Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA)
Abstract
:1. Introduction
2. Methods
2.1. Ethics Approval
2.2. Study Design
2.3. Randomisation and Blinding
2.4. Participants
- The inclusion criteria were as follows:
- Doctor’s referral for physiotherapy;
- Any 2nd- and 3rd-degree radiological changes;
- Any 2nd- and 3rd-degree functional changes;
- Remission or low or moderate RA activity according to the DAS 28 index;
- Voluntary, informed consent to take part in this study.
- The exclusion criteria were as follows:
- Contraindications to magnetotherapy, including unstable blood pressure;
- Other physical treatments applied to hand area during the time of this study;
- The use of steroidal anti-inflammatory drugs or strong analgesic drugs at the time of this study.
2.5. Intervention
2.6. Outcome Measures
- Duration of morning stiffness—as reported by the patient;
- Severity of morning stiffness—a scale from 0 to 100 points was applied, with “0” meaning no morning stiffness and “100” reflecting maximum severity of morning stiffness [48].
2.7. Sample Size
2.8. Statistical Analysis
3. Results
3.1. Study Group
3.2. Positive Effects of the Therapy
3.2.1. General Effects
3.2.2. Therapy Effects in the Dominant Hand and the Subordinate Hand
3.3. Negative Effects of Magnetotherapy
4. Discussion
5. Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szymańska, K. Application of electromagnetic fields in treatment of selected diseases of locomotor system. IFM 2017, 6, 381–384. [Google Scholar]
- Iwasa, K.; Reddi, A.H. Pulsed electromagnetic fields and tissue engineering of the joints. Tissue Eng. Part. B Rev. 2018, 24, 144–154. [Google Scholar] [CrossRef]
- Hong, J.E.; Lee, C.G.; Hwang, S.; Kim, J.; Jo, M.; Kang, D.H.; Yoo, S.H.; Kim, W.S.; Lee, Y.; Rhee, K.J. Pulsed Electromagnetic Field (PEMF) Treatment Ameliorates Murine Model of Collagen-Induced Arthritis. Int. J. Mol. Sci. 2023, 24, 1137. [Google Scholar] [CrossRef]
- Markov, M.S. Magnetic field therapy: A review. Electromagn. Biol. Med. 2007, 26, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X. Magnetic Fields and Reactive Oxygen Species. Int. J. Mol. Sci. 2017, 18, 2175. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Liu, J.; Zhen, C.; Wang, Y.; Wei, Y.; Ren, W.; Shang, P. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Prolif. 2021, 54, e12982. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Yang, W.; Zeng, Q.; Chen, W.; Zhu, Y.; Liu, W.; Wang, S.; Wang, B.; Shao, Z.; Zhang, Y. Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders. Biomed. Pharmacother. 2020, 131, 110767. [Google Scholar] [CrossRef]
- Pasek, J.; Pasek, T.; Sieroń-Stołtny, K.; Cieślar, G.; Sieroń, A. Electromagnetic fields in medicine—The state of art. Electromagn. Biol. Med. 2016, 35, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Kraszewski, W.; Syrek, P. Magnetotherapy—Therapeutic application of magnetic field and the associated hazards. Pr. Inst. Elektrotechniki 2010, 57, 213–228. [Google Scholar]
- Pasek, J.; Pasek, T.; Sieroń, A. Static magnetic fields in medicine—The current state of knowledge. J. Ecol. Heath. 2013, 17, 21–26. [Google Scholar]
- Ogrodzka-Ciechanowicz, K.; Głąb, G.; Ciszek-Radwan, E.; Ślusarski, J.; Gądek, A. The use of an alternating magnetic field in the resorption of postoperative joint effusion following anterior cruciate ligament reconstruction: A randomized double-blind controlled trial. Medicine 2021, 100, e26572. [Google Scholar] [CrossRef]
