The Effect of Sex on the Risk of Long-COVID and Cardiovascular Complications in Healthy Patients without Comorbidities: Data from a Polish Long-COVID Cardiovascular (PoLoCOV-CVD) Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Characteristics
2.2. Statistical Analysis
3. Results
3.1. Main Characteristics
3.2. Differences between Groups 12 Months after COVID-19 Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; Jiang, W.-C.; Wang, C.-B.; Bernardini, S. The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 2020, 57, 365–388. [Google Scholar] [CrossRef]
- Esakandari, H.; Nabi-Afjadi, M.; Fakkari-Afjadi, J.; Farahmandian, N.; Miresmaeili, S.-M.; Bahreini, E. A comprehensive review of COVID-19 characteristics. Biol. Proced. Online 2020, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, T.; Hassani, F.; Ghaffari, N.; Ebrahimi, B.; Yarahmadi, A.; Hassanzadeh, G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J. Mol. Histol. 2020, 51, 613–628. [Google Scholar] [CrossRef]
- Chiu, N.-C.; Chi, H.; Tai, Y.-L.; Peng, C.-C.; Tseng, C.-Y.; Chen, C.-C.; Tan, B.F.; Lin, C.-Y. Impact of Wearing Masks, Hand Hygiene, and Social Distancing on Influenza, Enterovirus, and All-Cause Pneumonia During the Coronavirus Pandemic: Retrospective National Epidemiological Surveillance Study. J. Med. Internet Res. 2020, 22, e21257. [Google Scholar] [CrossRef] [PubMed]
- Chudzik, M.; Babicki, M.; Kapusta, J.; Kołat, D.; Kałuzińska, Ż.; Mastalerz-Migas, A.; Jankowski, P. Do the Successive Waves of SARS-CoV-2, Vaccination Status and Place of Infection Influence the Clinical Picture and COVID-19 Severity among Patients with Persistent Clinical Symptoms? The Retrospective Study of Patients from the STOP-COVID Registry of the PoLoCOV-Study. J. Pers. Med. 2022, 12, 706. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302, Erratum in Lancet Infect. Dis. 2023, 23, e400. [Google Scholar] [CrossRef]
- Chudzik, M.; Babicki, M.; Kapusta, J.; Kałuzińska-Kołat, Ż.; Kołat, D.; Jankowski, P.; Mastalerz-Migas, A. Long-COVID Clinical Features and Risk Factors: A Retrospective Analysis of Patients from the STOP-COVID Registry of the PoLoCOV Study. Viruses 2022, 14, 1755. [Google Scholar] [CrossRef]
- Gryglewska-Wawrzak, K.; Sakowicz, A.; Banach, M.; Maciejewski, M.; Bielecka-Dabrowa, A. Factors of Persistent Limited Exercise Tolerance in Patients after COVID-19 with Normal Left Ventricular Ejection Fraction. Biomedicines 2022, 10, 3257. [Google Scholar] [CrossRef] [PubMed]
- Chudzik, M.; Babicki, M.; Mastalerz-Migas, A.; Kapusta, J. Persisting Smell and Taste Disorders in Patients Who Recovered from SARS-CoV-2 Virus Infection-Data from the Polish PoLoCOV-CVD Study. Viruses 2022, 14, 1763. [Google Scholar] [CrossRef]
- Lorente-Ros, M.; Das, S.; Elias, J.; Frishman, W.H.; Aronow, W.S. Cardiovascular Manifestations of the Long-COVID Syndrome. Cardiol. Rev 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Gryglewska-Wawrzak, K.; Sakowicz, A.; Banach, M.; Bytyçi, I.; Bielecka-Dabrowa, A. Diagnostic Usefulness of Spiroergometry and Risk Factors of Long-COVID in Patients with Normal Left Ventricular Ejection Fraction. J. Clin. Med. 2023, 12, 4160. [Google Scholar] [CrossRef] [PubMed]
