Mechanical Circulatory Support Systems in the Management of Ventricular Arrhythmias: A Contemporary Overview
Abstract
:1. Introduction
2. Rationale for Mechanical Circulatory Support in Patients with Ventricular Arrhythmias
3. Devices for Mechanical Circulatory Support
4. Intra-Aortic Balloon Pump Counterpulsation
5. TandemHeart
6. Impella
7. ECMO
8. MCS and Ventricular Arrhythmia Ablation: Patient Selection
9. MCS and Ventricular Arrhythmias Ablation: Implantation Timing
10. Efficacy and Safety of MCS in VT Ablation
11. Multidisciplinary Approach for VT Management
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sirichand, S.; Killu, A.M.; Padmanabhan, D.; Hodge, D.O.; Chamberlain, A.M.; Brady, P.A.; Kapa, S.; Noseworthy, P.A.; Packer, D.L.; Munger, T.M.; et al. Incidence of idiopathic ventricular ar-rhythmias: A population-based study. Circ. Arrhythmia Electrophysiol. 2017, 10, e004662. [Google Scholar] [CrossRef] [PubMed]
- Pandozi, C.; Mariani, M.V.; Chimenti, C.; Maestrini, V.; Filomena, D.; Magnocavallo, M.; Straito, M.; Piro, A.; Russo, M.; Galeazzi, M.; et al. The scar: The wind in the perfect storm—Insights into the mysterious living tissue originating ventricular arrhythmias. J. Interv. Card. Electrophysiol. 2022, 66, 27–38. [Google Scholar] [CrossRef]
- Guarracini, F.; Casella, M.; Muser, D.; Barbato, G.; Notarstefano, P.; Sgarito, G.; Marini, M.; Grandinetti, G.; Mariani, M.V.; Boriani, G.; et al. Clinical management of electrical storm: A current overview. J. Cardiovasc. Med. 2020, 22, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Sapp, J.L.; Wells, G.A.; Parkash, R.; Stevenson, W.G.; Blier, L.; Sarrazin, J.F.; Thibault, B.; Rivard, L.; Gula, L.; Leong-Sit, P.; et al. Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. N. Engl. J. Med. 2016, 375, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Santangeli, P.; Muser, D.; Maeda, S.; Filtz, A.; Zado, E.S.; Frankel, D.S.; Dixit, S.; Epstein, A.E.; Callans, D.J.; Marchlinski, F.E. Comparative effectiveness of antiarrhythmic drugs and catheter ablation for the prevention of recurrent ventricular tachycardia in patients with implantable cardioverter-defibrillators: A systematic review and meta-analysis of randomized controlled trials. Heart Rhythm 2016, 13, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Romero, J.; Mehta, N.K.; Fujii, A.; Kapur, S.; Baldinger, S.H.; Barbhaiya, C.R.; Koplan, B.A.; John, R.M.; Epstein, L.M.; et al. Long-term outcomes after catheter ablation of ventricular tachycardia in patients with and without structural heart disease. Heart Rhythm 2016, 13, 1957–1963. [Google Scholar] [CrossRef]
- Nayyar, S.; Ganesan, A.N.; Brooks, A.G.; Sullivan, T.; Roberts-Thomson, K.C.; Sanders, P. Venturing into ventricular arrhythmia storm: A systematic review and meta-analysis. Eur. Heart J. 2012, 34, 560–571. [Google Scholar] [CrossRef]
- Santangeli, P.; Muser, D.; Zado, E.S.; Magnani, S.; Khetpal, S.; Hutchinson, M.D.; Supple, G.; Frankel, D.S.; Garcia, F.C.; Bala, R.; et al. Acute hemodynamic decompensation during catheter ablation of scar-related ventricular tachycardia: Incidence, predictors, and impact on mortality. Circ. Arrhythmia Electrophysiol. 2015, 8, 68–75. [Google Scholar] [CrossRef]
