Intraoperative Ketorolac and Outcomes after Ovarian Cancer Surgery
Abstract
:1. Introduction
1.1. Anti-Inflammatory Drugs in Ovarian Cancer (OC)
1.2. Ketorolac and Ovarian Cancer
2. Materials and Methods
Statistical Methods
3. Results
4. Discussion
Strengths and Weakness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best. Pract. Res. Clin. Obstet. Gynaecol. 2017, 41, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian cancer in the world: Epidemiology and risk factors. Int. J. Womens Health 2019, 11, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, J.A.; Raja, F.A.; Fotopoulou, C.; Gonzalez-Martin, A.; Colombo, N.; Sessa, C.; Group, E.G.W. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24 (Suppl. 6), vi24–vi32. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.G.; Cook, L.S.; Grimes, M.M.; Muller, C.Y.; Adams, S.F.; Wandinger-Ness, A. Dual Actions of Ketorolac in Metastatic Ovarian Cancer. Cancers 2019, 11, 1049. [Google Scholar] [CrossRef]
- Guo, Y.; Kenney, S.R.; Muller, C.Y.; Adams, S.; Rutledge, T.; Romero, E.; Murray-Krezan, C.; Prekeris, R.; Sklar, L.A.; Hudson, L.G.; et al. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Mol. Cancer Ther. 2015, 14, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Burger, R.A.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Monk, B.J.; Huang, H.; Mannel, R.S.; Homesley, H.D.; Fowler, J.; Greer, B.E.; et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med. 2011, 365, 2473–2483. [Google Scholar] [CrossRef]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
- Gonzalez-Martin, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef]
- Thibault, B.; Castells, M.; Delord, J.P.; Couderc, B. Ovarian cancer microenvironment: Implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev. 2014, 33, 17–39. [Google Scholar] [CrossRef]
- Fagotti, A.; Gallotta, V.; Romano, F.; Fanfani, F.; Rossitto, C.; Naldini, A.; Vigliotta, M.; Scambia, G. Peritoneal carcinosis of ovarian origin. World J. Gastrointest. Oncol. 2010, 2, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, D.; Gartung, A.; Yang, J.; Yang, H.; Gilligan, M.M.; Sulciner, M.L.; Bhasin, S.S.; Bielenberg, D.R.; Chang, J.; Schmidt, B.A.; et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J. Clin. Investig. 2019, 129, 2964–2979. [Google Scholar] [CrossRef]
- Krall, J.A.; Reinhardt, F.; Mercury, O.A.; Pattabiraman, D.R.; Brooks, M.W.; Dougan, M.; Lambert, A.W.; Bierie, B.; Ploegh, H.L.; Dougan, S.K.; et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med. 2018, 10, eaan3464. [Google Scholar] [CrossRef] [PubMed]
- Forget, P.; Coulie, P.G.; Retsky, M.; Demicheli, R.; Machiels, J.P.; De Kock, M. Is there a rationale for an anesthesiologist’s role against cancer recurrence? Acta Anaesthesiol. Belg. 2013, 64, 15–24. [Google Scholar] [PubMed]
