Current State of Molecular Cytology in Thyroid Nodules: Platforms and Their Diagnostic and Theranostic Utility
Abstract
:1. Introduction
2. Background
3. Currently Commercially Available Molecular Tests for Indeterminate Thyroid Nodule Cytology
3.1. Afirma GSC
3.2. Thyroseq
3.3. ThyGeNEXT/ThyraMIR
4. Comparison of Molecular Tests and Cost-Effectiveness Considerations
5. Therapeutic Implications for the Future
- -
- Surgical Planning: For patients who undergo surgery, molecular testing can provide valuable information for surgical planning. It can help identify the extent of surgery needed, such as whether total thyroidectomy or lobectomy is appropriate, based on the risk of malignancy and the presence of specific genetic alterations.
- -
- Prognosis: Molecular testing can also provide prognostic information that helps predict the likelihood of recurrence or aggressive behavior of thyroid cancer. For instance, more aggressive tumors, such as differentiated high-grade thyroid cancer (DHGTC), a recently defined category from the 2022 WHO classification, are known to have exclusive characteristics, molecular patterns, and transcriptional profiles with higher BRAFV600E mutation and gene fusions rates [39]. This information is valuable for guiding postoperative management decisions, including the need for adjuvant therapy and the frequency of surveillance.
- -
- Monitoring Response to Therapy: Molecular testing can be used to monitor response to therapy in patients with advanced thyroid cancer. Changes in molecular profiles over time may indicate treatment response or the emergence of resistance mechanisms, guiding adjustments to treatment strategies.
- -
- Hereditary Risk Assessment: Molecular tests are able to identify germline mutations associated with hereditary thyroid cancer syndromes. Identification of these mutations allows for appropriate genetic counseling and screening of at-risk family members.
- -
- Treatment Selection: In cases of advanced or recurrent thyroid cancer, molecular testing may inform treatment decisions, such as the selection of targeted therapies or participation in clinical trials based on the presence of specific molecular alterations. Molecular testing can be used to assess the mRNA expression of sodium iodide symporter (NIS) in the sampled tissue and potentially predict the effectiveness of radioactive iodine (RAI) treatment [40]. Furthermore, molecular markers may assist in therapeutic decisions beyond RAI, although this practice has yet to be widely adopted [8]. The Food and Drug Administration has approved therapeutic options for the treatment of advanced BRAFV600E-mutated thyroid carcinomas, NTRK fusions, RET-mutated medullary thyroid carcinoma, and RET-fusion papillary thyroid cancer [29]. As advances in the field continue to evolve, it is predicted that further treatments targeting specific genetic alterations will continue to become available.
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aschebrook-Kilfoy, B.; James, B.; Nagar, S.; Kaplan, S.; Seng, V.; Ahsan, H.; Angelos, P.; Kaplan, E.L.; Guerrero, M.A.; Kuo, J.H.; et al. Risk factors for decreased quality of life in thyroid cancer survivors: Initial findings from the north American thyroid cancer survivorship study. Thyroid 2015, 25, 1313–1321. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef]
- Uppal, N.; Collins, R.; James, B. Thyroid nodules: Global, economic, and personal burdens. Front. Endocrinol. 2023, 14, 1113977. [Google Scholar] [CrossRef]