- Sauer, W.H.; Zado, E.; Gerstenfeld, E.P.; Marchlinski, F.E.; Callans, D.J. Incidence and predictors of mortality following ablation of ventricular tachycardia in patients with an implantable cardioverter-defibrillator. Heart Rhythm 2010, 7, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Neuzner, J.; Dietze, T.; Paliege, R.; Gradaus, R. Effectiveness of a percutaneous left ventricular assist device in preventing acute hemodynamic decompensation during catheter ablation of ventricular tachycardia in advanced heart failure patients: A ret-rospective single-center analysis. J. Cardiovasc. Electrophysiol. 2019, 30, 2864–2868. [Google Scholar] [CrossRef] [PubMed]
- Reich, D.L.; Hossain, S.; Krol, M.; Baez, B.; Patel, P.; Bernstein, A.; Bodian, C.A. Predictors of Hypotension After Induction of General Anesthesia. Obstet. Anesth. Dig. 2005, 101, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Skhirtladze, K.; Mora, B.; Moritz, A.; Birkenberg, B.; Ankersmit, H.J.; Dworschak, M. Impaired recovery of cardiac output and mean arterial pressure after successful defibrillation in patients with low left ventricular ejection fraction. Resuscitation 2010, 81, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Dukkipati, S.R.; Chinitz, J.S.; Koruth, J.S.; Mittnacht, A.J.; Napolitano, C.; d’Avila, A.; Reddy, V.Y. Percutaneous hemodynamic support with Impella 2.5 during scar-related ventricular tachycardia ablation (PERMIT 1). Circ. Arrhythmia Electrophysiol. 2013, 6, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Lavalle, C.; Mariani, M.V.; Piro, A.; Straito, M.; Severino, P.; Della Rocca, D.G.; Forleo, G.B.; Romero, J.; Di Biase, L.; Fedele, F. Electrocardiographic features, mapping and ablation of idiopathic outflow tract ventricular arrhythmias. J. Interv. Card. Electrophysiol. 2019, 57, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Muser, D.; Tritto, M.; Mariani, M.V.; Di Monaco, A.; Compagnucci, P.; Accogli, M.; De Ponti, R.; Guarracini, F. Diagnosis and Treatment of Idiopathic Premature Ventricular Contractions: A Stepwise Approach Based on the Site of Origin. Diagnostics 2021, 11, 1840. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S.S. Novel percutaneous cardiac assist devices: The science of and indications for hemodynamic support. Circulation 2011, 123, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, V.S.; Jimeno, S.; Benson, L.N.; McLaughlin, P.R.; Horlick, E.M. Pre-closure of femoral venous access sites used for large-sized sheath insertion with the Perclose device in adults undergoing cardiac intervention. Heart 2008, 94, 571–572. [Google Scholar] [CrossRef]
- Seyfarth, M.; Sibbing, D.; Bauer, I.; Fröhlich, G.; Bott-Flügel, L.; Byrne, R.; Dirschinger, J.; Kastrati, A.; Schömig, A. A Randomized Clinical Trial to Evaluate the Safety and Efficacy of a Percutaneous Left Ventricular Assist Device Versus Intra-Aortic Balloon Pumping for Treatment of Cardiogenic Shock Caused by Myocardial Infarction. J. Am. Coll. Cardiol. 2008, 52, 1584–1588. [Google Scholar] [CrossRef]