- Hiller, J.G.; Perry, N.J.; Poulogiannis, G.; Riedel, B.; Sloan, E.K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 2018, 15, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Neeman, E.; Ben-Eliyahu, S. Surgery and stress promote cancer metastasis: New outlooks on perioperative mediating mechanisms and immune involvement. Brain Behav. Immun. 2013, 30, S32–S40. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ubreva, J.; Catala-Moll, F.; Obermajer, N.; Alvarez-Errico, D.; Ramirez, R.N.; Company, C.; Vento-Tormo, R.; Moreno-Bueno, G.; Edwards, R.P.; Mortazavi, A.; et al. Prostaglandin E2 Leads to the Acquisition of DNMT3A-Dependent Tolerogenic Functions in Human Myeloid-Derived Suppressor Cells. Cell Rep. 2017, 21, 154–167. [Google Scholar] [CrossRef]
- Baert, T.; Vankerckhoven, A.; Riva, M.; Van Hoylandt, A.; Thirion, G.; Holger, G.; Mathivet, T.; Vergote, I.; Coosemans, A. Myeloid Derived Suppressor Cells: Key Drivers of Immunosuppression in Ovarian Cancer. Front. Immunol. 2019, 10, 1273. [Google Scholar] [CrossRef]
- Ulrich, C.M.; Bigler, J.; Potter, J.D. Non-steroidal anti-inflammatory drugs for cancer prevention: Promise, perils and pharmacogenetics. Nat. Rev. Cancer 2006, 6, 130–140. [Google Scholar] [CrossRef]
- Trabert, B.; Ness, R.B.; Lo-Ciganic, W.H.; Murphy, M.A.; Goode, E.L.; Poole, E.M.; Brinton, L.A.; Webb, P.M.; Nagle, C.M.; Jordan, S.J.; et al. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: A pooled analysis in the Ovarian Cancer Association Consortium. J. Natl. Cancer Inst. 2014, 106, djt431. [Google Scholar] [CrossRef]
- Merritt, M.A.; Rice, M.S.; Barnard, M.E.; Hankinson, S.E.; Matulonis, U.A.; Poole, E.M.; Tworoger, S.S. Pre-diagnosis and post-diagnosis use of common analgesics and ovarian cancer prognosis (NHS/NHSII): A cohort study. Lancet Oncol. 2018, 19, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, P.M.; Wilson, M.; Elwin, C.E.; Norrving, B.; Algra, A.; Warlow, C.P.; Meade, T.W. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 2010, 376, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Roche Laboratories Toradol Oral (Ketorolac Tromethamine Tablets). 1997–2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/019645s019lbl.pdf (accessed on 3 January 2015).
- Evans, A.M. Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Eur. J. Clin. Pharmacol. 1992, 42, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Savant, S.S.; Sriramkumar, S.; O’Hagan, H.M. The Role of Inflammation and Inflammatory Mediators in the Development, Progression, Metastasis, and Chemoresistance of Epithelial Ovarian Cancer. Cancers 2018, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Ali-Fehmi, R.; Morris, R.T.; Bandyopadhyay, S.; Che, M.; Schimp, V.; Malone, J.M., Jr.; Munkarah, A.R. Expression of cyclooxygenase-2 in advanced stage ovarian serous carcinoma: Correlation with tumor cell proliferation, apoptosis, angiogenesis, and survival. Am. J. Obs. Gynecol. 2005, 192, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, M.; Jouret, M.; Sawadogo, K.; Waterkeyn, M.; Grandjean, F.; Van Gossum, J.P.; Dubois, N.; Malvaux, V.; Verreth, L.; Grandjean, P.; et al. Centralizing surgery for ovarian cancer in a ‘non-centralizing’ country (Belgium): The UNGO (UCLouvain Network of Gynaecological Oncology) experience. Int. J. Gynecol. Cancer 2023, 34, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Wu, L.; Yang, H.; Yang, H. Prognostic significance of neutrophil-lymphocyte ratio (NLR) in patients with ovarian cancer: A systematic review and meta-analysis. Medicine 2019, 98, e17475. [Google Scholar] [CrossRef]