- Lewek, J.; Jatczak-Pawlik, I.; Maciejewski, M.; Jankowski, P.; Banach, M. COVID-19 and cardiovascular complications-preliminary results of the LATE-COVID study. Arch. Med. Sci. 2021, 17, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; de Noordhout, C.M.; Jong, C.P.-D.; Cleemput, I.; Heede, K.V.D. Pathophysiology and mechanism of long-COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef] [PubMed]
- Koc, H.C.; Xiao, J.; Liu, W.; Li, Y.; Chen, G. Long-COVID and its Management. Int. J. Biol. Sci. 2022, 18, 4768–4780. [Google Scholar] [CrossRef]
- Bai, F.; Tomasoni, D.; Falcinella, C.; Barbanotti, D.; Castoldi, R.; Mulè, G.; Augello, M.; Mondatore, D.; Allegrini, M.; Cona, A.; et al. Female gender is associated with long-COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022, 28, 611.e9–611.e16. [Google Scholar] [CrossRef]
- Jensen, A.; Castro, A.W.; Ferretti, M.T.; Martinkova, J.; Vasilevskaya, A.; Chadha, A.S.; Tartaglia, M.C. Sex and gender differences in the neurological and neuropsychiatric symptoms of long-COVID: A narrative review. J. Sex-Gend.-Specif. Med. 2022, 8, 18–28. [Google Scholar] [CrossRef]
- Bielecka-Dabrowa, A.; Sakowicz, A.; Kapusta, J.; Banach, M.; Jankowski, P.; Chudzik, M. The effect of the gender on the risk of long-covid and cardiovascular complications in healthy patients without comorbidities- data from the polish long-COVID cardiovascular (PoLoCOV-CVD) study. Eur. Heart J. 2023, 44 (Suppl. S2), ehad655.2629. [Google Scholar] [CrossRef]
- Chudzik, M.; Lewek, J.; Kapusta, J.; Banach, M.; Jankowski, P.; Bielecka-Dabrowa, A. Predictors of Long-COVID in Patients without Comorbidities: Data from the Polish Long-COVID Cardiovascular (PoLoCOV-CVD) Study. J. Clin. Med. 2022, 11, 4980. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Living Guidance for Clinical Management of COVID-19 2021; World Health Organization (WHO): Geneva, Switzerland, 2021; Available online: www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 23 November 2021).
- Gattinoni, L.; Gattarello, S.; Steinberg, I.; Busana, M.; Palermo, P.; Lazzari, S.; Romitti, F.; Quintel, M.; Meissner, K.; Marini, J.J.; et al. COVID-19 pneumonia: Pathophysiology and management. Eur. Respir. Rev. 2021, 30, 210138. [Google Scholar] [CrossRef] [PubMed]
- Pagliano, P.; Sellitto, C.; Conti, V.; Ascione, T.; Esposito, S. Characteristics of viral pneumonia in the COVID-19 era: An update. Infection 2021, 49, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Abate, B.B.; Kassie, A.M.; Kassaw, M.W.; Aragie, T.G.; Masresha, S.A. Sex difference in coronavirus disease (COVID-19): A systematic review and meta-analysis. BMJ Open 2020, 10, e040129. [Google Scholar] [CrossRef]
- Jirak, P.; Mirna, M.; Van Almsick, V.; Shomanova, Z.; Mahringer, M.; Lichtenauer, M.; Kopp, K.; Topf, A.; Sieg, F.; Kraus, J.; et al. Gender-Specific Differences in the Intensive Care Treatment of COVID-19 Patients. J. Pers. Med. 2022, 12, 849. [Google Scholar] [CrossRef]
- Yong, S.J. Long-COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Iqbal, F.M.; Lam, K.; Sounderajah, V.; Clarke, J.M.; Ashrafian, H.; Darzi, A. Characteristics and predictors of acute and chronic post-COVID syndrome: A systematic review and meta-analysis. EClinicalMedicine 2021, 36, 100899. [Google Scholar] [CrossRef]