- Virk, S.A.; Keren, A.; John, R.M.; Santageli, P.; Eslick, A.; Kumar, S. Mechanical Circulatory Support During Catheter Ablation of Ven-tricular Tachycardia: Indications and Options. Heart Lung Circ. 2019, 28, 134–145. [Google Scholar] [CrossRef]
- Della Bella, P.; Radinovic, A.; Limite, L.R.; Baratto, F. Mechanical circulatory support in the management of life-threatening ar-rhythmia. Europace 2021, 23, 1166–1178. [Google Scholar] [CrossRef]
- Guglin, M.; Zucker, M.J.; Bazan, V.M.; Bozkurt, B.; El Banayosy, A.; Estep, J.D.; Gurley, J.; Nelson, K.; Malyala, R.; Panjrath, G.S.; et al. Venoarterial ECMO for Adults: JACC Scientific Expert Panel. J. Am. Coll Cardiol. 2019, 73, 698–716. [Google Scholar] [CrossRef]
- Mathuria, N.; Wu, G.; Rojas-Delgado, F.; Shuraih, M.; Razavi, M.; Civitello, A.; Simpson, L.; Silva, G.; Wang, S.; Elayda, M.; et al. Outcomes of pre-emptive and rescue use of per-cutaneous left ventricular assist device in patients with structural heart disease undergoing catheter ablation of ventricular tachycardia. J. Interv. Card. Electrophysiol. 2017, 48, 27–34. [Google Scholar] [CrossRef]
- Santangeli, P.; Frankel, D.S.; Tung, R.; Vaseghi, M.; Sauer, W.H.; Tzou, W.S.; Mathuria, N.; Nakahara, S.; Dickfeldt, T.M.; Lakkireddy, D.; et al. Early Mortality After Catheter Ablation of Ventricular Tachycardia in Patients with Structural Heart Disease. J. Am. Coll. Cardiol. 2017, 69, 2105–2115. [Google Scholar] [CrossRef]
- Muser, D.; Liang, J.J.; Castro, S.A.; Hayashi, T.; Enriquez, A.; Troutman, G.S.; McNaughton, N.W.; Supple, G.; Birati, E.Y.; Schaller, R.; et al. Outcomes with prophylactic use of percutaneous left ventricular assist devices in high-risk patients undergoing catheter ablation of scar-related ventricular tachycardia: A propen-sity-score matched analysis. Heart Rhythm 2018, 15, 1500–1506. [Google Scholar] [CrossRef]
- John, L.A.; John, I.I.; Tedford, R.J.; Gregoski, M.J.; Gold, M.R.; Field, M.E.; Payne, J.E.; Schoepf, U.J.; Suranyi, P.; Cochet, H.; et al. Substrate Imaging Before Catheter Ablation of Ventricular Tachycardia: Risk Prediction for Acute Hemodynamic Decompensation. JACC Clin. Electrophysiol. 2023, 9, 1684–1693. [Google Scholar] [CrossRef]
- Vergara, P.; Tzou, W.S.; Tung, R.; Brombin, C.; Nonis, A.; Vaseghi, M.; Frankel, D.S.; Di Biase, L.; Tedrow, U.; Mathuria, N.; et al. Predictive Score for Identifying Survival and Recurrence Risk Profiles in Patients Undergoing Ventricular Tachycardia Ablation: The I-VT Score. Circ. Arrhythmia Electrophysiol. 2018, 11, e006730. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, A.; Liang, J.; Gentile, J.; Schaller, R.D.; Supple, G.E.; Frankel, D.S.; Garcia, F.C.; Wald, J.; Birati, E.Y.; Rame, J.E.; et al. Outcomes of rescue cardiopulmonary support for periprocedural acute hemodynamic decompensation in patients undergoing catheter ablation of electrical storm. Heart Rhythm 2018, 15, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Baratto, F.; Pappalardo, F.; Oloriz, T.; Bisceglia, C.; Vergara, P.; Silberbauer, J.; Albanese, N.; Cireddu, M.; D’Angelo, G.; Di Prima, A.L.; et al. Extracorporeal Membrane Oxygenation for He-modynamic Support of Ventricular Tachycardia Ablation. Circ. Arrhythmia Electrophysiol. 2016, 9, e004492. [Google Scholar] [CrossRef] [PubMed]
