google Scholar] [CrossRef]
- Vardi, M.; Ghanem-Zoubi, N.O.; Zidan, R.; Yurin, V.; Bitterman, H. Venous thromboembolism and the utility of the Padua Prediction Score in patients with sepsis admitted to internal medicine departments. J. Thromb. Haemost. 2013, 11, 467–473. [Google Scholar] [CrossRef]
- Nendaz, M.; Spirk, D.; Kucher, N.; Aujesky, D.; Hayoz, D.; Beer, J.H.; Husmann, M.; Frauchiger, B.; Korte, W.; Wuillemin, W.A.; et al. Multicentre validation of the Geneva Risk Score for hospitalised medical patients at risk of venous thromboembolism. Explicit ASsessment of Thromboembolic RIsk and Prophylaxis for Medical PATients in SwitzErland (ESTIMATE). Thromb. Haemost. 2014, 111, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zhao, Y.; Cheng, Y.; Du, H.; Sun, J.; Wang, Y.; Xu, M.; Guo, X. Comparison of VTE risk scores in guidelines for VTE diagnosis in nonsurgical hospitalized patients with suspected VTE. Thromb. J. 2023, 21, 8. [Google Scholar] [CrossRef]
- Rosenberg, D.; Eichorn, A.; Alarcon, M.; McCullagh, L.; McGinn, T.; Spyropoulos, A.C. External validation of the risk assessment model of the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health system. J. Am. Heart Assoc. 2014, 3, e001152. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Anderson, F.A., Jr.; FitzGerald, G.; Decousus, H.; Pini, M.; Chong, B.H.; Zotz, R.B.; Bergmann, J.F.; Tapson, V.; Froehlich, J.B.; et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest 2011, 140, 706–714. [Google Scholar] [CrossRef]
- Decousus, H.; Tapson, V.F.; Bergmann, J.F.; Chong, B.H.; Froehlich, J.B.; Kakkar, A.K.; Merli, G.J.; Monreal, M.; Nakamura, M.; Pavanello, R.; et al. Factors at admission associated with bleeding risk in medical patients: Findings from the IMPROVE investigators. Chest 2011, 139, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.M.; Spyropoulos, A.C.; Cohen, A.T.; Hull, R.D.; Goldhaber, S.Z.; Yusen, R.D.; Hernandez, A.F.; Korjian, S.; Daaboul, Y.; Gold, A.; et al. The IMPROVEDD VTE Risk Score: Incorporation of D-Dimer into the IMPROVE Score to Improve Venous Thromboembolism Risk Stratification. TH Open 2017, 1, e56–e65. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, D.J.; Press, A.; Fishbein, J.; Lesser, M.; McCullagh, L.; McGinn, T.; Spyropoulos, A.C. External validation of the IMPROVE Bleeding Risk Assessment Model in medical patients. Thromb. Haemost. 2016, 116, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, A.K.; Cimminiello, C.; Goldhaber, S.Z.; Parakh, R.; Wang, C.; Bergmann, J.F.; Lifenox Investigators. Low-molecular-weight heparin and mortality in acutely ill medical patients. N. Engl. J. Med. 2011, 365, 2463–2472. [Google Scholar] [CrossRef] [PubMed]
- Zuckier, L.S.; Moadel, R.M.; Haramati, L.B.; Freeman, L.M. Diagnostic Evaluation of Pulmonary Embolism During the COVID-19 Pandemic. J. Nucl. Med. 2020, 61, 630–631. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Li, F.; Liu, J.; Zhang, L.; Li, Q.; Gu, J.; Liang, S.; Zhao, Q.; Liu, J.; et al. Risk assessment of venous thromboembolism and bleeding in COVID-19 patients. Clin. Respir. J. 2022, 16, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Bienvenu, L.A.; Noonan, J.; Wang, X.; Peter, K. Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities. Cardiovasc. Res. 2020, 116, 2197–2206. [Google Scholar] [CrossRef]
- Fabiao, J.; Sassi, B.; Pedrollo, E.F.; Gerchman, F.; Kramer, C.K.; Leitao, C.B.; Pinto, L.C. Why do men have worse COVID-19-related outcomes? A systematic review and meta-analysis with sex adjusted for age. Braz. J. Med. Biol. Res. 2022, 55, e11711. [Google Scholar] [CrossRef]