- Forget, P.; Bentin, C.; Machiels, J.P.; Berliere, M.; Coulie, P.G.; De Kock, M. Intraoperative use of ketorolac or diclofenac is associated with improved disease-free survival and overall survival in conservative breast cancer surgery. Br. J. Anaesth. 2014, 113 (Suppl. 1), i82–i87. [Google Scholar] [CrossRef]
- Wang, D.; DuBois, R.N. Role of prostanoids in gastrointestinal cancer. J. Clin. Investig. 2018, 128, 2732–2742. [Google Scholar] [CrossRef]
- Wang, D.; Dubois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10, 181–193. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, R.; Hord, E.D.; Barna, S.A.; Santiago-Palma, J.; Ahmed, S. Perioperative immunosuppression in cancer patients. J. Env. Pathol. Toxicol. Oncol. 2003, 22, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Forget, P.; Simonet, O.; De Kock, M. Cancer surgery induces inflammation, immunosuppression and neo-angiogenesis, but is it influenced by analgesics? F1000Research 2013, 2, 102. [Google Scholar] [CrossRef] [PubMed]
- Forget, P.; Machiels, J.P.; Coulie, P.G.; Berliere, M.; Poncelet, A.J.; Tombal, B.; Stainier, A.; Legrand, C.; Canon, J.L.; Kremer, Y.; et al. Neutrophil:lymphocyte ratio and intraoperative use of ketorolac or diclofenac are prognostic factors in different cohorts of patients undergoing breast, lung, and kidney cancer surgery. Ann. Surg. Oncol. 2013, 20 (Suppl. 3), S650–S660. [Google Scholar] [CrossRef] [PubMed]
- Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals 2018, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem. 2000, 69, 145–182. [Google Scholar] [CrossRef]
- Kino, Y.; Kojima, F.; Kiguchi, K.; Igarashi, R.; Ishizuka, B.; Kawai, S. Prostaglandin E2 production in ovarian cancer cell lines is regulated by cyclooxygenase-1, not cyclooxygenase-2. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 103–111. [Google Scholar] [CrossRef]
- Warner, T.D.; Giuliano, F.; Vojnovic, I.; Bukasa, A.; Mitchell, J.A.; Vane, J.R. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis. Proc. Natl. Acad. Sci. USA 1999, 96, 7563–7568. [Google Scholar] [CrossRef]
- Vadivelu, N.; Chang, D.; Helander, E.M.; Bordelon, G.J.; Kai, A.; Kaye, A.D.; Hsu, D.; Bang, D.; Julka, I. Ketorolac, Oxymorphone, Tapentadol, and Tramadol: A Comprehensive Review. Anesth. Clin. 2017, 35, e1–e20. [Google Scholar] [CrossRef]
- Oprea, T.I.; Sklar, L.A.; Agola, J.O.; Guo, Y.; Silberberg, M.; Roxby, J.; Vestling, A.; Romero, E.; Surviladze, Z.; Murray-Krezan, C.; et al. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS ONE 2015, 10, e0142182. [Google Scholar] [CrossRef]
- Hall, A. Rho family GTPases. Biochem. Soc. Trans. 2012, 40, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.G.; Gillette, J.M.; Kang, H.; Rivera, M.R.; Wandinger-Ness, A. Ovarian Tumor Microenvironment Signaling: Convergence on the Rac1 GTPase. Cancers 2018, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kenney, S.R.; Cook, L.; Adams, S.F.; Rutledge, T.; Romero, E.; Oprea, T.I.; Sklar, L.A.; Bedrick, E.; Wiggins, C.L.; et al. A Novel Pharmacologic Activity of Ketorolac for Therapeutic Benefit in Ovarian Cancer Patients. Clin. Cancer Res. 2015, 21, 5064–5072. [Google Scholar] [CrossRef] [PubMed]