- Kusa, S.; Miller, M.A.; Whang, W.; Enomoto, Y.; Panizo, J.G.; Iwasawa, J.; Choudry, S.; Pinney, S.; Gomes, A.; Langan, N.; et al. Outcomes of Ventricular Tachycardia Ablation Using Percutaneous Left Ventricular Assist Devices. Circ. Arrhythmia Electrophysiol. 2017, 10, e004717. [Google Scholar] [CrossRef]
- Jared Bunch, T.; Mahapatra, S.; Madhu Reddy, Y.; Lakkireddy, D. The role of percutaneous left ventricular assist devices during ventricular tachycardia ablation. Europace 2012, 14 (Suppl. S2), ii26–ii32. [Google Scholar] [CrossRef]
- Mariani, S.; Napp, L.C.; Kraaier, K.; Li, T.; Bounader, K.; Hanke, J.S.; Dogan, G.; Schmitto, J.D.; Lorusso, R. Prophylactic mechanical circulatory support for protected ventricular tachycardia ablation: A meta-analysis of the literature. Artif. Organs 2021, 45, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Aryana, A.; O’neill, P.G.; Gregory, D.; Scotti, D.; Bailey, S.; Brunton, S.; Chang, M.; D’avila, A. Procedural and clinical outcomes after catheter ablation of unstable ventricular tachycardia supported by a percutaneous left ventricular assist device. Heart Rhythm 2014, 11, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Aryana, A.; D'Avila, A.; Cool, C.L.; Miller, M.A.; Garcia, F.C.; Supple, G.E.; Dukkipati, S.R.; Lakkireddy, D.; Bunch, T.J.; Bowers, M.R.; et al. Outcomes of catheter ablation of ventricular tachycardia with mechanical hemodynamic support: An analysis of the Medicare database. J. Cardiovasc. Electrophysiol. 2017, 28, 1295–1302. [Google Scholar] [CrossRef]
- Kuo, L.; Muser, D.; Shirai, Y.; Lin, A.; Liang, J.; Schaller, R.D.; Hyman, M.; Kumareswaran, R.; Arkles, J.; Supple, G.E.; et al. Periprocedural Acute Kidney Injury in Patients with Structural Heart Disease Undergoing Catheter Ablation of VT. JACC Clin. Electrophysiol. 2020, 7, 174–186. [Google Scholar] [CrossRef]
- Carbucicchio, C.; Della Bella, P.; Fassini, G.; Trevisi, N.; Riva, S.; Giraldi, F.; Baratto, F.; Marenzi, G.; Sisillo, E.; Bartorelli, A.; et al. Percutaneous Cardiopulmonary Support for Catheter Ablation of Unstable Ventricular Arrhythmias in High-Risk Patients. Herz 2009, 34, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Abuissa, H.; Roshan, J.; Lim, B.; Asirvatham, S.J. Use of the impellaTM microaxial blood pump for ablation of hemodynamically un-stable ventricular tachycardia. J. Cardiovasc. Electrophysiol. 2010, 21, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Dukkipati, S.R.; Mittnacht, A.J.; Chinitz, J.S.; Belliveau, L.; Koruth, J.S.; Gomes, J.A.; d’Avila, A.; Reddy, V.Y. Activation and entrainment mapping of he-modynamically unstable ventricular tachycardia using a percutaneous left ventricular assist device. J. Am. Coll Cardiol. 2011, 58, 1363–1371. [Google Scholar] [CrossRef]
- Lü, F.; Eckman, P.M.; Liao, K.K.; Apostolidou, I.; John, R.; Chen, T.; Das, G.S.; Francis, G.S.; Lei, H.; Trohman, R.G.; et al. Catheter ablation of hemodynamically unstable ventricular tachycardia with mechanical circulatory support. Int. J. Cardiol. 2013, 168, 3859–3865. [Google Scholar] [CrossRef]
