The Value of Computed Tomography-Based Planning in Shoulder Arthroplasty Compared to Intra-/Interobserver Reliability of X-ray Planning
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Reliability of Baseplate Planning
4.2. Reliability of Glenosphere Planning
4.3. Reliability of Stem Planning
4.4. Intraclass Comparison with the Final Implanted Size
4.5. Three-Dimensional planning Compared to Two-Dimensional X-ray Planning
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lübbeke, A.; Rees, J.L.; Barea, C.; Combescure, C.; Carr, A.J.; Silman, A.J. International Variation in Shoulder Arthroplasty: Incidence, Indication, Type of Procedure, and Outcomes Evaluation in 9 Countries. Acta Orthop. 2017, 88, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Ortmaier, R.; Resch, H.; Matis, N.; Blocher, M.; Auffarth, A.; Mayer, M.; Hitzl, W.; Tauber, M. Reverse Shoulder Arthroplasty in Revision of Failed Shoulder Arthroplasty—Outcome and Follow-Up. Int. Orthop. 2013, 37, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Best, M.J.; Aziz, K.T.; Wilckens, J.H.; McFarland, E.G.; Srikumaran, U. Increasing Incidence of Primary Reverse and Anatomic Total Shoulder Arthroplasty in the United States. J. Shoulder Elb. Surg. 2021, 30, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Berhouet, J.; Gulotta, L.V.; Dines, D.M.; Craig, E.; Warren, R.F.; Choi, D.; Chen, X.; Kontaxis, A. Preoperative Planning for Accurate Glenoid Component Positioning in Reverse Shoulder Arthroplasty. Orthop. Traumatol. Surg. Res. 2017, 103, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Bohsali, K.I.; Bois, A.J.; Wirth, M.A. Complications of Shoulder Arthroplasty. J. Bone Jt. Surg. Am. Vol. 2017, 99, 256–269. [Google Scholar] [CrossRef]
- Werner, B.S.; Hudek, R.; Burkhart, K.J.; Gohlke, F. The Influence of Three-Dimensional Planning on Decision-Making in Total Shoulder Arthroplasty. J. Shoulder Elb. Surg. 2017, 26, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, S.; Greiwe, R.M.; Frankle, M.A.; Siegal, S.; Lee, W.E. Biomechanical Comparison of Component Position and Hardware Failure in the Reverse Shoulder Prosthesis. J. Shoulder Elb. Surg. 2007, 16, S9–S12. [Google Scholar] [CrossRef]
- Edwards, T.B.; Trappey, G.J.; Riley, C.; O’Connor, D.P.; Elkousy, H.A.; Gartsman, G.M. Inferior Tilt of the Glenoid Component Does Not Decrease Scapular Notching in Reverse Shoulder Arthroplasty: Results of a Prospective Randomized Study. J. Shoulder Elb. Surg. 2012, 21, 641–646. [Google Scholar] [CrossRef]
- Friedman, R.J.; Barcel, D.A.; Eichinger, J.K. Scapular Notching in Reverse Total Shoulder Arthroplasty. J. Am. Acad. Orthop. Surg. 2019, 27, 200–209. [Google Scholar] [CrossRef]
- Favre, P.; Sussmann, P.S.; Gerber, C. The Effect of Component Positioning on Intrinsic Stability of the Reverse Shoulder Arthroplasty. J. Shoulder Elb. Surg. 2010, 19, 550–556. [Google Scholar] [CrossRef]
- Throckmorton, T.W.; Gulotta, L.V.; Bonnarens, F.O.; Wright, S.A.; Hartzell, J.L.; Rozzi, W.B.; Hurst, J.M.; Frostick, S.P.; Sperling, J.W. Patient-Specific Targeting Guides Compared with Traditional Instrumentation for Glenoid Component Placement in Shoulder Arthroplasty: A Multi-Surgeon Study in 70 Arthritic Cadaver Specimens. J. Shoulder Elb. Surg. 2015, 24, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Werner, B.C.; Provencher, M.; Horinek, J.L.; Moroder, P.; Ardebol, J.; Denard, P.J.; Bedi, A.; Bercik, M.; Brolin, T.; et