- Kharroubi, S.A.; Diab-El-Harake, M. Sex-differences in COVID-19 diagnosis, risk factors and disease comorbidities: A large US-based cohort study. Front. Public Health 2022, 10, 1029190. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Levy, J.H.; Ageno, W.; Connors, J.M.; Hunt, B.J.; Iba, T.; Levi, M.; Samama, C.M.; Thachil, J.; Giannis, D.; et al. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1859–1865. [Google Scholar] [CrossRef]
- Wang, T.; Chen, R.; Liu, C.; Liang, W.; Guan, W.; Tang, R.; Tang, C.; Zhang, N.; Zhong, N.; Li, S. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020, 7, e362–e363. [Google Scholar] [CrossRef]
- Dobrijevic, D.; Andrijevic, L.; Antic, J.; Rakic, G.; Pastor, K. Hemogram-based decision tree models for discriminating COVID-19 from RSV in infants. J. Clin. Lab. Anal. 2023, 37, e24862. [Google Scholar] [CrossRef]
- Chadaga, K.; Chakraborty, C.; Prabhu, S.; Umakanth, S.; Bhat, V.; Sampathila, N. Clinical and Laboratory Approach to Diagnose COVID-19 Using Machine Learning. Interdiscip. Sci. 2022, 14, 452–470. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, G.G.; Caleffi, A.; Marano, G.; Laregina, M.; Erba, G.; Orlandini, F.; Cimminiello, C.; Boracchi, P. Padua prediction score and IMPROVE score do predict in-hospital mortality in Internal Medicine patients. Intern. Emerg. Med. 2020, 15, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.S.; McRae, S. COVID-19 and immunothrombosis: Pathophysiology and therapeutic implications. Crit. Rev. Oncol./Hematol. 2021, 168, 103529. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.S.; Peyvandi, F.; Martin-Loeches, I. Pulmonary immuno-thrombosis in COVID-19 ARDS pathogenesis. Intensive Care Med. 2021, 47, 899–902. [Google Scholar] [CrossRef]
- Russo, V.; Caputo, A.; Imbalzano, E.; Di Micco, P.; Frontera, A.; Uccello, A.; Orlando, L.; Galimberti, P.; Golino, P.; D’Andrea, A. The pharmacology of anticoagulant drug treatment options in COVID-19 patients: Reviewing real-world evidence in clinical practice. Expert Rev. Clin. Pharmacol. 2022, 15, 1095–1105. [Google Scholar] [CrossRef]
- Kelliher, S.; Weiss, L.; Cullivan, S.; O’rourke, E.; Murphy, C.A.; Toolan, S.; Lennon, Á.; Szklanna, P.B.; Comer, S.P.; Macleod, H.; et al. Non-severe COVID-19 is associated with endothelial damage and hypercoagulability despite pharmacological thromboprophylaxis. J. Thromb. Haemost. 2022, 20, 1008–1014. [Google Scholar] [CrossRef]
Characteristics | n (%) | |
---|---|---|
Age (years) ** | 59.0 | (46.0–69.0) |
Sex | ||
Female | 111 | (69.4) |
BMI (kg/m2) * | 27.51 | ±5.54 |
Co-morbidities | 111 | (69.4) |
Hypertension | 86 | (77.9) |
Dyslipidemia | 53 | (33.1) |
Diabetes mellitus | 44 | (27.5) |
Chronic kidney disease | 13 | (11.7) |
Cerebrovascular disease | 5 | (4.5) |
Atrial fibrillation | 5 | (4.5) |
Clinical presentation | ||
Fever | 146 | (91.3) |
Cough | 125 | (78.1) |
Dyspnea | 117 | (73.1) |
Runny nose | 24 | (15.0) |
Sore throat | 23 | (14.4) |
Diarrhea | 18 | (11.3) |
Myalgia | 13 | (8.1) |
Disease severity | ||
Moderate | 66 | (41.3) |
Severe | 64 | (40.0) |
Critical | 30 | (18.8) |
Ward | ||
Non-ICU | 119 | (74.4) |
ICU | 41 | (25.6) |
Prophylaxis dose LMWH | 53 | (33.1) |
Therapeutic dose LMWH | 20 | (12.5) |
Length of stay (days) ** | 15 | (1–60) |
Death | 58 | (36.3) |
Cause of death | ||
Bacterial infection | 53 | (91.4) |
Cardiovascular | 2 | (3.5) |
Bleeding | 1 | (1.7) |
Venous thromboembolism | 1 | (1.7) |
Cancer | 1 | (1.7) |
Risk Score | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