- Reddy, Y.M.; Chinitz, L.; Mansour, M.; Bunch, T.J.; Mahapatra, S.; Swarup, V.; Di Biase, L.; Bommana, S.; Atkins, D.; Tung, R.; et al. Percutaneous left ventricular assist devices in ven-tricular tachycardia ablation: Multicenter experience. Circ. Arrhythmia Electrophysiol. 2014, 7, 244–250. [Google Scholar] [CrossRef]
- Mariani, S.; Napp, L.C.; Coco, V.L.; Delnoij, T.S.; Luermans, J.G.; ter Bekke, R.M.; Timmermans, C.; Li, T.; Dogan, G.; Schmitto, J.D.; et al. Mechanical circulatory support for life-threatening arrhythmia: A systematic review. Int. J. Cardiol. 2020, 308, 42–49. [Google Scholar] [CrossRef]
- Ostadal, P.; Mlcek, M.; Holy, F.; Horakova, S.; Kralovec, S.; Skoda, J.; Petru, J.; Kruger, A.; Hrachovina, V.; Svoboda, T.; et al. Direct Comparison of Percutaneous Circulatory Support Systems in Specific Hemodynamic Conditions in a Porcine Model. Circ. Arrhythmia Electrophysiol. 2012, 5, 1202–1206. [Google Scholar] [CrossRef]
- Jain, A.; Arora, S.; Patel, V.; Raval, M.; Modi, K.; Arora, N.; Desai, R.; Bozorgnia, B.; Bonita, R. Etiologies and Predictors of 30-Day Readmission in Heart Failure: An Updated Analysis. Int. J. Heart Fail. 2023, 5, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, A.; McCabe, M.D.; Contractor, T.; Ben Kim, H.; Sakr, A.; Hilliard, A.; Mandapati, R.; Bhardwaj, R. Multidisciplinary Approach to Hemodynamic Management During High-Risk Ventricular Tachycardia Ablation. JACC Case Rep. 2022, 4, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Bella, P.D.; Baratto, F.; Tsiachris, D.; Trevisi, N.; Vergara, P.; Bisceglia, C.; Petracca, F.; Carbucicchio, C.; Benussi, S.; Maisano, F.; et al. Management of ventricular tachycardia in the setting of a dedicated unit for the treatment of complex ventricular arrhythmias: Long-term outcome after ablation. Circulation 2013, 127, 1359–1368. [Google Scholar] [CrossRef]
- Pothineni, N.V.K.; Enriquez, A.; Kumareswaran, R.; Garcia, F.; Shah, R.; Wald, J.; Bermudez, C.; Muser, D.; Marchlinski, F.E.; Santangeli, P. Outcomes of a PAINESD score-guided multidis-ciplinary management approach for patients with ventricular tachycardia storm and advanced heart failure: A pilot study. Heart Rhythm 2023, 20, 134–139. [Google Scholar] [CrossRef]
Device | Method of Insertion | Support Mechanism | CO Increase | Benefits | Drawbacks | When Not to Use (Contraindications) | Main Risks |
---|---|---|---|---|---|---|---|
IABP | Via skin or surgically, using 7.5–8F size | Counterpulsation (reduces systolic load, boosts diastolic) | 0.5 L/min | Known technology, easy to place, small vascular entry | Limited CO boost, relies on ECG/pressure triggers, suboptimal for VT patients | Moderate/severe aortic insufficiency, aortic pathology, serious peripheral artery disease | Limb blood flow issues, vascular harm, brain stroke |
TandemHeart | Skin or surgical approach, 21F venous and 15/17F arterial | Centrifugal pump providing constant flow | 3.5–5.0 L/min | Supports part of left ventricle function | Needs bigger vascular cannulas, requires puncturing the interatrial septum, requires a retrograde transaortic approach to LV mapping | Serious peripheral artery disease, right ventricle failure | Limb blood flow issues, vascular harm, heart compression, brain stroke, remaining atrial septal hole, bleeding |