- van Kinschot, C.M.J.; Soekhai, V.R.; de Bekker-Grob, E.W.; Visser, W.E.; Peeters, R.P.; van Noord, C.; van Ginhoven, T.M. Preferences of patients, clinicians, and healthy controls for the management of a bethesda III thyroid nodule. Head. Neck 2023, 45, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- VanderLaan, P.A.; Marqusee, E.; Krane, J.F. Clinical outcome for atypia of undetermined significance in thyroid fine-needle aspirations: Should repeated fna be the preferred initial approach? Am. J. Clin. Pathol. 2011, 135, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Davidov, T.; Trooskin, S.Z.; Shanker, B.-A.; Yip, D.; Eng, O.; Crystal, J.; Hu, J.; Chernyavsky, V.S.; Deen, M.F.; May, M.; et al. Routine second-opinion cytopathology review of thyroid fine needle aspiration biopsies reduces diagnostic thyroidectomy. Surgery 2010, 148, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.S. Clinical use of molecular data in thyroid nodules and cancer. J. Clin. Endocrinol. Metab. 2023, 108, 2759–2771. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef]
- Chiosea, S.; Hodak, S.P.; Yip, L.; Abraham, D.; Baldwin, C.; Baloch, Z.; Gulec, A.S.; Hannoush, Z.C.; Haugen, B.R.; Joseph, L.; et al. Molecular profiling of 50,734 bethesda III-VI thyroid nodules by ThyroSeq v3: Implications for personalized management. J. Clin. Endocrinol. Metab. 2023, 108, 2999–3008. [Google Scholar] [CrossRef]
- Ali, S.Z.; Baloch, Z.W.; Cochand-Priollet, B.; Schmitt, F.C.; Vielh, P.; VanderLaan, P.A. The 2023 bethesda system for reporting thyroid cytopathology. Thyroid 2023, 33, 1039–1044. [Google Scholar] [PubMed]
- Patel, K.N.; Angell, T.E.; Babiarz, J.; Barth, N.M.; Blevins, T.; Duh, Q.-Y.; Ghossein, R.A.; Harrell, R.M.; Huang, J.; Kennedy, G.C.; et al. Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg. 2018, 153, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Arosemena, M.; Thekkumkattil, A.; Valderrama, M.I.L.; Kuker, R.A.; Castillo, R.P.; Sidani, C.; Gonzalez, M.L.; Casula, S.; Kargi, A.Y. American thyroid association sonographic risk and afirma gene expression classifier alone and in combination for the diagnosis of thyroid nodules with bethesda category III cytology. Thyroid 2020, 30, 1613–1619. [Google Scholar] [CrossRef] [PubMed]
- Nasr, C.E.; Andrioli, M.; Endo, M.; Harrell, R.M.; Livhits, M.J.; Osakwe, I.; Polavarapu, P.; Siperstein, A.; Wei, S.; Zheng, X.; et al. Real-world performance of the afirma genomic sequencing classifier (GSC)—A meta-analysis. J. Clin. Endocrinol. Metab. 2023, 108, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Harrell, R.M.; Eyerly-Webb, S.A.; Pinnar, N.E.; Golding, A.C.; Edwards, C.M.; Bimston, D.N. Community endocrine surgical experience with false-negative afirma gec® results: 2011–2017. Endocr. Pract. 2018, 24, 622–627. [Google Scholar] [CrossRef]
- Angell, T.E.; Wirth, L.J.; Cabanillas, M.E.; Shindo, M.L.; Cibas, E.S.; Babiarz, J.E.; Hao, Y.; Kim, S.Y.; Walsh, P.S.; Huang, J.; et al. Analytical and clinical validation of expressed variants and fusions from the whole transcriptome of thyroid FNA samples. Front. Endocrinol. 2019, 10, 612. [Google Scholar] [CrossRef]
- San Martin, V.T.; Lawrence, L.; Bena, J.; Madhun, N.Z.; Berber, E.; Elsheikh, T.M.; Nasr, C.E. Real-world comparison of afirma GEC and GSC for the assessment of cytologically indeterminate thyroid nodules. J. Clin. Endocrinol. Metab. 2020, 105, e428–e435. [Google Scholar] [CrossRef]
- Wei, S.; Veloski, C.; Sharda, P.; Ehya, H. Performance of the afirma genomic sequencing classifier versus gene expression classifier: An institutional experience. Cancer Cytopathol. 2019, 127, 720–724. [Google Scholar] [CrossRef]
- Andrioli, M.; Carocci, S.; Alessandrini, S.; Amini, M.; Van Doorne, D.; Pace, D.; Lauria, A.; Raffaelli, M.; Trimboli, P. Testing for afirma in thyroid nodules with high-risk indeterminate cytology (TIR3B): First italian experience. Endocr. Pathol. 2020, 31, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Aguilar-Jakthong, J.S.; Moatamed, N.A. Comparison of afirma gene expression classifier with gene sequencing classifier in indeterminate thyroid nodules: A single-institutional experience. Cytopathology 2021, 32, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Livhits, M.J.; Zhu, C.Y.; Kuo, E.J.; Nguyen, D.T.; Kim, J.; Tseng, C.H.; Leung, A.M.; Rao, J.; Levin, M.; Douek, M.L.; et al. Effectiveness of molecular testing techniques for diagnosis of indeterminate thyroid nodules: A randomized clinical trial. JAMA Oncol. 2021, 7, 70–77. [Google Scholar] [CrossRef]