- Mroszczak, E.; Combs, D.; Chaplin, M.; Tsina, I.; Tarnowski, T.; Rocha, C.; Tam, Y.; Boyd, A.; Young, J.; Depass, L. Chiral kinetics and dynamics of ketorolac. J. Clin. Pharmacol. 1996, 36, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yin, S.; Chen, K. Predictive value of the systemic immune-inflammation index for the efficacy of neoadjuvant chemotherapy and prognosis in patients with stage III ovarian cancer-a retrospective cohort study. Gland. Surg. 2022, 11, 1639–1646. [Google Scholar] [CrossRef]
- Nie, D.; Gong, H.; Mao, X.; Li, Z. Systemic immune-inflammation index predicts prognosis in patients with epithelial ovarian cancer: A retrospective study. Gynecol. Oncol. 2019, 152, 259–264. [Google Scholar] [CrossRef]
- Vyas, D.; Laput, G.; Vyas, A.K. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. Onco Targets Ther. 2014, 7, 1015–1023. [Google Scholar] [CrossRef]
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for Cancer: A Trigger for Metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [CrossRef]
- Forget, P.; Vandenhende, J.; Berliere, M.; Machiels, J.P.; Nussbaum, B.; Legrand, C.; De Kock, M. Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesth. Analg. 2010, 110, 1630–1635. [Google Scholar] [CrossRef]
- Forget, P.; Bouche, G.; Duhoux, F.P.; Coulie, P.G.; Decloedt, J.; Dekleermaker, A.; Guillaume, J.E.; Ledent, M.; Machiels, J.P.; Mustin, V.; et al. Intraoperative ketorolac in high-risk breast cancer patients. A prospective, randomized, placebo-controlled clinical trial. PLoS ONE 2019, 14, e0225748. [Google Scholar] [CrossRef]
Patients with AINS N = 112 | Patients w/o AINS N = 54 | p-Value | |
---|---|---|---|
Age—Median (P25-P75) | <0.001 * | ||
Years | 59 (51–70) | 71 (62–76) | |
FIGO stage at the diagnosis—no. (%) | 0.493 | ||
I | 14 (12.5%) | 4 (7.4%) | |
II | 14 (12.5%) | 4 (7.4%) | |
III | 56 (50.0%) | 31 (57.4%) | |
IV | 26 (23.2%) | 15 (27.8%) | |
Missing | 2 (1.8%) | 0 (0.0%) | |
Histology—no (%) | 0.710 | ||
Serous/serous papillary | 82 (73.2%) | 43 (79.6%) | |
Mucinous | 4 (3.6%) | 3 (5.6%) | |
Endometriod | 11 (9.8%) | 3 (5.6%) | |
Clear cells | 2 (1.8%) | 0 (0.0%) | |
Undifferentiated | 2 (1.8%) | 0 (0.0%) | |
Other | 4 (3.6%) | 3 (5.6%) | |
Missing | 7 (6.3%) | 2 (3.7%) | |
Neoadjuvant chemotherapy—no. (%) | 0.046 * | ||
Yes | 52 (46.4%) | 34 (63.0%) | |
No | 60 (53.6%) | 20 (37.0%) | |
Residual disease after surgery—no. (%) | 0.039 * | ||
Yes | 6 (5.4%) | 9 (16.7%) | |
No | 105 (93.8%) | 45 (83.3%) | |
Missing | 1 (0.9%) | 0 (0.0%) | |
Amount of residual disease (CC classification)—no (%) | 0.005 * | ||
CC0-CC1 | 110 (98.2%) | 48 (88.9%) | |
CC2-CC3 | 1 (0.9%) | 6 (11.1%) | |
Missing | 1 (0.9%) | 0 (0.0%) | |
BRCA mutation—no (%) | 0.322 | ||
No mutation | 30 (26.8%) | 11 (20.4%) | |
BRCA 1 or BRCA 2 mutation | 8 (7.1%) | 6 (11.1%) | |