Impella 2.5 | Either through skin or surgery, with a 13F arterial access | Axial pump moving blood from left ventricle to aorta | 2.5 L/min | Assists part of left ventricle | Requires big arterial access, possible EMI during VT mapping | Mechanical aortic valve, narrow aortic opening, significant aortic insufficiency, left ventricle clot, serious peripheral artery disease, hole in the heart wall, right ventricle failure | Limb blood flow issues, vascular harm, perforation, brain stroke |
Impella CP | Inserted through skin or surgery, with a 14F arterial access | Same as Impella 2.5, but with increased flow | 3.5 L/min | Supports part of left ventricle | Needs larger arterial access, possible EMI during VT mapping | (Similar to Impella 2.5) | Limb blood flow issues, vascular harm, perforation, brain stroke |
Impella 5.0 | Surgical insertion (femoral/axillary), with a 21F access | Similar to other Impellas, with maximum support | 5 L/min | Full support for left ventricle | Requires the largest arterial access, possible EMI during VT mapping | (Similar to Impella 2.5) | Limb blood flow issues (highest risk), vascular harm, perforation, brain stroke |
VA-ECMO | Through skin or surgery, using 17–22F venous and 15F arterial cannulas | Centrifugal pump with an advanced oxygenator | >4.5 L/min | Top-tier cardiopulmonary support, useful in severe right ventricle failure | Bigger vascular cannulas, complex setup, need for perfusionist | Serious peripheral artery disease, uncontrolled bleeding disorders | Limb blood flow issues, vascular harm, bleeding, infection, blood clots in the system |
Variable | Score |
---|---|
COPD | 5 |
Age > 60 years | 3 |
Ischemic Cardiomyopathy | 6 |
NYHA Class III or IV | 6 |
LVEF < 25% | 3 |
Storm VT | 5 |
Diabetes Mellitus | 3 |
Study | Treatment Group | Control Group | Age, years | LVFE | Acute Success, % | Haemodynamic Support | Recurrence of VT (%) | Mortality/ Transplant, % | Follow-Up |
---|---|---|---|---|---|---|---|---|---|
Carbucicchio et al. 2009 [35] | 19 | NO control group | 61 ± 6 | NA | 68 | CPS | 50 | 21 | Mean: 42 months |
Abuissa et al. 2010 [36] | 3 | NO control group | 55 (mean) | NA | 100 | Impella | Mean: 7 months | ||
Miller et al. 2011 [37] | 10 | IABP: 6 NO MHS: 7 | 15 | 31 ± 16 | PLVAD group: 75 control group: 67 | Impella | PLVAD group: 30 control group: 31 | 3 months | |
Lu et al. 2013 [38] | 16 | No control group | 63± 11 | 20 ± 9 | ECMO 60 Impella: 60 LVAD: SO | ECMO: 5 patients Impella: 5 patients LVAD: 6 patients | 50 | 6 | 3 months |
Miller et al. 2013 [13] | Patients used as own controls | 59 ± 12 | 30 ± 7 | 50 | Impella 2.5 | 20 | 10 | 1 months | |
Aryana et al. 2014 [32] | 68 | 34 | 12 | 32 ± 10 | PLVAD group: 7.1 Control group: 71 | Impella 2.5/Impella CP | PLVAD group: 26 Control group: a 41 | pLVAD group: O control group: 6 | 19 ± 12 months |
Reddy et al. 2014 [39] | ABP: 22 | PLVAD group: 66 ± 12, Control 69 ± 10 | pLVAD 29 ± 15 Control 25 ± 10 | PLVAD group: 89 control group: 86 | Impella 2.5 TandemHeart 19 | PLVAD group: 42 control group: 50 | PLVAD group: 36 control group: 36 | 12 ± 5 month | |