- Ganesan, K.; Gengadharan, A.C.; Balachandran, C.; Manohar, B.M.; Puvanakrishnan, R. Low frequency pulsed electromagnetic field—A viable alternative therapy for arthritis. Indian J. Exp. Biol. 2009, 47, 939–948. [Google Scholar]
- Gomez-Ochoa, I.; Gomez-Ochoa, P.; Gomez-Casal, F.; Cativiela, E.; Larrad-Mur, L. Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1β and TNF-α) on human fibroblast-like cell culture. Rheumatol. Int. 2011, 31, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Kropáčková, T.; Mann, H.; Růžičková, O.; Šléglová, O.; Vernerová, L.; Horváthová, V.; Tomčík, M.; Pavelka, K.; Vencovský, J.; Šenolt, L. Clusterin serum levels are elevated in patients with early rheumatoid arthritis and predict disease activity and treatment response. Sci. Rep. 2021, 11, 11525. [Google Scholar] [CrossRef]
- Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother. 2016, 80, 30–41. [Google Scholar] [CrossRef]
- Londono, J.; Saldarriaga, E.L.; Rueda, J.C.; Giraldo-Bustos, R.; Angarita, J.I.; Restrepo, L.; Ballesteros-Muñoz, J.; González, C.; Ospina, M.J.; Arias-Correal, S.; et al. Pharmacogenetic aspects of methotrexate in a cohort of Colombian patients with rheumatoid arthritis. Biomed. Rep. 2020, 13, 34. [Google Scholar]
- Kuliński, W.; Skuza, J. Physical Therapy in Rheumatoid Arthritis. Acta Balneol. 2021, 2, 81–87. [Google Scholar] [CrossRef]
- Majewski, G.; Marcol-Majewska, A.; Kotyla, P. Imaging studies in early rheumatoid arthritis. Varia Med. 2018, 2, 173–179. [Google Scholar]
- Kostro, A.M.; Dakowicz, A.; Moskal-Jasińska, D.; Kuryliszyn-Moskal, A. The Influence of Laser Therapy and magnetotherapy on the function and Quality of Life in patients with Rheumatoid Arthritis of hand Joints. Acta Balneol. 2020, 3, 149–153. [Google Scholar] [CrossRef]
- Eldoushy, E.E. Efficacy of Applying Mild-Magnetic Compression versus Massage Therapy on Hand-Joints’ Functional Disability Symptoms among Patients with Rheumatoid Arthritis. Egypt. J. Health Care 2022, 13, 1268–1289. [Google Scholar] [CrossRef]
- Dejaco, C.; Ramiro, S.; Bond, M.; Bosch, P.; Ponte, C.; Mackie, S.L.; Bley, T.A.; Blockmans, D.; Brolin, S.; Bolek, E.C.; et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice: 2023 update. Ann Rheum. Dis. 2023, 77, 636–643. [Google Scholar] [CrossRef]
- Fujii, T.; Murata, K.; Onizawa, H.; Onishi, A.; Tanaka, M.; Murakami, K.; Nishitani, K.; Furu, M.; Watanabe, R.; Hashimoto, M.; et al. Management and treatment outcomes of rheumatoid arthritis in the era of biologic and targeted synthetic therapies: Evaluation of 10-year data from the KURAMA cohort. Arthritis Res. Ther. 2024, 24, 16. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, E.; Kim, J.W.; Suh, C.H.; Shin, K.; Kim, J.; Kim, H.A. Unveiling difficult-to-treat rheumatoid arthritis: Long-term impact of biologic or targeted synthetic DMARDs from the KOBIO registry. Arthritis Res. Ther. 2023, 25, 174. [Google Scholar] [CrossRef]
- Tornero Molina, J.; Hernández-Cruz, B.; Corominas, H. Initial Treatment with Biological Therapy in Rheumatoid Arthritis. J. Clin. Med. 2023, 13, 48. [Google Scholar] [CrossRef]
- Fleischmann, R.M.; van der Heijde, D.; Strand, V.; Atsumi, T.; McInnes, I.B.; Takeuchi, T.; Taylor, P.C.; Bracher, M.; Brooks, D.; Davies, J.; et al. Anti-GM-CSF otilimab versus tofacitinib or placebo in patients with active rheumatoid arthritis and an inadequate response to conventional or biologic DMARDs: Two phase 3 randomised trials (contRAst 1 and contRAst 2). Ann. Rheum. Dis. 2023, 82, 1516–1526. [Google Scholar] [CrossRef]