- Gortakowski, M.; Feghali, K.; Osakwe, I. Single institution experience with afirma and thyroseq testing in indeterminate thyroid nodules. Thyroid 2021, 31, 1376–1382. [Google Scholar] [CrossRef]
- Zhang, L.; Smola, B.; Lew, M.; Pang, J.; Cantley, R.; Pantanowitz, L.; Heider, A.; Jing, X. Performance of afirma genomic sequencing classifier vs gene expression classifier in bethesda category III thyroid nodules: An institutional experience. Diagn. Cytopathol. 2021, 49, 921–927. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, T.; Layfield, L.; Esebua, M. Performance of afirma gene sequencing classifier versus gene expression classifier in thyroid nodules with indeterminate cytology. J. Am. Soc. Cytopathol. 2022, 11, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Nabhan, F.; Porter, K.; Roll, K.; Shirley, L.A.; Azaryan, I.; Tonkovich, D.; Perlick, J.; Ryan, L.E.; Khawaja, R.; et al. Afirma gene sequencing classifier compared with gene expression classifier in indeterminate thyroid nodules. Thyroid 2019, 29, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Babazadeh, N.T.; Sinclair, T.J.; Krishnamurthy, V.; Jin, J.; Heiden, K.B.; Shin, J.; Berber, E.; Siperstein, A. Thyroid nodule molecular profiling: The clinical utility of afirma xpression atlas for nodules with afirma genomic sequencing classifier–suspicious results. Surgery 2022, 171, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Lastra, R.R.; Pramick, M.R.; Crammer, C.J.; LiVolsi, V.A.; Baloch, Z.W. Implications of a suspicious afirma test result in thyroid fine-needle aspiration cytology: An institutional experience. Cancer Cytopathol. 2014, 122, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Terhaar, S.; McDaniel, L.; Gorelik, D.; Gerhard, E.; Chen, C.; Ma, Y.; Joshi, A.S.; Goodman, J.F.; Thakkar, P.G. Diagnostic performance of the second-generation molecular tests in the assessment of indeterminate thyroid nodules: A systematic review and meta-analysis. Am. J. Otolaryngol. 2022, 43, 103394. [Google Scholar] [CrossRef] [PubMed]
- Steward, D.L.; Carty, S.E.; Sippel, R.S.; Yang, S.P.; Sosa, J.A.; Sipos, J.A.; Figge, J.J.; Mandel, S.; Haugen, B.R.; Burman, K.D.; et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: A prospective blinded multicenter study. JAMA Oncol. 2019, 5, 204–212. [Google Scholar] [CrossRef]
- Desai, D.; Lepe, M.; Baloch, Z.W.; Mandel, S.J. ThyroSeq v3 for bethesda III and IV: An institutional experience. Cancer Cytopathol. 2021, 129, 164–170. [Google Scholar] [CrossRef]
- Chen, T.; Gilfix, B.M.; Rivera, J.A.; Sadeghi, N.; Richardson, K.; Hier, M.P.; Forest, V.-I.; Fishman, D.; Caglar, D.; Pusztaszeri, M.; et al. The role of the ThyroSeq v3 molecular test in the surgical management of thyroid nodules in the canadian public health care setting. Thyroid 2020, 30, 1280–1287. [Google Scholar] [CrossRef]
- Lupo, M.A.; Walts, A.E.; Sistrunk, J.W.; Giordano, T.J.; Sadow, P.M.; Massoll, N.; Campbell, R.; Jackson, S.A.; Toney, N.; Narick, C.M.; et al. Multiplatform molecular test performance in indeterminate thyroid nodules. Diagn. Cytopathol. 2020, 48, 1254–1264. [Google Scholar] [CrossRef]
- Finkelstein, S.D.; Sistrunk, J.W.; Malchoff, C.; Thompson, D.V.; Kumar, G.; Timmaraju, V.A.; Repko, B.; Mireskandari, A.; Evoy-Goodman, L.A.; Massoll, N.A.; et al. A retrospective evaluation of the diagnostic performance of an interdependent pairwise MicroRNA expression analysis with a mutation panel in indeterminate thyroid nodules. Thyroid 2022, 32, 1362–1371. [Google Scholar] [CrossRef]