- Munblit, D.; Bobkova, P.; Spiridonova, E.; Shikhaleva, A.; Gamirova, A.; Blyuss, O.; Nekliudov, N.; Bugaeva, P.; Andreeva, M.; DunnGalvin, A.; et al. Incidence and risk factors for persistent symptoms in adults previously hospitalized for COVID-19. Clin. Exp. Allergy 2021, 51, 1107–1120. [Google Scholar] [CrossRef]
- Sigfrid, L.; Drake, T.M.; Pauley, E.; Jesudason, E.C.; Olliaro, P.; Lim, W.S.; Gillesen, A.; Berry, C.; Lowe, D.J.; McPeake, J.; et al. Long-COVID in adults discharged from UK hospitals after COVID-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg. Health Eur. 2021, 8, 100186. [Google Scholar] [CrossRef]
- Fernández-De-Las-Peñas, C.; Martín-Guerrero, J.D.; Pellicer-Valero, Ó.J.; Navarro-Pardo, E.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Arias-Navalón, J.A.; Cigarán-Méndez, M.; Hernández-Barrera, V.; Arendt-Nielsen, L. Female Sex Is a Risk Factor Associated with Long-Term Post-COVID Related-Symptoms but Not with COVID-19 Symptoms: The LONG-COVID-EXP-CM Multicenter Study. J. Clin. Med. 2022, 11, 413. [Google Scholar] [CrossRef]
- Nouraeinejad, A. Brain fog as a Long-term Sequela of COVID-19. SN Compr. Clin. Med. 2023, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Monje, M.; Iwasaki, A. The neurobiology of long-COVID. Neuron 2022, 110, 3484–3496. [Google Scholar] [CrossRef] [PubMed]
- Lam, G.Y.; Damant, R.W.; Ferrara, G.; Lim, R.K.; Stickland, M.K.; Ogando, N.S.; Power, C.; Smith, M.P. Characterizing long-COVID brain fog: A retrospective cohort study. J. Neurol. 2023, 270, 4640–4646. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Arrones, O.; Lobato-Berezo, A.; Gomez-Zubiaur, A.; Arias-Santiago, S.; Saceda-Corralo, D.; Bernardez-Guerra, C.; Grimalt, R.; Fernandez-Crehuet, P.; Ferrando, J.; Gil, R.; et al. SARS-CoV-2-induced telogen effluvium: A multicentric study. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e181–e183. [Google Scholar] [CrossRef]
- Müller-Ramos, P.; Ianhez, M.; de Castro, C.C.S.; Talhari, C.; Criado, P.R.; Miot, H.A. Post-COVID-19 hair loss: Prevalence and associated factors among 5891 patients. Int. J. Dermatol. 2022, 61, e162–e164. [Google Scholar] [CrossRef]
- Rivetti, N.; Barruscotti, S. Management of telogen effluvium during the COVID-19 emergency: Psychological implications. Dermatol. Ther. 2020, 33, e13648. [Google Scholar] [CrossRef]
- Olds, H.; Liu, J.; Luk, K.; Lim, H.W.; Ozog, D.; Rambhatla, P.V. Telogen effluvium associated with COVID-19 infection. Dermatol. Ther. 2021, 34, e14761. [Google Scholar] [CrossRef]
- Hussain, N.; Agarwala, P.; Iqbal, K.; Omar, H.M.S.; Jangid, G.; Patel, V.; Rathore, S.S.; Kumari, C.; Velasquez-Botero, F.; López, G.A.B.; et al. A systematic review of acute telogen effluvium, a harrowing post-COVID-19 manifestation. J. Med. Virol. 2022, 94, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Martelletti, P.; Bentivegna, E.; Spuntarelli, V.; Luciani, M. Long-COVID headache. SN Compr. Clin. Med. 2021, 3, 1704–1706. [Google Scholar] [CrossRef] [PubMed]
- Fernández-De-Las-Peñas, C.; Navarro-Santana, M.; Gómez-Mayordomo, V.; Cuadrado, M.L.; García-Azorín, D.; Arendt-Nielsen, L.; Plaza-Manzano, G. Headache as an acute and post-COVID-19 symptom in COVID-19 survivors: A meta-analysis of the current literature. Eur. J. Neurol. 2021, 28, 3820–3825. [Google Scholar] [CrossRef] [PubMed]