- Madav, Y.; Barve, K.; Prabhakar, B. Current trends in theranostics for rheumatoid arthritis. Eur. J. Pharm. Sci. 2020, 145, 105240. [Google Scholar] [CrossRef]
- Richmond, S.J. Magnet therapy for the relief of pain and inflammation in rheumatoid arthritis (CAMBRA): A randomised placebo-controlled crossover trial. Trial 2008, 9, 53. [Google Scholar] [CrossRef]
- Chwieśko-Minarowska, S.; Kuryliszyn-Moskal, A.; Pijanowska, M.; Jabłońska, M. The comparison of multi-waved locked system laser and low-frequency magnetic field therapy on hand function and quality of life in patients with rheumatoid arthritis—Preliminary study. Acta Balneol. 2014, 4, 181–184. [Google Scholar]
- Krawczyk-Wasilewska, A.; Kuncewicz, E.; Sobieska, M.; Samborski, W. Assessment of physical therapy effectiveness in pain treatment in rheumatoid arthritis. Now Med. 2007, 4, 74–79. [Google Scholar]
- Skalska-Izdebska, R.; Fatyga, P.; Goraj-Szczypiorowska, B.; Kurach, A.; Pałka, T. Assessment of physical therapy effectiveness in treatment of rheumatoid arthritis. Young Sport Sci. Ukr. 2012, 3, 205–215. [Google Scholar]
- Ross, C.L.; Ang, D.C.; Almeida-Porada, G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Front. Immunol. 2019, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.L.; Pettenati, M.J.; Procita, J.; Cathey, L.; George, S.K.; Almeida-Porada, G. Evaluation of cytotoxic and genotoxic effects of extremely low-frequency electromagnetic field on mesenchymal stromal cells. Glob. Adv. Health Med. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Liu, X.; Yan, X.; Zhang, S.; Liu, Z.; Thu Yein Win, T.; Ren, L. TheEffects of Electromagnetic Fields on Human Health: Recent Advances and Future. J. Bionic Eng. 2021, 18, 210–237. [Google Scholar] [CrossRef]
- Paolucci, T.; Pezzi, L.; Centra, A.M.; Giannandrea, N.; Bellomo, R.G.; Saggini, R. Electromagnetic Field Therapy: A Rehabilitative Perspective in the Management of Musculoskeletal Pain—A Systematic Review. J. Pain Res. 2020, 13, 1385–1400. [Google Scholar] [CrossRef]
- Eid, M.M.; El-Gendy, A.M.; Abdelbasset, W.K.; Elkholi, S.M.; Abdel-Fattah, M.S. The effect of magnetic therapy and moderate aerobic exercise on osteoporotic patients: A randomized clinical study. Medicine 2021, 100, e27379. [Google Scholar] [CrossRef]
- Ehnert, S.; Schröter, S.; Aspera-Werz, R.H.; Eisler, W.; Falldorf, K.; Ronniger, M.; Nussler, A.K. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. J. Clin. Med. 2019, 8, 2028. [Google Scholar] [CrossRef] [PubMed]
- Elshiwi, A.M.; Hamada, H.A.; Mosaad, D.; Ragab, I.M.A.; Koura, G.M.; Alrawaili, S.M. Effect of pulsed electromagnetic field on nonspecific low back pain patients: A randomized controlled trial. Braz. J. Phys. Ther. 2019, 23, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Adravanti, P.; Nicoletti, S.; Setti, S.; Ampollini, A.; de Girolamo, L. Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: A randomised controlled trial. Int. Orthop. 2014, 38, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.D.; Brady, M.A.; St-Pierre, J.P.; Stevens, M.M.; Overby, D.R.; Ethier, C.R. Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field. Tissue Eng. Part A 2014, 20, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Parate, D.; Franco-Obregón, A.; Fröhlich, J.; Beyer, C.; Abbas, A.A.; Kamarul, T.; Hui, J.H.P.; Yang, Z. Enhancement of mesenchymal stem cell chondrogenesis with short-term low intensity pulsed electromagnetic fields. Sci. Rep. 2017, 7, 9421. [Google Scholar] [CrossRef]
