Elevated Leukocyte Glucose Index Is Associated with Long-Term Arteriovenous Fistula Failure in Dialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Study Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidli, J.; Widmer, M.K.; Basile, C.; de Donato, G.; Gallieni, M.; Gibbons, C.P.; Haage, P.; Hamilton, G.; Hedin, U.; Kamper, L.; et al. Editor’s Choice—Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2018, 55, 757–818. [Google Scholar] [CrossRef] [PubMed]
- Arbănaşi, E.-M.; Russu, E.; Mureşan, A.V.; Arbănaşi, E.-M.; Kaller, R. Ulnar-Basilic Arteriovenous Fistula with Multilocular Gigantic Aneurysmal Dilatation: A Case Report. Acta Marisiensis—Ser. Medica 2021, 67, 244–246. [Google Scholar] [CrossRef]
- Kaller, R.; Mureșan, A.V.; Arbănași, E.M.; Arbănași, E.M.; Kovács, I.; Horváth, E.; Suciu, B.A.; Hosu, I.; Russu, E. Uncommon Surgical Management by AVF between the Great Saphenous Vein and Anterior Tibial Artery for Old Radiocephalic AVF Failure. Life 2022, 12, 529. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaishi, A.A.; Oliver, M.J.; Thomas, S.M.; Lok, C.E.; Zhang, J.C.; Garg, A.X.; Kosa, S.D.; Quinn, R.R.; Moist, L.M. Patency Rates of the Arteriovenous Fistula for Hemodialysis: A Systematic Review and Meta-Analysis. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2014, 63, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Biuckians, A.; Scott, E.C.; Meier, G.H.; Panneton, J.M.; Glickman, M.H. The Natural History of Autologous Fistulas as First-Time Dialysis Access in the KDOQI Era. J. Vasc. Surg. 2008, 47, 415–421; discussion 420–421. [Google Scholar] [CrossRef] [PubMed]
- Ayez, N.; van Houten, V.A.; de Smet, A.A.; van Well, A.M.; Akkersdijk, G.P.; van de Ven, P.J.; Fioole, B. The Basilic Vein and the Cephalic Vein Perform Equally in Upper Arm Arteriovenous Fistulae. Eur. J. Vasc. Endovasc. Surg. 2012, 44, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Ravani, P.; Brunori, G.; Mandolfo, S.; Cancarini, G.; Imbasciati, E.; Marcelli, D.; Malberti, F. Cardiovascular Comorbidity and Late Referral Impact Arteriovenous Fistula Survival: A Prospective Multicenter Study. J. Am. Soc. Nephrol. JASN 2004, 15, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Kaller, R.; Arbănași, E.M.; Mureșan, A.V.; Voidăzan, S.; Arbănași, E.M.; Horváth, E.; Suciu, B.A.; Hosu, I.; Halmaciu, I.; Brinzaniuc, K.; et al. The Predictive Value of Systemic Inflammatory Markers, the Prognostic Nutritional Index, and Measured Vessels’ Diameters in Arteriovenous Fistula Maturation Failure. Life 2022, 12, 1447. [Google Scholar] [CrossRef] [PubMed]
- Kaller, R.; Russu, E.; Arbănași, E.M.; Mureșan, A.V.; Jakab, M.; Ciucanu, C.C.; Arbănași, E.M.; Suciu, B.A.; Hosu, I.; Demian, L.; et al. Intimal CD31-Positive Relative Surfaces Are Associated with Systemic Inflammatory Markers and Maturation of Arteriovenous Fistula in Dialysis Patients. J. Clin. Med. 2023, 12, 4419. [Google Scholar] [CrossRef]
- Mureșan, A.V.; Russu, E.; Arbănași, E.M.; Kaller, R.; Hosu, I.; Arbănași, E.M.; Voidăzan, S.T. The Predictive Value of NLR, MLR, and PLR in the Outcome of End-Stage Kidney Disease Patients. Biomedicines 2022, 10, 1272. [Google Scholar] [CrossRef]