- Michelutti, M.; Furlanis, G.; Stella, A.B.; Bellavita, G.; Frezza, N.; Torresin, G.; Ajčević, M.; Manganotti, P. Sex-dependent characteristics of Neuro-Long-COVID: Data from a dedicated neurology ambulatory service. J. Neurol. Sci. 2022, 441, 120355. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef]
- Shibata, S.; Kobayashi, K.; Tanaka, M.; Asayama, K.; Yamamoto, E.; Nakagami, H.; Hoshide, S.; Kishi, T.; Matsumoto, C.; Mogi, M.; et al. COVID-19 pandemic and hypertension: An updated report from the Japanese Society of Hypertension project team on COVID-19. Hypertens. Res. 2022, 46, 589–600. [Google Scholar] [CrossRef]
- Saeed, S.; Tadic, M.; Larsen, T.H.; Grassi, G.; Mancia, G. Coronavirus disease 2019 and cardiovascular complications: Focused clinical review. J. Hypertens. 2021, 39, 1282–1292. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Xie, Y.; Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021, 594, 259–264. [Google Scholar] [CrossRef]
- DeMers, D.; Wachs, D. Physiology, Mean Arterial Pressure. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kundu, R.N.; Biswas, S.; Das, M. Mean arterial pressure classification: A better tool for statistical interpretation of blood pressure related risk covariates. Cardiol. Angiol. Int. J. 2017, 6, 1–7. [Google Scholar] [CrossRef]
- Homan, T.D.; Bordes, S.J.; Cichowski, E. Physiology, Pulse Pressure. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mancusi, C.; A Losi, M.; Izzo, R.; Canciello, G.; Carlino, M.V.; Albano, G.; De Luca, N.; Trimarco, B.; de Simone, G. Higher pulse pressure and risk for cardiovascular events in patients with essential hypertension: The Campania Salute Network. Eur. J. Prev. Cardiol. 2018, 25, 235–243. [Google Scholar] [CrossRef]
- Takegami, M.; Ushigome, E.; Hata, S.; Yoshimura, T.; Kitagawa, N.; Hasegawa, G.; Tanaka, T.; Ohnishi, M.; Tsunoda, S.; Yokota, I.; et al. Home-measured pulse pressure is a predictor of cardiovascular disease in type 2 diabetes: The KAMOGAWA-HBP study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2330–2337. [Google Scholar] [CrossRef]
- Qiu, W.; Xiao, X.; Cai, A.; Gao, Z.; Li, L. Pulse pressure and all-cause mortality in ischaemic heart failure patients: A prospective cohort study. Ann. Med. 2022, 54, 2701–2709. [Google Scholar] [CrossRef]
- Skurnick, J.H.; Aladjem, M.; Aviv, A. Sex differences in pulse pressure trends with age are cross-cultural. Hypertension 2010, 55, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Regnault, V.; Thomas, F.; Safar, M.E.; Osborne-Pellegrin, M.; Khalil, R.A.; Pannier, B.; Lacolley, P. Sex difference in cardiovascular risk: Role of pulse pressure amplification. J. Am. Coll. Cardiol. 2012, 59, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Maharaj, A.; Dillon, K.N.; Fischer, S.M.; Figueroa, A. Menopause influences aortic pulse pressure and pressure wave responses to metaboreflex activation in women. Menopause 2022, 29, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Moulson, N.; Petek, B.J.; Baggish, A.L.; Harmon, K.G.; Kliethermes, S.A.; Patel, M.R.; Churchill, T.W.; Drezner, J.A. Outcomes Registry for Cardiac Conditions in Athletes Investigators. SARS-CoV-2 cardiac involvement in young competitive athletes. Circulation 2021, 144, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 233–271. [Google Scholar] [CrossRef] [PubMed]