- Huegel, J.; Choi, D.S.; Nuss, C.A.; Minnig, M.C.C.; Tucker, J.J.; Kuntz, A.F.; Waldorff, E.I.; Zhang, N.; Ryaby, J.T.; Soslowsky, L.J. Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. J. Shoulder Elbow Surg. 2018, 27, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Ren, Y.; van Kooten, T.G.; Grijpma, D.W.; Kuijer, R. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants. Int. Orthop. 2015, 39, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Adie, S.; Harris, I.A.; Naylor, J.M.; Rae, H.; Dao, A.; Yong, S.; Ying, V. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: A multicenter, double-blind, randomized trial. J. Bone Surg. Am. 2011, 93, 1569–1576. [Google Scholar] [CrossRef]
- Szemerszky, R.; Szabolcs, Z.; Bogdány, Y.; Jánossy, G.; Thuróczy, G.; Köteles, F. No effect of a pulsed magnetic field on induced ischemic muscle pain. A double-blind, randomized, placebo-controlled trial. Physiol. Behav. 2018, 184, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Brocklehurst, P.; Hoare, Z. How to design a randomised controlled trial. Br. Dent. J. 2017, 222, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.T.; Bluhm, G.B.; Brook, A.; Brower, A.C.; Corbett, M.; Decker, J.L.; Genant, H.K.; Gofton, J.P.; Goodman, N.; Larsen, A. Reproducibility of multiple-observer scoring of radiologic abnormalities in the hands and wrists of patients with rheumatoid arthritis. Arthritis Rheum. 1985, 28, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Wróblewska, M. Chronic Rheumatoid Diseases; PZWL: Warsaw, Poland, 1988; pp. 62–80. [Google Scholar]
- Wiland, P.; Madej, M.; Szmyrka-Kaczmarek, M. Monitoring the Patient’s Condition in Rheumatoid Diseases; Górnicki Wydawnictwo Medyczne: Wrocław, Poland, 2008; pp. 15–19. [Google Scholar]
- Symmons, D.P. Rheumatoid arthritis: Assessment of disease progress and effects of treatment. Clin. Med. 2010, 10, 248–251. [Google Scholar] [CrossRef]
- Kwolek, A.; Drużbicki, M.; Bieniasz, W.; Zwolińska, J.; Przysada, G. Hand testing station—Possible applications in rehabilitation. Post Rehab. 2011, 49, 23–28. [Google Scholar]
- Karges, J.R.; Mark, B.E.; Stikeleather, S.J.; Worrell, T.W. Concurrent validity of upper-extremity volume estimates: Comparison of calculated volume derived from girth measurements and water displacement volume. Phys. Ther. 2003, 83, 134–145. [Google Scholar] [CrossRef]
- Hu, H.; Xu, A.; Gao, C.; Wang, Z.; Wu, X. The effect of physical exercise on rheumatoid arthritis: An overview of systematic reviews and meta-analysis. J. Adv. Nurs. 2021, 77, 506–522. [Google Scholar] [CrossRef]
- Chen, Y.; Aspera-Werz, R.H.; Menger, M.M.; Falldorf, K.; Ronniger, M.; Stacke, C.; Histing, T.; Nussler, A.K.; Ehnert, S. Exposure to 16 Hz Pulsed Electromagnetic Fields Protect the Structural Integrity of Primary Cilia and Associated TGF-β Signaling in Osteoprogenitor Cells Harmed by Cigarette Smoke. Int. J. Mol. Sci. 2021, 2, 7036. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; He, H.; Ye, W.; Perry, T.A.; He, C. Effects of pulsed electromagnetic field therapy on pain stiffness physical function and quality of life in patients with osteoarthritis: A systematic review and meta-analysis of randomized placebo-controlled trials. Phys. Ther. 2020, 100, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Driessen, S.; Bodewein, L.; Dechent, D.; Graefrath, D.; Schmiedchen, K.; Stunder, D.; Kraus, T.; Petri, A.K. Biological and health-related effects of weak static magnetic fields (≤1 mT) in humans and vertebrates: A systematic review. PLoS ONE 2020, 15, e0230038. [Google Scholar] [CrossRef] [PubMed]