- Kargi, A.Y.; Bustamante, M.P.; Gulec, S. Genomic profiling of thyroid nodules: Current role for ThyroSeq next-generation sequencing on clinical decision-making. Mol. Imaging Radionucl. Ther. 2017, 26 (Suppl. S1), 24. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.E.; Raghunathan, R.S.; Hughes, E.G.; Longstaff, X.R.; Tseng, C.-H.; Li, S.; Cheung, D.S.; Gofnung, A.Y.; Famini, P.; Wu, J.X.; et al. Bethesda III and IV thyroid nodules managed nonoperatively after molecular testing with afirma GSC or thyroseq v3. J. Clin. Endocrinol. Metab. 2023, 108, e698–e703. [Google Scholar] [CrossRef] [PubMed]
- Dharampal, N.; Smith, K.; Harvey, A.; Paschke, R.; Rudmik, L.; Chandarana, S. Cost-effectiveness analysis of molecular testing for cytologically indeterminate thyroid nodules. J. Otolaryngol. Head Neck Surg. 2022, 51, 46. [Google Scholar] [CrossRef] [PubMed]
- Sciacchitano, S.; Lavra, L.; Ulivieri, A.; Magi, F.; De Francesco, G.P.; Bellotti, C.; Salehi, L.B.; Trovato, M.; Drago, C.; Bartolazzi, A. Comparative analysis of diagnostic performance, feasibility and cost of different test-methods for thyroid nodules with indeterminate cytology. Oncotarget 2017, 8, 49421–49442. [Google Scholar] [CrossRef] [PubMed]
- Figge, J.J.; Gooding, W.E.; Steward, D.L.; Yip, L.; Sippel, R.S.; Yang, S.P.; Scheri, R.P.; Sipos, J.A.; Mandel, S.J.; Mayson, S.E.; et al. Do ultrasound patterns and clinical parameters inform the probability of thyroid cancer predicted by molecular testing in nodules with indeterminate cytology? Thyroid 2021, 31, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.S.; Dong, F.; Telatar, M.; Lorch, J.H.; Alexander, E.K.; Marqusee, E.; Cho, N.L.; Nehs, M.A.; Doherty, G.M.; Afkhami, M.; et al. Papillary thyroid carcinoma with high-grade features versus poorly differentiated thyroid carcinoma: An analysis of clinicopathologic and molecular features and outcome. Thyroid 2021, 31, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Late Breaking Abstracts. Thyroid®. 2023; Volume 33, pp. A-125–A-171. [CrossRef]
Characteristic | ThyroSeq GC | Afirma GSC | ThyGeNEXT/ThyraMIR * |
---|---|---|---|
Methodology | RNA sequencing DNA sequencing | RNA sequencing | RNA sequencing DNA sequencing microRNA classification |
Number of Genes tested | NGS DNA and RNA 112 genes (12,135 variants) 120+fusions. Gene expression alterations (19 genes). Copy number alterations (10 chromosomal regions) | GSC: RNA expression analysis of over 10,000 genes XA: 593 genes, 905 variants, and 235 fusion pairs | NGS DNA and RNA 10 genes, 38 fusions, 10 miRNAs |
NPV | ~97% | >90% | ~97 |
PPV | ~66% | ~60% | ~75 |
Test result categories | -Negative -Positive (subdivided in subcategories) | -Negative -Suspicious | -Negative -Moderate -Positive |
Can detect specific targetable mutations: BRAFV600E, TERT, RET/PTC, ALK | BRAF V600E TERT RET/PTC ALK | BRAF V600E RET | BRAF V600E TERT RET/PTC ALK |
Collection process | 1 dedicated pass or diagnostic cytology slides or cell blocks | 1 to 2 dedicated passes | 1 dedicated pass or diagnostic cytology slides or cell blocks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannoush, Z.C.; Ruiz-Cordero, R.; Jara, M.; Kargi, A.Y. Current State of Molecular Cytology in Thyroid Nodules: Platforms and Their Diagnostic and Theranostic Utility. J. Clin. Med. 2024, 13, 1759. https://doi.org/10.3390/jcm13061759
Hannoush ZC, Ruiz-Cordero R, Jara M, Kargi AY. Current State of Molecular Cytology in Thyroid Nodules: Platforms and Their Diagnostic and Theranostic Utility. Journal of Clinical Medicine. 2024; 13(6):1759. https://doi.org/10.3390/jcm13061759
Chicago/Turabian StyleHannoush, Zeina C., Roberto Ruiz-Cordero, Mark Jara, and Atil Y. Kargi. 2024. "Current State of Molecular Cytology in Thyroid Nodules: Platforms and Their Diagnostic and Theranostic Utility" Journal of Clinical Medicine 13, no. 6: 1759. https://doi.org/10.3390/jcm13061759
APA StyleHannoush, Z. C., Ruiz-Cordero, R., Jara, M., & Kargi, A. Y. (2024). Current State of Molecular Cytology in Thyroid Nodules: Platforms and Their Diagnostic and Theranostic Utility. Journal of Clinical Medicine, 13(6), 1759. https://doi.org/10.3390/jcm13061759