Variables | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|
Females n = 2192 | Males n = 1237 | p | Females n = 443 | Males n = 443 | p | |
Age | 53 (43–63) | 52 (42–63) | 0.203 | 43 (37–52) | 44 (35–54) | 0.495 |
BMI | 26.4 (23.1–30.5) | 28.4 (25.6–31.6) | <0.001 | 26.2 (23.1–29.8) | 26.8 (24.4–29.6) | 0.117 |
COVID-19 vaccination | 1821 (83%) | 1043 (84%) | 0.346 | 63 (14%) | 53 (12%) | 0.320 |
Lifestyle | ||||||
No smoking and alcohol | 1975 (90%) | 1044 (84%) | <0.001 | 383 (87%) | 375 (85%) | 0.610 |
Smoking | 190 (9%) | 104 (8%) | 42 (9.5%) | 44 (9.9%) | ||
Alcohol | 27 (1%) | 86 (7%) | 18 (4.1%) | 24 (5.4%) | ||
Stress/fatigue/overwork | 826 (38%) | 371 (30%) | <0.001 | 105 (24%) | 105 (24%) | 0.571 |
Regular physical activity | 622 (28%) | 422 (34%) | <0.001 | 105 (24%) | 109 (25%) | 0.754 |
The course of COVID infection | ||||||
Home isolation | 1905 (87%) | 953 (77%) | <0.001 | 382 (86%) | 367 (83%) | 0.203 |
Pneumonia: hospitalisation | 197 (9%) | 224 (18%) | <0.001 | 26 (6%) | 56 (13%) | <0.001 |
Hospitalisation in ICU | 17 (1%) | 14 (1%) | 0.289 | 4 (1%) | 3 (0.7%) | 1.000 |
The strength of COVID infection—subjective assessment of the patient | ||||||
Trivial | 151 (7%) | 87 (7%) | <0.001 | 53 (12%) | 36 (8.1%) | 0.015 |
Mild | 623 (28%) | 407 (33%) | 137 (31%) | 178 (40%) | ||
Moderate | 720 (33%) | 291 (24%) | 124 (28%) | 104 (23%) | ||
Severe | 699 (32%) | 453 (37%) | 129 (29%) | 125 (28%) |
Variables | Females (n = 443) | Males (n = 443) | p |
---|---|---|---|
Symptoms (one year after COVID-19) | 60 (14%) | 37 (8.3%) | 0.013 |
Fatigue (one year after COVID-19) | 26 (5.9%) | 21 (4.74%) | 0.453 |
Fatigue (3 months after COVID-19) | 126 (28%) | 90 (20%) | 0.005 |
Dyspnea (one year after COVID-19) | 12 (2.7%) | 7 (1.6%) | 0.246 |
Dyspnea (3 months after COVID-19) | 17 (4%) | 14 (3%) | 0.583 |
Dysosmia and dysgeusia (one year after COVID-19) | 8 (1.8) | 3 (0.7%) | 0.129 |
Dysosmia and dysgeusia (3 months after COVID-19) | 24 (5%) | 20 (4.5%) | 0.536 |
Musculoskeletal pain (one year after COVID-19) | 10 (2.3%) | 10 (2.3%) | 1.000 |
Musculoskeletal pain (3 months after COVID-19) | 13 (2.7%) | 12 (2.9%) | 0.839 |
Hair loss (one year after COVID-19) | 24 (5.4%) | 3 (0.7%) | <0.001 |
Hair loss (3 months after COVID-19) | 30 (7%) | 1 (0.3%) | <0.001 |
Memory and concentration disturbances (one year after COVID-19) | 37 (8.4%) | 19 (4.3%) | 0.013 |
Memory and concentration disturbances (3 months after COVID-19) | 54 (12%) | 32 (7%) | 0.013 |
Sleep disorders, neurosis, depression (one year after COVID-19) | 0 (0%) | 1 (0.2%) | 1.000 |
Sleep disorders, neurosis, depression (3 months after COVID-19) | 2 (0.5%) | 2 (0.5%) | 1.000 |
Headache (one year after COVID-19) | 19 (4.3%) | 6 (1.4%) | 0.008 |
Headache (3 months after COVID-19) | 13 (2.9%) | 8 (1.8%) | 0.269 |
Sum of symptoms (3 months after COVID-19) | 5 (2–7) | 3 (2–6) | <0.001 |
Sum of symptoms (12 months after COVID-19) | 2 (0–5) | 0 (0–2) | <0.001 |
Variables | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|
Females n = 2192 | Males n = 1237 | p | Females (n = 443) | Males (n = 443) | p | |
ECG | ||||||