Baratto 2016 [28] | 64 | No control group | 15 | 27 ± 9 | 69 | ECMO | 33 | 12 | Median: 21 months |
Aryana al. 2017 [33] | ABP: 115 | NA | PLVAD not otherwise specified | PLVAD group: 10.2 Control group: 14.0 | pLVAD group: 6.5 Control group: 19.1 | 12 months | |||
Enriquez et al. [27] | 21 | No control group | 60 ± 11 | 21 ± 13 | 83 | ECMO (rescue due to AHD) | 30 | 76 | Median: 10 days |
Kusa et al. 2017 [29] | 109 | −85 | PLVAD group: 64 ± 11 Control group: 61 ± 15 | pLVAD: 26 ± 10 Control: 39 ± 16 | pLVAD group: 80 Control group: 93 | 80 with Impella 2.5 and 29 With impella CP | PLVAD group: 32 control group: 21 | pLVAD: 12 control: 6 | Median: 215 days |
Mathuria et al. 2017 [22] | Rescue pLVAD: 12 Pre-emptive PLVAD: 24 | Pre-emptive PLVAD group: 65.8 ± 14 control group: 64.8 ± 29 rescue PLVAD: 68.8 ± 8 | Pre-emptive PLVAD group: 26 ± 9 control group:28 ± 5 rescue PLVAD: 24 ± 14 | Pre-emptive PLVAD group: 61 control group: 66 rescue PLVAD: 50 | Impella/ TandemHeart | Pre-emptive PLVAD group: 4 control group: 3.5 Rescue PLVAD: 58.3 | pre-emptive pLVAD group: 26 Control group: 44 Rescue PLVAD: 40 | 3 months | |
Muser et al. 2018 [24] | Pre-emptive pLVAD: 75 | 75 | PLVAD group: 65 ± 12 Control group: 64 ± 14 | PLVAD group: 27 ± 10 Control group: 27 ± 12 | PLVAO group: 81 Control group: 62 | Impella 2.5/Impella CP | PLVAD group: 33 Control group: 66 | PLVAD group: 81 Control group: 62 Control group: 41 | 12 months |
John et al. 2023 [25] | None: 55 Support device (not se 6) | No control group | Median 69 | 35 ± 14 | 43 | None | 12 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, M.V.; Pierucci, N.; Cipollone, P.; Vignaroli, W.; Piro, A.; Compagnucci, P.; Matteucci, A.; Chimenti, C.; Pandozi, C.; Dello Russo, A.; et al. Mechanical Circulatory Support Systems in the Management of Ventricular Arrhythmias: A Contemporary Overview. J. Clin. Med. 2024, 13, 1746. https://doi.org/10.3390/jcm13061746
Mariani MV, Pierucci N, Cipollone P, Vignaroli W, Piro A, Compagnucci P, Matteucci A, Chimenti C, Pandozi C, Dello Russo A, et al. Mechanical Circulatory Support Systems in the Management of Ventricular Arrhythmias: A Contemporary Overview. Journal of Clinical Medicine. 2024; 13(6):1746. https://doi.org/10.3390/jcm13061746
Chicago/Turabian StyleMariani, Marco Valerio, Nicola Pierucci, Pietro Cipollone, Walter Vignaroli, Agostino Piro, Paolo Compagnucci, Andrea Matteucci, Cristina Chimenti, Claudio Pandozi, Antonio Dello Russo, and et al. 2024. "Mechanical Circulatory Support Systems in the Management of Ventricular Arrhythmias: A Contemporary Overview" Journal of Clinical Medicine 13, no. 6: 1746. https://doi.org/10.3390/jcm13061746
APA StyleMariani, M. V., Pierucci, N., Cipollone, P., Vignaroli, W., Piro, A., Compagnucci, P., Matteucci, A., Chimenti, C., Pandozi, C., Dello Russo, A., Miraldi, F., Vizza, C. D., & Lavalle, C. (2024). Mechanical Circulatory Support Systems in the Management of Ventricular Arrhythmias: A Contemporary Overview. Journal of Clinical Medicine, 13(6), 1746. https://doi.org/10.3390/jcm13061746