- Kropáčková, T.; Šléglová, O.; Růžičková, O.; Vencovský, J.; Pavelka, K.; Šenolt, L. Lower serumclusterin levels in patients with erosive hand osteoarthritis are associated with more pain. BMC Musculoskelet. Disord. 2018, 19, 20. [Google Scholar] [CrossRef]
- Tong, J.; Chen, Z.; Sun, G.; Zhou, J.; Zeng, Y.; Zhong, P.; Deng, C.; Chen, X.; Liu, L.; Wang, S.; et al. The Efficacy of Pulsed Electromagnetic Fields on Pain, Stiffness, and Physical Function in Osteoarthritis: A Systematic Review and Meta-Analysis. Pain Res. Manag. 2022, 59, 121. [Google Scholar] [CrossRef]
- Koutsojannis, C.; Andrikopoulos, A.; Seimenis, I.; Adamopoulos, A. Magneto-therapy in physiotherapy units: Introduction of quality control procedure due to lack of maintenance. Radiat. Prot. Dosim. 2019, 185, 532–541. [Google Scholar] [CrossRef]
- Wu, Z.; Ding, X.; Lei, G.; Zeng, C.; Wei, J.; Li, J.; Li, H.; Yang, T.; Cui, Y.; Xiong, Y.; et al. Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis. BMJ Open 2018, 8, e022879. [Google Scholar] [CrossRef]
- Ay, S.; Evcik, D. The effects of pulsed electromagnetic fields in the treatment of knee osteoarthritis: A randomized placebo-controlled trial. Rheumatol. Int. 2009, 29, 663–666. [Google Scholar] [CrossRef]
- Pavlović, A.S.; Djurasić, L.M. The effect of low frequency pulsing electromagnetic field in treatment of patients with knee joint osteoarthritis. Acta Chir. Iugosl. 2012, 59, 81–83. [Google Scholar] [CrossRef]
- Külcü, D.G.; Gülşen, G.; Altunok, E.Ç. Short-term efficacy of pulsed electromagnetic field therapy on pain and functional level in knee osteoarthritis: A randomized controlled study. Arch Rheumatol. 2009, 24, 144–148. [Google Scholar]
- Shupak, N.M.; McKay, J.C.; Nielson, W.R.; Rollman, G.B.; Prato, F.S.; Thomas, A.W. Exposure to a specific pulsed low-frequency magnetic field: A double-blind placebo-controlled study of effects on pain ratings in rheumatoid arthritis and fibromyalgia patients. Pain Res. Manag. 2006, 11, 85–90. [Google Scholar] [CrossRef]
- Kalmus, P.; Pracka, D.; Pracki, T.; Szulc, K.; Szynkowska, L.; Matzkeit, O. Evaluation of the efficacy of a constant alternating magnetic field in relation to selected aspects of therapy for patients with rheumatoid diseases. Acta Balneol. 2010, 2, 84–89. [Google Scholar]
- Dündar, Ü.; Aşık, G.; Ulaşlı, A.M.; Sınıcı, Ş.; Yaman, F.; Solak, Ö.; Toktaş, H.; Eroğlu, S. Assessment of pulsed electromagnetic field therapy with Serum YKL-40 and ultrasonography in patients with knee osteoarthritis. Int. J. Rheum. Dis. 2016, 19, 287–293. [Google Scholar] [CrossRef]
- Stolarzewicz, B.; Szczuka, E. Comparison of the effect of low frequency electromagnetic field application with the procedures using solid magnets in patients with gonarthrosis. Polish J. Sport Med. 2021, 37, 9–22. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, C.L.; Hsu, S.C.; Chou, S.W.; Wang, K.C. Effect of Magnetic Knee Wrap on Quadriceps Strength in Patients with Symptomatic Knee Osteoarthritis. Arch. Phys. Med. Rehabil. 2008, 89, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Wertheimer, N.; Leeper, E. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 1979, 109, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Sztafrowski, D.; Jakubaszko, J. Effects of an alternating magnetic field on ocular functions. Przegląd Elektrotechniczny 2005, 4, 25–29. [Google Scholar]