Missing | 74 (66.1%) | 37 (68.5%) | |
Initial CA-125—Median (P25-P75) | 0.203 | ||
CA-125 (UI/L) | 285 (68–711) | 366 (142–1442) | |
Tumour grade—no (%) | 0.077 | ||
Low grade (I-II) | 18 (16.1%) | 3 (5.6%) | |
High grade (III) | 82 (73.2%) | 46 (85.2%) | |
Missing | 12 (10.7%) | 5 (9.3%) | |
Initial ascites—no. (%) | 0.440 | ||
Yes | 61 (54.5%) | 37 (68.5%) | |
No | 23 (20.5%) | 10 (18.5%) | |
Missing | 28 (25.0%) | 7 (13.0%) | |
Inital ascites volume—no. (%) | 0.943 | ||
No ascites | 23 (20.5%) | 10 (18.5%) | |
0–500 ml | 32 (28.6%) | 21 (38.9%) | |
500 mL—1 litre | 7 (6.3%) | 4 (7.4%) | |
1–3 litres | 8 (7.1%) | 4 (7.4%) | |
>3 litres | 14 (12.5%) | 8 (14.8%) | |
Missing | 28 (25.0%) | 7 (13.0%) | |
HIPEC—no. (%) | 0.028 * | ||
Yes | 0 (0.0%) | 3 (5.6%) | |
No | 32 (28.6%) | 12 (22.2%) | |
Missing | 80 (71.4%) | 39 (72.2%) | |
Maintenance therapy | 0.999 | ||
Olaparib o Niraparib | 12 (10.7%) | 5 (9.3%) | |
Bevacizumab | 2 (1.8%) | 1 (1.9%) | |
Median intiale PCI (Sugarbaker)—Median (P25-P75) | 0.177 | ||
PCI (0–39) | 9.0 (3.0–16.0) | 13.0 (5.5–19.0) | |
Median PCI (Sugarbaker) at the debulking—Median (P25-P75) | 0.464 | ||
PCI (0–39) | 9.0 (3.0–16.0) | 9.0 (5.0–17.0) |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Factor | p-Value | Hazard Ratio | HR 95CI | p-Value | Hazard Ratio | HR 95CI |
Age_at_diagnosis | 0.008 | 1.03 | [1.006–1.045] | 0.309 | 1.01 | [0.988–1.039] |
Age ≥ 70 years | 0.038 | 1.68 | [1.030–2.753] | |||
NSAIDs_administration | 0.003 | 0.47 | [0.288–0.775] | 0.023 | 0.43 | [0.211–0.892] |
Neoadj_chemotherapy | 0.002 | 2.22 | [1.336–3.689] | 0.331 | 1.41 | [0.704–2.833] |
Preop_NLR > 3.53 | 0.143 | 1.63 | [0.847–3.142] | |||
Residual_disease | 0.016 | 2.38 | [1.176–4.815] | 0.386 | 1.76 | [0.490–6.347] |
Patients with Ketorolac N = 112 | Patients w/o Ketorolac N = 54 | Total N = 166 | p-Value | ||
---|---|---|---|---|---|
Postop complication | Missing | 1 (0.9%) | 0 (0.0%) | 1 (0.6%) | 0.169 |
No | 87 (77.7%) | 27 (68.5) | 124 (74.7%) | ||
Yes | 24 (21.4%) | 17 (31.5%) | 41 (24.7%) |
Patients with Ketorolac N = 112 | Patients w/o Ketorolac N = 54 | Total N = 166 | p-Value | ||
---|---|---|---|---|---|
Type of complications | |||||
Urinary infection | No | 20 (83.3%) | 11 (64.7%) | 31 (75.6%) | 0.270 |
Yes | 4 (16.7%) | 6 (35.3%) | 10 (24.4%) | ||
Anaemia | No | 18 (75.0%) | 9 (52.9%) | 27 (65.9%) | 0.189 |
Yes | 6 (25.0%) | 8 (47.1%) | 14 (34.1%) | ||
Kidney failure | No | 24 (100.0%) | 16 (94.1%) | 40 (97.6%) | 0.415 |
Yes | 0 (0.0%) | 1 (5.9%) | 1 (2.4%) | ||
Veinous phlebitis (excluding superficiale phlebitis) | No | 22 (91.7%) | 16 (94.1%) | 38 (92.7%) | 0.999 |
Yes | 2 (8.3%) | 1 (5.9%) | 3 (7.3%) | ||
Pulmonary Thrombo-embolism | No | 24 (100.0%) | 16 (94.1%) | 40 (97.6%) | 0.415 |
Yes | 0 (0.0%) | 1 (5.9%) | 1 (2.4%) | ||
Secondary haemorrhage | No | 24 (100.0%) | 15 (88.2%) | 39 (95.1%) | 0.166 |
Yes | 0 (0.0%) | 2 (11.8%) | 2 (4.9%) | ||
Pneumothorax | No | 17 (100.0%) | 40 (97.6%) | 23 (95.8%) | 0.999 |
Yes | 1 (4.2%) | 0 (0.0%) | 1 (2.4%) | ||
Fecalis pertinonitis | No | 19 (79.2%) | 16 (94.1%) | 35 (85.4%) | 0.373 |