al. Short-Term Functional Outcomes of Reverse Shoulder Arthroplasty Following Three-Dimensional Planning Is Similar Whether Placed with a Standard Guide or Patient-Specific Instrumentation. J. Shoulder Elb. Surg. 2023, 32, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A.A.; Galhoum, M.S.; Mokhtar, M.A.; Roebuck, M.M.; Wood, A.; Yin, Q.; Frostick, S.P. Patient-Specific Instrumentation Versus Standard Surgical Instruments in Primary Reverse Total Shoulder Arthroplasty: A Retrospective Comparative Clinical Study. J. Shoulder Elb. Arthroplast. 2022, 6, 247154922210754. [Google Scholar] [CrossRef]
- Raiss, P.; Schnetzke, M.; Wittmann, T.; Kilian, C.M.; Edwards, T.B.; Denard, P.J.; Neyton, L.; Godenèche, A.; Walch, G. Postoperative Radiographic Findings of an Uncemented Convertible Short Stem for Anatomic and Reverse Shoulder Arthroplasty. J. Shoulder Elb. Surg. 2019, 28, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Ferreira, L.M.; Brownhill, J.R.; King, G.J.W.; Drosdowech, D.S.; Faber, K.J.; Johnson, J.A. Improved Accuracy of Computer Assisted Glenoid Implantation in Total Shoulder Arthroplasty: An in-Vitro Randomized Controlled Trial. J. Shoulder Elb. Surg. 2009, 18, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Villatte, G.; Muller, A.S.; Pereira, B.; Mulliez, A.; Reilly, P.; Emery, R. Use of Patient-Specific Instrumentation (PSI) for Glenoid Component Positioning in Shoulder Arthroplasty. A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0201759. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, J.; Baker, J.; Rodriguez, E.; Brems, J.; Ricchetti, E.; Mesiha, M.; Bryan, J. Three-Dimensional Preoperative Planning Software and a Novel Information Transfer Technology Improve Glenoid Component Positioning. J. Bone Jt. Surg. 2014, 96, e71. [Google Scholar] [CrossRef]
- Parsons, M.; Greene, A.; Polakovic, S.; Rohrs, E.; Byram, I.; Cheung, E.; Jones, R.; Papandrea, R.; Youderian, A.; Wright, T.; et al. Intersurgeon and Intrasurgeon Variability in Preoperative Planning of Anatomic Total Shoulder Arthroplasty: A Quantitative Comparison of 49 Cases Planned by 9 Surgeons. J. Shoulder Elb. Surg. 2020, 29, 2610–2618. [Google Scholar] [CrossRef]
- Bechtold, D.A.; Ganapathy, P.K.; Aleem, A.W.; Chamberlain, A.M.; Keener, J.D. The Relationship between Glenoid Inclination and Instability Following Primary Reverse Shoulder Arthroplasty. J. Shoulder Elb. Surg. 2021, 30, e370–e377. [Google Scholar] [CrossRef]
- Zumstein, M.A.; Pinedo, M.; Old, J.; Boileau, P. Problems, Complications, Reoperations, and Revisions in Reverse Total Shoulder Arthroplasty: A Systematic Review. J. Shoulder Elb. Surg. 2011, 20, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.T.; Jost, B.; Zipeto, C.; Budassi, P.; Zumstein, M.A. Glenoid Component Placement in Reverse Shoulder Arthroplasty Assisted with Augmented Reality through a Head-Mounted Display Leads to Low Deviation between Planned and Postoperative Parameters. J. Shoulder Elb. Surg. 2023, 32, e587–e596. [Google Scholar] [CrossRef] [PubMed]