- World Health Organization (WHO). Environmental Health Criteria Monograph No. 232—Static Fields; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to static magnetic fields. Health Phys. 2009, 96, 504–514. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Extremely Low Frequency Fields. Environmental Health. Criteria 238; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Mikesky, A.E.; Hayden, M.W. Effect of static magnetic therapy on recovery from delayed onset muscle soreness. Phys. Ther. Sport 2005, 6, 188–194. [Google Scholar] [CrossRef]
- Harlow, T.; Greaves, C.; White, A.; Brown, L.; Hart, A.; Ernst, E. Randomised controlled trial of magnetic bracelets for relieving pain in osteoarthritis of the hip and knee. BMJ 2004, 329, 1450–1454. [Google Scholar] [CrossRef]
- Teodori, L.; Albertini, M.C.; Uguccioni, F.; Falcieri, E.; Rocchi, M.B.; Battistelli, M.; Coluzza, C.; Piantanida, G.; Bergamaschi, A.; Magrini, A.; et al. Static Magnetic Fields Affect Cell Size, Shape, Orientation, and Membrane Surface of Human Glioblastoma Cells, as Demonstrated by Electron, Optic, and Atomic Force Microscopy. Cytom. Part A 2005, 69A, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.; von Mühlendall, K. Electromagnetic fields (EMF): Do they play a role in children’s environmental health (CEH)? Int. J. Hyg. Environ. Health 2007, 210, 635–644. [Google Scholar] [CrossRef] [PubMed]
- The Independent Advisory Group on Non-Ionising Radiation. Static Magnetic Fields; (red. Documents of the Health Protection Agency); Health Protection Agency: London, UK, 2008. [Google Scholar]
- Thamsborg, G.; Florescu, A.; Oturai, P.; Fallentin, E.; Tritsaris, K.; Dissing, S. Treatment of knee osteoarthritis with pulsed electromagnetic fields: A randomized, double-blind, placebo-controlled study. Osteoarthr. Cartil. 2005, 13, 575–581. [Google Scholar] [CrossRef]
- Kheifets, L.; Ahlbom, A.; Johansen, C.; Feychting, M.; Sahl, J.; Savitz, D. Extremely low-frequency magnetic fields and heart disease. Scand. J. Work Environ. Health 2007, 33, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Żurawski, P.; Stryła, W. Biological effects of low-frequency electromagnetic fields on humans. Probl. Hig. Epidemiol. 2011, 92, 167–172. [Google Scholar]
SMF Group (n = 16) | PEMF Group (n = 16) | p | |||
---|---|---|---|---|---|
Mean ± Std. Dev. | Range | Mean ± Std. Dev. | Range | ||
Age [years] | 58.9 ± 12.9 | 36–80 | 54.9 ± 13.7 | 30–77 | 0.4677 |
BMI | 26.1 ± 4.4 | 19.8–37.7 | 27.6 ± 4.7 | 19.8–34.1 | 0.3809 |
Disease duration [years] | 11.5 ± 9.5 | 0.5–30 | 14.4 ± 10.6 | 2–43 | 0.4016 |
Examination | SMF Group | PEMF Group | Significance of Differences between Groups (p) (b) | ||
---|---|---|---|---|---|
Mean (95 c.i.) | Std. Dev. | Mean (95 c.i.) | Std. Dev. | ||
HAQ-20 Test | |||||
Before therapy | 1.58 (1.20; 1.96) | 0.72 | 1.70 (1.30; 2.11) | 0.76 | 0.5391 |
After therapy | 1.30 (0.82; 1.79) | 0.91 | 1.45 (1.07; 1.83) | 0.71 | 0.5896 |
Therapy effect | −0.27 (−0.63; 0.08) | 0.67 | −0.25 (−0.53; 0.02) | 0.52 | 0.5641 |
Significance of therapy effects (p) (a) | 0.1730 | 0.0229 * | |||
Pain VAS Score | |||||
Before therapy | 5.1 (4.1; 6.1) | 1.9 | 5.4 (4.1; 6.7) | 2.4 | 0.6420 |
After therapy | 2.4 (1.3; 3.4) | 2.0 | 3.7 (2.4; 4.9) | 2.4 | 0.1188 |