ECG abnormalities (any abnormality: heart rate > 100/min; QRS ≥ 120 ms; ST-T changes; arrhythmia; fragmentation of QRS complex) | 58 (2.6%) | 72 (5.8%) | <0.001 | 85 (19.2%) | 121 (27.3%) | 0.004 |
Echocardiography | ||||||
LVEF (%) | 61 (56–67) | 60 (56–65) | 0.122 | 60 (56–66) | 59 (54–65) | 0.249 |
LA (mm) | 37 (35–40) | 42 (38–45) | <0.001 | 36 (34–39) | 40 (36–43) | <0.001 |
AD (mm) | 30 (25–32) | 33 (30–36) | <0.001 | 29 (27–31) | 32 (30–34) | <0.001 |
RV (mm) | 28 (26–29) | 30 (28–32) | <0.001 | 30 (25–32) | 33 (30–35) | <0.001 |
TAPSE (mm) | 25 (24–26) | 25 (23–26) | <0.001 | 25 (24–26) | 25 (24–26) | 0.536 |
Cardiac MRI | ||||||
LGE | 106 (4.8%) | 86 (7%) | 0.010 | 25 (5.6%) | 36 (8.1%) | 0.144 |
Segmental wall-motion abnormalities of the left ventricle | 551 (25%) | 339 (27%) | 0.146 | 7 (1.6%) | 5 (1.1%) | 0.561 |
24 h ECG ambulatory monitoring | ||||||
Mean HR | 75 (69–81) | 73 (67–80) | <0.001 | 77 (69–85) | 74 (66–82) | <0.001 |
Arrhythmia (supraventricular and ventricular extrasystoles) | 493 (22.5%) | 364 (29.4) | <0.001 | 40 (9%) | 22 (5%) | 0.018 |
ABPM | ||||||
MAP mean daily | 90 (84–96) | 94 (88–100) | <0.001 | 89 (83–95) | 94 (89–100) | <0.001 |
PP mean daily | 49 (43–56) | 53 (48–58) | <0.001 | 46 (42–52) | 51 (48–57) | <0.001 |
Systolic dipping | 13 (8–18) | 12 (7–17) | 0.013 | 13 (9–17) | 13 (9–18) | 0.831 |
Biochemical parameters | ||||||
TC (mg/dL) | 196 (169–223) | 188 (159–271) | <0.001 | 192 (169–217) | 193 (169–222) | 0.456 |
HDL (mg/dL) | 55 (46–64) | 60 (51–67) | <0.001 | 59 (51–66) | 49 (44–59) | <0.001 |
TG (mg/dL) | 96 (71–134) | 120 (84–168) | <0.001 | 89 (65–122) | 109 (77–159) | <0.001 |
Non-HDL (mg/dL) | 135 (110–162) | 137 (108–167) | 0.654 | 130 (110–155) | 143 (118–169) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka-Dabrowa, A.; Sakowicz, A.; Gryglewska-Wawrzak, K.; Kapusta, J.; Banach, M.; Jankowski, P.; Chudzik, M. The Effect of Sex on the Risk of Long-COVID and Cardiovascular Complications in Healthy Patients without Comorbidities: Data from a Polish Long-COVID Cardiovascular (PoLoCOV-CVD) Study. J. Clin. Med. 2024, 13, 1559. https://doi.org/10.3390/jcm13061559
Bielecka-Dabrowa A, Sakowicz A, Gryglewska-Wawrzak K, Kapusta J, Banach M, Jankowski P, Chudzik M. The Effect of Sex on the Risk of Long-COVID and Cardiovascular Complications in Healthy Patients without Comorbidities: Data from a Polish Long-COVID Cardiovascular (PoLoCOV-CVD) Study. Journal of Clinical Medicine. 2024; 13(6):1559. https://doi.org/10.3390/jcm13061559
Chicago/Turabian StyleBielecka-Dabrowa, Agata, Agata Sakowicz, Katarzyna Gryglewska-Wawrzak, Joanna Kapusta, Maciej Banach, Piotr Jankowski, and Michał Chudzik. 2024. "The Effect of Sex on the Risk of Long-COVID and Cardiovascular Complications in Healthy Patients without Comorbidities: Data from a Polish Long-COVID Cardiovascular (PoLoCOV-CVD) Study" Journal of Clinical Medicine 13, no. 6: 1559. https://doi.org/10.3390/jcm13061559
APA StyleBielecka-Dabrowa, A., Sakowicz, A., Gryglewska-Wawrzak, K., Kapusta, J., Banach, M., Jankowski, P., & Chudzik, M. (2024). The Effect of Sex on the Risk of Long-COVID and Cardiovascular Complications in Healthy Patients without Comorbidities: Data from a Polish Long-COVID Cardiovascular (PoLoCOV-CVD) Study. Journal of Clinical Medicine, 13(6), 1559. https://doi.org/10.3390/jcm13061559