- Daggett, M.; Werner, B.; Collin, P.; Gauci, M.O.; Chaoui, J.; Walch, G. Correlation between Glenoid Inclination and Critical Shoulder Angle: A Radiographic and Computed Tomography Study. J. Shoulder Elb. Surg. 2015, 24, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, S.; Keller, T.S.; Levy, J.C.; Lee, W.E.; Luo, Z.P. Hierarchy of Stability Factors in Reverse Shoulder Arthroplasty. Clin. Orthop. Relat. Res. 2008, 466, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, S.; Levy, J.C.; Frankle, M.A.; Cuff, D.; Keller, T.S.; Pupello, D.R.; Lee, W.E. Evaluation of Abduction Range of Motion and Avoidance of Inferior Scapular Impingement in a Reverse Shoulder Model. J. Shoulder Elb. Surg. 2008, 17, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Martin, J.R.; Campbell, D.H.; Fernandes, R.R.; Amini, M.H. Inferior Tilt of the Glenoid Leads to Medialization and Increases Impingement on the Scapular Neck in Reverse Shoulder Arthroplasty. J. Shoulder Elb. Surg. 2021, 30, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Olaiya, O.R.; Nadeem, I.; Horner, N.S.; Bedi, A.; Leroux, T.; Alolabi, B.; Khan, M. Templating in Shoulder Arthroplasty—A Comparison of 2D CT to 3D CT Planning Software: A Systematic Review. Shoulder Elb. 2020, 12, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Thussbas, C.; Koch, M.; Seebauer, L. Management of Glenoid Bone Defects with Reverse Shoulder Arthroplasty—Surgical Technique and Clinical Outcomes. J. Shoulder Elb. Surg. 2018, 27, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Boileau, P.; Morin-Salvo, N.; Gauci, M.O.; Seeto, B.L.; Chalmers, P.N.; Holzer, N.; Walch, G. Angled BIO-RSA (Bony-Increased Offset–Reverse Shoulder Arthroplasty): A Solution for the Management of Glenoid Bone Loss and Erosion. J. Shoulder Elb. Surg. 2017, 26, 2133–2142. [Google Scholar] [CrossRef]
- Greiner, S.; Schmidt, C.; Herrmann, S.; Pauly, S.; Perka, C. Clinical Performance of Lateralized versus Non-Lateralized Reverse Shoulder Arthroplasty: A Prospective Randomized Study. J. Shoulder Elb. Surg. 2015, 24, 1397–1404. [Google Scholar] [CrossRef]
- Hsu, J.E.; Ricchetti, E.T.; Huffman, G.R.; Iannotti, J.P.; Glaser, D.L. Addressing Glenoid Bone Deficiency and Asymmetric Posterior Erosion in Shoulder Arthroplasty. J. Shoulder Elb. Surg. 2013, 22, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Keçeci, T.; Uçan, V.; Ertogrul, R.; Şahin, K.; Bilsel, K.; Kapıcıoğlu, M. The Effect of Eccentric Glenoid Reaming in Reverse Shoulder Arthroplasty for Glenohumeral Osteoarthritis. J. Orthop. 2024, 50, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Werner, B.S.; Böhm, D.; Abdelkawi, A.; Gohlke, F. Glenoid Bone Grafting in Reverse Shoulder Arthroplasty for Long-Standing Anterior Shoulder Dislocation. J. Shoulder Elb. Surg. 2014, 23, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Formaini, N.T.; Everding, N.G.; Levy, J.C.; Santoni, B.G.; Nayak, A.N.; Wilson, C.; Cabezas, A.F. The Effect of Glenoid Bone Loss on Reverse Shoulder Arthroplasty Baseplate Fixation. J. Shoulder Elb. Surg. 2015, 24, e312–e319. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.R.; Hansen, U.N.; Bull, A.M.J.; Emery, R.; Amis, A.A. Fixation of the Reversed Shoulder Prosthesis. J. Shoulder Elb. Surg. 2008, 17, 974–980. [Google Scholar] [CrossRef]
- Lanham, N.S.; Peterson, J.R.; Ahmed, R.; Pearsall, C.; Jobin, C.M.; Levine, W.N. Comparison of Glenoid Bone Grafting vs. Augmented Glenoid Baseplates in Reverse Shoulder Arthroplasty: A Systematic Review. J. Shoulder Elb. Surg. 2023, 32, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.W.; Hayes, A.; Gibbons, R.; Mackie, K.E. Computer Navigation of the Glenoid Component in Reverse Total Shoulder Arthroplasty: A Clinical Trial to Evaluate the Learning Curve. J. Shoulder Elb. Surg. 2020, 29, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.M.; Frank, T.; Whyne, C.M.; Henry, P.D.G. Glenoid Component Positioning and Guidance Techniques in Anatomic and Reverse Total Shoulder Arthroplasty: A Systematic Review and Meta-Analysis. Shoulder Elb. 2019, 11, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Kircher, J.; Wiedemann, M.; Magosch, P.; Lichtenberg, S.; Habermeyer, P. Improved Accuracy of Glenoid Positioning in Total Shoulder Arthroplasty with Intraoperative Navigation: A Prospective-Randomized Clinical Study. J. Shoulder Elb. Surg. 2009, 18, 515–520. [Google Scholar] [CrossRef]
- Kriechling, P.; Roner, S.; Liebmann, F.; Casari, F.; Fürnstahl, P.; Wieser, K. Augmented Reality for Base Plate Component Placement in Reverse Total Shoulder Arthroplasty: A Feasibility Study. Arch. Orthop. Trauma. Surg. 2021, 141, 1447–1453. [Google Scholar] [CrossRef]
- Kriechling, P.; Loucas, R.; Loucas, M.; Casari, F.; Fürnstahl, P.; Wieser, K. Augmented Reality through Head-Mounted Display for Navigation of Baseplate Component Placement in Reverse Total Shoulder Arthroplasty: A Cadaveric Study. Arch. Orthop. Trauma. Surg. 2023, 143, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.M.; Gregory, J.; Sledge, J.; Allard, R.; Mir, O. Surgery Guided by Mixed Reality: Presentation of a Proof of Concept. Acta Orthop. 2018, 89, 480–483. [Google Scholar] [CrossRef] [PubMed]
Rater | Status | Age | Experience in Years | Experience in Cases (TSA) | Cases (TSA) per Year |
---|---|---|---|---|---|
1 | Student | 24 | 0 | 0 | 0 |
2 | Resident | 31 | 5 | 0 | 0 |
3 | Specialist | 33 | 10 | 85 | 20 |
4 | Professor | 38 | 14 | >200 | 50 |
Base plate | Glenosphere | Shaft | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No Deviations | Deviations | Total | No Deviations | Deviations | Total | No Deviations | Deviations | Total | |||
Surgeon | 1 | Amount | 13 | 17 | 30 | 5 | 25 | 30 | 4 | 26 | 30 |
% | 43.30% | 56.70% | 100% | 16.70% | 83.30% | 100% | 13.30% | 86.70% | 100% | ||
2 | Amount | 12 | 18 | 30 | 16 | 14 | 30 | 6 | 24 | 30 | |
% | 40.00% | 60.00% | 100% | 53.30% | 46.70% | 100% | 20.00% | 80.00% | 100% | ||
3 | Amount | 14 | 16 | 30 | 20 | 10 | 30 | 5 | 25 | 30 | |
% | 46.70% | 53.30% | 100% | 66.70% | 33.30% | 100% | 16.70% | 83.30% | 100% | ||
4 | Amount | 14 | 16 | 30 | 18 | 12 | 30 | 5 | 25 | 30 | |
% | 46.70% | 53.30% | 100% | 60.00% | 40.00% | 100% | 16.70% | 83.30% | 100% | ||
5 | Amount | 24 | 6 | 30 | 26 | 4 | 30 | 7 | 23 | 30 | |
% | 80.00% | 20.00% | 100% | 86.70% | 13.30% | 100% | 23.30% | 76.70% | 100% | ||
Total | Amount | 77 | 73 | 150 | 85 | 65 | 150 | 27 | 123 | 150 | |
% | 51.30% | 48.70% | 100% | 56.70% | 43.30% | 100% | 18.00% | 82.00% | 100% | ||
Pearson-Chi-Quadrat: 12.702, df = 4, p = 0.013 | Pearson-Chi-Quadrat: 32.036, df = 4, p < 0.001 | Pearson-Chi-Quadrat: 1.174, df = 4, p = 0.882 |
Surgeon 1 | Surgeon 2 | |||
Intraclass correlation coefficients for base plate, glenosphere, and shaft | Intraclass correlation coefficients for base plate, glenosphere, and shaft | |||
Characteristic | Light’s Kappa *|ICC ** | Characteristic | Light’s Kappa *|ICC ** | |
Base plate | 0.525 (p = 0.005) * | Base plate | 0.468 (p < 0.001) * | |
Glenosphere | 0.443 (p = 0.009) * | Glenosphere | 0.324 (p = 0.003) * | |
Shaft | 0.917 (p < 0.001) ** | Shaft | 0.893 (p < 0.001) ** | |
Surgeon 3 | Surgeon 4 | |||
Intraclass correlation coefficients for base plate, glenosphere, and shaft | Intraclass correlation coefficients for base plate, glenosphere, and shaft | |||