Therapy effect | −2.7 (−3.6; −1.8) | 1.7 | −1.7 (−2.7; −0.7) | 1.8 | 0.1381 |
Significance of therapy effects (p) (a) | 0.0004 *** | 0.0058 ** |
Examination | SMF Group | PEMF Group | Significance of Differences between Groups (p) (b) | ||
---|---|---|---|---|---|
Mean (95 c.i.) | Std. Dev. | Mean (95 c.i.) | Std. Dev. | ||
Duration of Morning Stiffness [min] | |||||
Before therapy | 63.6 (36.3; 90.8) | 51.1 | 114.1 (75.1; 153.0) | 73.1 | 0.0513 |
After therapy | 31.3 (12.4; 50.1) | 35.4 | 100.0 (61.0; 139.0) | 73.2 | 0.0022 ** |
Therapy effect | −32.3 (−53.5; −11.1) | 39.9 | −14.1 (−30.4; 2.3) | 30.6 | 0.3226 |
Significance of therapy effects (p) (a) | 0.0051 ** | 0.0756 | |||
Severity of Morning Stiffness | |||||
Before therapy | 45.0 (32.1; 57.9) | 24.2 | 45.0 (34.4; 55.6) | 19.9 | 0.9260 |
After therapy | 26.3 (14.4; 38.1) | 22.2 | 33.4 (21.1; 45.7) | 23.1 | 0.4016 |
Therapy effect | −18.8 (−30.6; −6.9) | 22.2 | −11.6 (−23.0; −0.1) | 21.4 | 0.4450 |
Significance of therapy effects (p) (a) | 0.0080 ** | 0.0528 |
Examination | SMF Group | PEMF Group | Significance of Differences between Groups (p) (b) | ||
---|---|---|---|---|---|
Mean (95 c.i.) | Std. Dev. | Mean (95 c.i.) | Std. Dev. | ||
Range of Motion in Hand Joints [mm] (D) (c) | |||||
Before therapy | 15.7 (11.9; 19.6) | 6.7 | 14.1 (11.1; 17.2) | 5.5 | 0.6516 |
After therapy | 16.5 (12.4; 20.6) | 7.1 | 17.1 (13.7; 20.5) | 6.1 | 0.9829 |
Therapy effect | 0.7 (−0.5; 2.0) | 2.1 | 2.9 (0.8; 5.1) | 3.9 | 0.1225 |
Significance of therapy effects (p) (a) | 0.1578 | 0.0125 * | |||
Range of Motion in Hand Joints [mm] (S) (d) | |||||
Before therapy | 17.1 (13.8; 20.5) | 5.8 | 15.0 (11.5; 18.6) | 6.4 | 0.4773 |
After therapy | 16.1 (12.3; 19.9) | 6.6 | 17.1 (13.4; 20.7) | 6.6 | 0.5613 |
Therapy effect | −1.1 (−2.6; 0.5) | 2.6 | 2.0 (−0.4; 4.5) | 4.4 | 0.0411 * |
Significance of therapy effects (p) (a) | 0.1578 | 0.1118 | |||
Hand Volume [mm3] (D) (c) | |||||
Before therapy | 337.1 (300.4; 373.9) | 69.0 | 388.9 (331.5; 446.2) | 107.6 | 0.1381 |
After therapy | 336.8 (299.3; 374.4) | 70.5 | 369.4 (311.8; 426.9) | 108.0 | 0.7520 |
Therapy effect | −0.3 (−12.8; 12.1) | 23.4 | −19.5 (−31.7; −7.3) | 22.9 | 0.0615 |
Significance of therapy effects (p) (a) | 0.7764 | 0.0038 ** | |||
Hand Volume [mm3] (S) (d) | |||||
Before therapy | 327.0 (290.2; 363.8) | 69.1 | 377.0 (322.5; 431.4) | 102.3 | 0.2240 |
After therapy | 337.2 (295.3; 379.1) | 75.7 | 364.9 (307.8; 422.0) | 107.2 | 0.8304 |
Therapy effect | 8.1 (−2.8; 19.0) | 19.7 | −12.1 (−23.5; −0.6) | 21.4 | 0.0215 * |
Significance of therapy effects (p) (a) | 0.0995 | 0.0843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zwolińska, J.; Kasprzak, M.; Kielar, A.; Prokop, M. Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA). J. Clin. Med. 2024, 13, 1619. https://doi.org/10.3390/jcm13061619
Zwolińska J, Kasprzak M, Kielar A, Prokop M. Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA). Journal of Clinical Medicine. 2024; 13(6):1619. https://doi.org/10.3390/jcm13061619
Chicago/Turabian StyleZwolińska, Jolanta, Marta Kasprzak, Aleksandra Kielar, and Michał Prokop. 2024. "Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA)" Journal of Clinical Medicine 13, no. 6: 1619. https://doi.org/10.3390/jcm13061619
APA StyleZwolińska, J., Kasprzak, M., Kielar, A., & Prokop, M. (2024). Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA). Journal of Clinical Medicine, 13(6), 1619. https://doi.org/10.3390/jcm13061619