- Afsar, B.; Elsurer, R. The Primary Arteriovenous Fistula Failure-a Comparison between Diabetic and Non-Diabetic Patients: Glycemic Control Matters. Int. Urol. Nephrol. 2012, 44, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Wen, S.-C.; Yang, C.-W.; Pu, S.-Y.; Tsai, K.-C.; Chen, J.-W. Baseline Plasma Glycemic Profiles but Not Inflammatory Biomarkers Predict Symptomatic Restenosis after Angioplasty of Arteriovenous Fistulas in Patients with Hemodialysis. Atherosclerosis 2010, 209, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, C.; Krane, V.; Ritz, E.; März, W.; Wanner, C. Glycemic Control and Cardiovascular Events in Diabetic Hemodialysis Patients. Circulation 2009, 120, 2421–2428. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Ishimura, E.; Tahara, H.; Kakiya, R.; Koyama, H.; Emoto, M.; Shoji, T.; Inaba, M.; Kishimoto, H.; Tabata, T.; et al. Poor Glycemic Control Is a Significant Predictor of Cardiovascular Events in Chronic Hemodialysis Patients With Diabetes. Ther. Apher. Dial. 2009, 13, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Tascona, D.J.; Morton, A.R.; Toffelmire, E.B.; Holland, D.C.; Iliescu, E.A. Adequacy of Glycemic Control in Hemodialysis Patients with Diabetes. Diabetes Care 2006, 29, 2247–2251. [Google Scholar] [CrossRef] [PubMed]
- Reddan, D.N.; Klassen, P.S.; Szczech, L.A.; Coladonato, J.A.; O’Shea, S.; Owen, W.F., Jr.; Lowrie, E.G. White Blood Cells as a Novel Mortality Predictor in Haemodialysis Patients. Nephrol. Dial. Transplant. 2003, 18, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-W.; Lin, J.-L.; Lin-Tan, D.-T.; Yen, T.-H.; Chen, K.-H. White Blood Cell Count Predicts All-Cause, Cardiovascular Disease-Cause and Infection-Cause One-Year Mortality of Maintenance Hemodialysis Patients. Ther. Apher. Dial. Off. Peer-Rev. J. Int. Soc. Apher. Jpn. Soc. Apher. Jpn. Soc. Dial. Ther. 2010, 14, 552–559. [Google Scholar] [CrossRef]
- Sadeghi, R.; Haji Aghajani, M.; Parandin, R.; Taherpour, N.; Ahmadzadeh, K.; Sarveazad, A. Leuko-Glycemic Index in the Prognosis of Acute Myocardial Infarction; a Cohort Study on Coronary Angiography and Angioplasty Registry. Arch. Acad. Emerg. Med. 2023, 11, e63. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Roshdi Dizaji, S.; Vazirizadeh-Mahabadi, M.; Sarveazad, A.; Forouzannia, S.A. Prognostic Value of The Leuko-Glycemic Index in Acute Myocardial Infarction; a Systematic Review and Meta-Analysis. Arch. Acad. Emerg. Med. 2023, 11, e25. [Google Scholar] [CrossRef]
- Peker, T.; Özbek, M.; Boyraz, B.; Aslan, S.F.; Demir, M.; Aslan, B. Prognostic Value of the Leuko-Glycemic Index in Coronary Chronic Total Occlusion Patients. Eur. Res. J. 2023, 9, 1099–1104. [Google Scholar] [CrossRef]
- Kilic, O.; Buber, I.; Kahraman, F. Predicting the Severity of Coronary Artery Disease: Can the Leukocyte Glucose Index Be Used? J. Coll. Physicians Surg.—Pak. JCPSP 2022, 32, 1519–1523. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Hernández, W.M.; Soto, L.F.; Del Rosario-Trinidad, M.; Farfan-Morales, C.N.; De Jesús-González, L.A.; Martínez-Mier, G.; Osuna-Ramos, J.F.; Bastida-González, F.; Bernal-Dolores, V.; Del Ángel, R.M.; et al. Leukocyte Glucose Index as a Novel Biomarker for COVID-19 Severity. Sci. Rep. 2022, 12, 14956. [Google Scholar] [CrossRef] [PubMed]
- Ernandez, T.; Saudan, P.; Berney, T.; Merminod, T.; Bednarkiewicz, M.; Martin, P.-Y. Risk Factors for Early Failure of Native Arteriovenous Fistulas. Nephron Clin. Pract. 2005, 101, c39–c44. [Google Scholar] [CrossRef]