Characteristic | Light’s Kappa *|ICC ** | Characteristic | Light’s Kappa *|ICC ** | |
Base plate | 0.462 (p = 0.027) * | Base plate | 0.447 (p < 0.001) * | |
Glenosphere | 0.463 (p < 0.001) * | Glenosphere | 0.289 (p = 0.073) * | |
Shaft | 0.891 (p < 0.001) ** | Shaft | 0.797 (p < 0.001) ** |
Surgeon 1 | Surgeon 2 | |||
Intraclass correlation coefficients for base plate, glenosphere, and shaft | Intraclass correlation coefficients for base plate, glenosphere, and shaft | |||
Characteristic | Light’s Kappa *|ICC ** | Characteristic | Light’s Kappa *|ICC ** | |
Base plate | 0.149 (p = 0.291) * | Base plate | 0.113 (p = 0.369) * | |
Glenosphere | 0.001 (p = 0.987 )* | Glenosphere | 0.267 (p = 0.053) * | |
Shaft | 0.272 (p = 0.055) ** | Shaft | 0.412 (p = 0.012) ** | |
Surgeon 3 | Surgeon 4 | |||
Intraclass correlation coefficients for base plate, glenosphere, and shaft | Intraclass correlation coefficients for base plate, glenosphere, and shaft | |||
Characteristic | Light’s Kappa *|ICC ** | Characteristic | Light’s Kappa *|ICC ** | |
Base plate | 0.158 (p = 0.256) * | Base plate | 0.249 (p = 0.033) * | |
Glenosphere | 0.349 (p = 0.050) * | Glenosphere | 0.221 (p = 0.214) * | |
Shaft | 0.296 (p = 0.046) ** | Shaft | 0.428 (p = 0.008) ** | |
Surgeon 5 (Computer) | ||||
Intraclass correlation coefficients for base plate, glenosphere, and shaft | ||||
Characteristic | Light’s Kappa *|ICC ** | |||
Base plate | 0.688 (p < 0.001) * | |||
Glenosphere | 0.695 (p < 0.001) * | |||
Shaft | 0.484 (p = 0.003) ** |
Implant Greater than Planned (%) | |||
Base Plate | Glenosphere | Shaft | |
Rater 1–4 | 48.33% | 6.67% | 47.50% |
3D Planning | 0.00% | 6.67% | 43.33% |
Implant less than planned (%) | |||
Base plate | Glenosphere | Shaft | |
Rater 1–4 | 3.33% | 44.17% | 35.83% |
3D Planning | 20.00% | 6.67% | 33.33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bischofreiter, M.; Sacan, E.; Gattringer, M.; Gruber, M.S.; Breulmann, F.L.; Kindermann, H.; Heuberer, P.; Mattiassich, G.; Ortmaier, R. The Value of Computed Tomography-Based Planning in Shoulder Arthroplasty Compared to Intra-/Interobserver Reliability of X-ray Planning. J. Clin. Med. 2024, 13, 2022. https://doi.org/10.3390/jcm13072022
Bischofreiter M, Sacan E, Gattringer M, Gruber MS, Breulmann FL, Kindermann H, Heuberer P, Mattiassich G, Ortmaier R. The Value of Computed Tomography-Based Planning in Shoulder Arthroplasty Compared to Intra-/Interobserver Reliability of X-ray Planning. Journal of Clinical Medicine. 2024; 13(7):2022. https://doi.org/10.3390/jcm13072022
Chicago/Turabian StyleBischofreiter, Martin, Edanur Sacan, Michael Gattringer, Michael S. Gruber, Franziska L. Breulmann, Harald Kindermann, Philipp Heuberer, Georg Mattiassich, and Reinhold Ortmaier. 2024. "The Value of Computed Tomography-Based Planning in Shoulder Arthroplasty Compared to Intra-/Interobserver Reliability of X-ray Planning" Journal of Clinical Medicine 13, no. 7: 2022. https://doi.org/10.3390/jcm13072022
APA StyleBischofreiter, M., Sacan, E., Gattringer, M., Gruber, M. S., Breulmann, F. L., Kindermann, H., Heuberer, P., Mattiassich, G., & Ortmaier, R. (2024). The Value of Computed Tomography-Based Planning in Shoulder Arthroplasty Compared to Intra-/Interobserver Reliability of X-ray Planning. Journal of Clinical Medicine, 13(7), 2022. https://doi.org/10.3390/jcm13072022