Yes | 5 (20.8%) | 1 (5.9%) | 6 (14.6%) | ||
Biliairis peritonis | No | 24 (100.0%) | 17 (100.0%) | 41 (100.0%) | NA |
Chylorrhea | No | 22 (91.7%) | 15 (88.2%) | 37 (90.2%) | 0.999 |
Yes | 2 (8.3%) | 2 (11.8%) | 4 (9.8%) | ||
Lymphorrhea | No | 23 (95.8%) | 15 (88.2%) | 38 (92.7%) | 0.560 |
Yes | 1 (4.2%) | 2 (11.8%) | 3 (7.3%) | ||
Duodenum leakage | No | 24 (100.0%) | 16 (94.1%) | 40 (97.6%) | 0.415 |
Yes | 0 (0.0%) | 1 (5.9%) | 1 (2.4%) | ||
Pancreatic fistula | No | 23 (95.8%) | 17 (100.0%) | 40 (97.6%) | |
Yes | 1 (4.2%) | 0 (0.0%) | 1 (2.4%) | 0.999 | |
Abdominal wall complication (evisceration, necrosis...) | No | 22 (91.7%) | 17 (100.0%) | 39 (95.1%) | 0.502 |
Yes | 2 (8.3%) | 0 (0.0%) | 2 (4.9%) | ||
Other | No Yes | 17 (70.8%) 7 (29.2%) | 8 (47.1%) 9 (52.9%) | 25 (61.0%) 16 (39.0%) | 0.195 |
Gastroparesis/Postop ileus | No | 5 (20.8%) | 5 (29.4%) | 10 (24.4%) | 0.633 |
Yes | 2 (8.3%) | 4 (23.5%) | 6 (14.6%) | ||
S. aureus sepsis | No | 5 (20.8%) | 9 (52.9%) | 14 (34.1%) | 0.175 |
Yes | 2 (8.3%) | 0 (0.0%) | 2 (4.9%) | ||
Cardiac arrhythmia | No | 7 (29.2%) | 8 (47.1%) | 15 (36.6%) | 0.999 |
Yes | 0 (0.0%) | 1 (5.9%) | 1 (2.4%) | ||
All other | No | 4 (16.7%) | 5 (29.4%) | 9 (22.0%) | 0.999 |
Yes | 3 (12.5%) | 4 (23.5%) | 7 (17.1%) |
Patients with Ketorolac N = 24 | Patients without Ketorolac N = 17 | Total N = 41 | p-Value | ||
---|---|---|---|---|---|
Dindo–Clavien classification | Missing | 6 (25.0%) | 6 (35.3%) | 12 (29.3%) | 0.815 |
I | 4 (16.7%) | 4 (23.5%) | 8 (19.5%) | ||
II | 7 (29.2%) | 4 (23.5%) | 11 (26.8%) | ||
III | 4 (16.7%) | 2 (11.8%) | 6 (14.6%) | ||
IV | 2 (8.3%) | 0 (0.0%) | 2 (4.9%) | ||
V | 1 (4.2%) | 2 (4.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luyckx, M.; Verougstraete, C.; Jouret, M.; Sawadogo, K.; Waterkeyn, M.; Grandjean, F.; Van Gossum, J.-P.; Dubois, N.; Malvaux, V.; Verreth, L.; et al. Intraoperative Ketorolac and Outcomes after Ovarian Cancer Surgery. J. Clin. Med. 2024, 13, 1546. https://doi.org/10.3390/jcm13061546
Luyckx M, Verougstraete C, Jouret M, Sawadogo K, Waterkeyn M, Grandjean F, Van Gossum J-P, Dubois N, Malvaux V, Verreth L, et al. Intraoperative Ketorolac and Outcomes after Ovarian Cancer Surgery. Journal of Clinical Medicine. 2024; 13(6):1546. https://doi.org/10.3390/jcm13061546
Chicago/Turabian StyleLuyckx, Mathieu, Céline Verougstraete, Mathieu Jouret, Kiswendsida Sawadogo, Marc Waterkeyn, Frédéric Grandjean, Jean-Paul Van Gossum, Nathanael Dubois, Vincent Malvaux, Lucie Verreth, and et al. 2024. "Intraoperative Ketorolac and Outcomes after Ovarian Cancer Surgery" Journal of Clinical Medicine 13, no. 6: 1546. https://doi.org/10.3390/jcm13061546
APA StyleLuyckx, M., Verougstraete, C., Jouret, M., Sawadogo, K., Waterkeyn, M., Grandjean, F., Van Gossum, J.-P., Dubois, N., Malvaux, V., Verreth, L., Grandjean, P., Jadoul, P., Maillard, C., Gerday, A., Dieu, A., Forget, P., Baurain, J.-F., & Squifflet, J.-L. (2024). Intraoperative Ketorolac and Outcomes after Ovarian Cancer Surgery. Journal of Clinical Medicine, 13(6), 1546. https://doi.org/10.3390/jcm13061546