- Miller, C.D.; Robbin, M.L.; Allon, M. Gender Differences in Outcomes of Arteriovenous Fistulas in Hemodialysis Patients. Kidney Int. 2003, 63, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Li, Y.; Guo, Y.; Cheng, P.; Li, Y.; Lu, C.; Cai, C.; Wang, W. Sex Differences in Arteriovenous Fistula Failure: Insights from Bioinformatics Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Okamuro, L.; Gray, K.; Korn, A.; Parrish, A.; Kaji, A.; Howell, E.C.; Bowens, N.; de Virgilio, C. Careful Patient Selection Achieves High Radiocephalic Arteriovenous Fistula Patency in Diabetic and Female Patients. Ann. Vasc. Surg. 2019, 57, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Voorzaat, B.M.; van der Bogt, K.E.A.; Janmaat, C.J.; van Schaik, J.; Dekker, F.W.; Rotmans, J.I.; Dutch Vascular Access Study Group. Arteriovenous Fistula Maturation Failure in a Large Cohort of Hemodialysis Patients in the Netherlands. World J. Surg. 2018, 42, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Gloviczki, P.; Kim, Y.-W.; Kwon, J.D.; Kim, D.-I.; Jang, H.-R.; Heo, W.-S.; Oh, H.-Y. The Influence of Cephalic Vein Diameter and Diabetes on Primary Maturation and Patency of Autogenous Radiocephalic Arteriovenous Fistulas. J. Vasc. Surg. 2015, 62, 1003–1009. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhao, Y.J. The Reasons for the Failure of the Primary Arteriovenous Fistula Surgery in Patients with End-Stage Renal Disease. J. Vasc. Access 2015, 16 (Suppl. S10), S74–S77. [Google Scholar] [CrossRef]
- Yan, Y.; Ye, D.; Yang, L.; Ye, W.; Zhan, D.; Zhang, L.; Xiao, J.; Zeng, Y.; Chen, Q. A Meta-Analysis of the Association between Diabetic Patients and AVF Failure in Dialysis. Ren. Fail. 2018, 40, 379–383. [Google Scholar] [CrossRef]
- da Cruz, R.N.; Retzlaff, G.; Gomes, R.Z.; Reche, P.M. The Influence of Diabetes Mellitus on Patency of Arteriovenous Fistulas for Hemodialysis. J. Vasc. Bras. 2015, 14, 217–223. [Google Scholar] [CrossRef]
- Roan, J.-N.; Fang, S.-Y.; Chang, S.-W.; Hsu, C.-H.; Huang, C.-C.; Chiou, M.-H.; Tsai, Y.-C.; Lam, C.-F. Rosuvastatin Improves Vascular Function of Arteriovenous Fistula in a Diabetic Rat Model. J. Vasc. Surg. 2012, 56, 1381–1389.e1. [Google Scholar] [CrossRef] [PubMed]
- León-Aliz, E.; Pérez-Fernández, G.A.; Moreno-Martínez, F.L.; Vega-Fleites, L.F.; Rabassa-López-Calleja, M.A. Índice leuco-glucémico como marcador pronóstico de la evolución intrahospitalaria en pacientes con infarto agudo de miocardio con elevación del ST. Clín. Investig Arter. Ed Impr. 2014, 26, 168–175. [Google Scholar] [CrossRef]
- Qi, L.-Y.; Liu, H.-X.; Cheng, L.-C.; Luo, Y.; Yang, S.-Q.; Chen, X.; Cai, L. Prognostic Value of the Leuko-Glycemic Index in Acute Myocardial Infarction Patients with or without Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 1725–1736. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Villarreal, J.C.; Morales-Gutiérrez, J.E.; López-Zamora, B.; Reyes-Navarro, G.V.; Ordoñez-González, I.; Triana-González, S.; Peralta-Amaro, A.L. Índice leucoglucémico en pacientes con infarto miocárdico con elevación del ST. Rev. Médica del Inst. Mex. del Seguro Soc. Soc 2022, 60, 142–148. [Google Scholar]
- Demir, M. The Leuko-Glycemic Index Can Predict Multivessel Disease in the Elderly Acute Myocardial Infarction Population? A Retrospective Cohort Study. J. Health Sci. Med. 2023, 6, 1119–1124. [Google Scholar] [CrossRef]