PPSVTE * | |||
Low | 1 (ref) | ||
High | 2.80 | 1.09–7.13 | 0.031 |
IMPROVEVTE * | |||
Low | 1 (ref) | ||
Moderate | 3.55 | 1.91–6.61 | <0.001 |
High | 7.49 | 3.82–14. 67 | <0.001 |
IMPROVEVTE * | |||
Low | 1 (ref) | ||
Moderate to high | 1.77 | 0.91–3.47 | 0.092 |
IMPROVEDDVTE * | |||
Low | 1 (ref) | ||
High | 5.83 | 3.26–10.44 | <0.001 |
IMPROVEBRS ** | |||
Low | 1 (ref) | ||
High | 6.27 | 3.60–10.91 | <0.001 |
Risk Score | HR | 95% CI | p-Value | Death | Thrombosis | Bleeding | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | 95% CI | p-Value | AUC | 95% CI | p-Value | AUC | 95% CI | p-Value | ||||
All patients | ||||||||||||
PPSVTE ≥ 4 + IMPROVEBRS ≥ 7 (n = 12) | ||||||||||||
No | 1 (ref) | |||||||||||
Yes | 7.40 | 3.78–14.48 | <0.001 | 0.60 | 0.50–0.69 | 0.03 | 0.57 | 0.42–0.71 | 0.302 | 0.55 | 0.44–0.67 | 0.335 |
IMPROVEVTE ≥ 2 + IMPROVEBRS ≥ 7 (n = 18) | ||||||||||||
No | 1 (ref) | |||||||||||
Yes | 6.29 | 3.54–11.16 | <0.001 | 0.66 | 0.56–0.74 | 0.001 | 0.60 | 0.46–0.75 | 0.122 | 0.56 | 0.44–0.68 | 0.264 |
IMPROVEDDVTE ≥ 2 + IMPROVEBRS ≥ 7 (n = 18) | ||||||||||||
No | 1 (ref) | |||||||||||
Yes | 6.29 | 3.54–11.16 | <0.001 | 0.66 | 0.56–0.74 | 0.001 | 0.60 | 0.46–0.75 | 0.122 | 0.56 | 0.44–0.68 | 0.264 |
Risk Score | Hazard Ratio | 95% CI | p-Value | Risk Score | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|---|---|---|---|
High PPSVTE | Low PPSVTE | ||||||
Without LMWH | 1 (ref) | Without LMWH | 1 (ref) | ||||
With LMWH | 1.96 | 0.24–16.12 | 0.529 | With LMWH | 3.40 | 0.91–12.71 | 0.069 |
Moderate to high IMPROVEVTE | Low IMPROVEVTE | ||||||
Without LMWH | 1 (ref) | Without LMWH | 1 (ref) | ||||
With LMWH | 2.51 | 0.52–12.01 | 0.248 | With LMWH | 3.70 | 0.73–18.60 | 0.111 |
High IMPROVEDDVTE | Low IMPROVEDDVTE | ||||||
Without LMWH | 1 (ref) | Without LMWH | 1 (ref) | ||||
With LMWH | 2.16 | 0.59–7.82 | 0.239 | With LMWH | 3.71 | 0.37–36.33 | 0.260 |
High IMPROVEBRS | Low IMPROVEBRS | ||||||
Without LMWH | 1 (ref) | Without LMWH | 1 (ref) | ||||
With LMWH | 0.79 | 0.19–3.21 | 0.745 | With LMWH | 1.85 | 0.91–3.76 | 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iam-Arunthai, K.; Chamnanchanunt, S.; Thungthong, P.; Intalapaporn, P.; Nakhahes, C.; Suwanban, T.; Rojnuckarin, P. Thrombosis and Bleeding Risk Scores Are Strongly Associated with Mortality in Hospitalized Patients with COVID-19: A Multicenter Cohort Study. J. Clin. Med. 2024, 13, 1437. https://doi.org/10.3390/jcm13051437
Iam-Arunthai K, Chamnanchanunt S, Thungthong P, Intalapaporn P, Nakhahes C, Suwanban T, Rojnuckarin P. Thrombosis and Bleeding Risk Scores Are Strongly Associated with Mortality in Hospitalized Patients with COVID-19: A Multicenter Cohort Study. Journal of Clinical Medicine. 2024; 13(5):1437. https://doi.org/10.3390/jcm13051437
Chicago/Turabian StyleIam-Arunthai, Kunapa, Supat Chamnanchanunt, Pravinwan Thungthong, Poj Intalapaporn, Chajchawan Nakhahes, Tawatchai Suwanban, and Ponlapat Rojnuckarin. 2024. "Thrombosis and Bleeding Risk Scores Are Strongly Associated with Mortality in Hospitalized Patients with COVID-19: A Multicenter Cohort Study" Journal of Clinical Medicine 13, no. 5: 1437. https://doi.org/10.3390/jcm13051437
APA StyleIam-Arunthai, K., Chamnanchanunt, S., Thungthong, P., Intalapaporn, P., Nakhahes, C., Suwanban, T., & Rojnuckarin, P. (2024). Thrombosis and Bleeding Risk Scores Are Strongly Associated with Mortality in Hospitalized Patients with COVID-19: A Multicenter Cohort Study. Journal of Clinical Medicine, 13(5), 1437. https://doi.org/10.3390/jcm13051437