- Seoane, L.A.; Burgos, L.; Espinoza, J.C.; Furmento, J.F.; Benzadón, M.N.; Vrancic, J.M.; Piccinini, F.; Navia, D. Prognostic Value of the Leuko-Glycaemic Index in the Postoperative Period of Coronary Artery Bypass Grafting. Braz. J. Cardiovasc. Surg. 2021, 36, 484–491. [Google Scholar] [CrossRef]
- Muto, A.; Model, L.; Ziegler, K.; Eghbalieh, S.D.D.; Dardik, A. Mechanisms of Vein Graft Adaptation to the Arterial Circulation: Insights into the Neointimal Algorithm and Management Strategies. Circ. J. Off. J. Jpn. Circ. Soc. 2010, 74, 1501–1512. [Google Scholar] [CrossRef]
- Roy-Chaudhury, P.; Wang, Y.; Krishnamoorthy, M.; Zhang, J.; Banerjee, R.; Munda, R.; Heffelfinger, S.; Arend, L. Cellular Phenotypes in Human Stenotic Lesions from Haemodialysis Vascular Access. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2009, 24, 2786–2791. [Google Scholar] [CrossRef]
- Stracke, S.; Konner, K.; Köstlin, I.; Friedl, R.; Jehle, P.M.; Hombach, V.; Keller, F.; Waltenberger, J. Increased Expression of TGF-Beta1 and IGF-I in Inflammatory Stenotic Lesions of Hemodialysis Fistulas. Kidney Int. 2002, 61, 1011–1019. [Google Scholar] [CrossRef]
- Nilsson, E.; Carrero, J.J.; Heimbürger, O.; Hellberg, O.; Lindholm, B.; Stenvinkel, P. A Cohort Study of Insulin-like Growth Factor 1 and Mortality in Haemodialysis Patients. Clin. Kidney J. 2016, 9, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lee, D.-Y. Serum Insulin-like Growth Factor-Binding Protein-3 Level Correlated with Glycemic Control and Lipid Profiles in Children and Adolescents with Type 1 Diabetes. J. Pediatr. Endocrinol. Metab. JPEM 2014, 27, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Lee, H.; Yang, T.; Lee, S.-Y.; Kim, Y.G.; Kim, J.S.; Ahn, S.; Kim, K.; Kang, S.H.; Lee, M.-J.; et al. Plasma Interleukin-6 Level Predicts the Risk of Arteriovenous Fistula Dysfunction in Patients Undergoing Maintenance Hemodialysis. J. Pers. Med. 2023, 13, 151. [Google Scholar] [CrossRef]
- Pecoits-Filho, R.; Bárány, P.; Lindholm, B.; Heimbürger, O.; Stenvinkel, P. Interleukin-6 Is an Independent Predictor of Mortality in Patients Starting Dialysis Treatment. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2002, 17, 1684–1688. [Google Scholar] [CrossRef] [PubMed]
- Barreto, D.V.; Barreto, F.C.; Liabeuf, S.; Temmar, M.; Lemke, H.-D.; Tribouilloy, C.; Choukroun, G.; Vanholder, R.; Massy, Z.A.; European Uremic Toxin Work Group (EUTox). Plasma Interleukin-6 Is Independently Associated with Mortality in Both Hemodialysis and Pre-Dialysis Patients with Chronic Kidney Disease. Kidney Int. 2010, 77, 550–556. [Google Scholar] [CrossRef]
- Rao, M.; Gao, C.; Xu, L.; Jiang, L.; Zhu, J.; Chen, G.; Law, B.Y.K.; Xu, Y. Effect of Inulin-Type Carbohydrates on Insulin Resistance in Patients with Type 2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2019, 2019, 5101423. [Google Scholar] [CrossRef]
- Hasuike, Y.; Nonoguchi, H.; Ito, K.; Naka, M.; Kitamura, R.; Nanami, M.; Tokuyama, M.; Kida, A.; Otaki, Y.; Kuragano, T.; et al. Interleukin-6 Is a Predictor of Mortality in Stable Hemodialysis Patients. Am. J. Nephrol. 2009, 30, 389–398. [Google Scholar] [CrossRef]
- Panichi, V.; Maggiore, U.; Taccola, D.; Migliori, M.; Rizza, G.M.; Consani, C.; Bertini, A.; Sposini, S.; Perez-Garcia, R.; Rindi, P.; et al. Interleukin-6 Is a Stronger Predictor of Total and Cardiovascular Mortality than C-Reactive Protein in Haemodialysis Patients. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2004, 19, 1154–1160. [Google Scholar] [CrossRef]
- Marrone, D.; Pertosa, G.; Simone, S.; Loverre, A.; Capobianco, C.; Cifarelli, M.; Memoli, B.; Schena, F.P.; Grandaliano, G. Local Activation of Interleukin 6 Signaling Is Associated with Arteriovenous Fistula Stenosis in Hemodialysis Patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2007, 49, 664–673. [Google Scholar] [CrossRef]
- Russu, E.; Arbanasi, E.-M.; Chirila, T.V.; Muresan, A.V. Therapeutic Strategies Based on Non-Ionizing Radiation to Prevent Venous Neointimal Hyperplasia: The Relevance for Stenosed Arteriovenous Fistula, and the Role of Vascular Compliance. Front. Cardiovasc. Med. 2024, 11, 1356671. [Google Scholar] [CrossRef]
- Barton, J.; Nielsen, H.; Rychnovsky, S.; Farooq, M.; Freischlag, J.; Grove, R. PhotoPoint Photodynamic Therapy Inhibits Intimal Hyperplasia in Arteriovenous Access Grafts. Cardiovasc. Radiat. Med. 2002, 3, 147–151. [Google Scholar] [CrossRef]
- Burgher, J.M.; Barton, J.M.; Farooq, M.M.; Vasek, J.; Scott, R.W.; Freischlag, J.A.; Grove, R.I. PhotoPoint Photodynamic Therapy with Local Drug Delivery Eliminates Vessel Wall Cells in Arteriovenous Graft Models. Cardiovasc. Radiat. Med. 2002, 3, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Upile, T.; Hamdoon, Z.; Mosse, C.A.; Akram, S.; Morley, S.; Hopper, C. Interstitial PDT for Vascular Anomalies. Lasers Surg. Med. 2011, 43, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Houthoofd, S.; Vuylsteke, M.; Mordon, S.; Fourneau, I. Photodynamic Therapy for Atherosclerosis. The Potential of Indocyanine Green. Photodiagnosis Photodyn. Ther. 2020, 29, 101568. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Chang, C.-F.; Lai, M.-Y.; Chen, T.-W.; Lee, P.-C.; Yang, W.-C. Far-Infrared Therapy: A Novel Treatment to Improve Access Blood Flow and Unassisted Patency of Arteriovenous Fistula in Hemodialysis Patients. J. Am. Soc. Nephrol. JASN 2007, 18, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Yang, W.-C.; Chen, M.-C.; Liu, W.-S.; Yang, C.-Y.; Lee, P.-C. Effect of Far Infrared Therapy on Arteriovenous Fistula Maturation: An Open-Label Randomized Controlled Trial. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2013, 62, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Bashar, K.; Healy, D.; Browne, L.D.; Kheirelseid, E.A.H.; Walsh, M.T.; Moloney, M.C.; Burke, P.E.; Kavanagh, E.G.; Walsh, S.R. Role of Far Infra-Red Therapy in Dialysis Arterio-Venous Fistula Maturation and Survival: Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e104931. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Yang, S.; Li, L.; Chu, F. Effects of Far Infrared Therapy on Arteriovenous Fistulas in Hemodialysis Patients: A Meta-Analysis. Ren. Fail. 2017, 39, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Shemilt, R.; Bagabir, H.; Lang, C.; Khan, F. Potential Mechanisms for the Effects of Far-Infrared on the Cardiovascular System—A Review. VASA Z. Gefasskrankh. 2019, 48, 303–312. [Google Scholar] [CrossRef]
- Lindhard, K.; Jensen, B.L.; Pedersen, B.L.; Meyer-Olesen, C.; Rix, M.; Hansen, H.P.; Schalkwijk, C.; Waarenburg, M.; Heaf, J.; Hansen, D. Far Infrared Treatment on the Arteriovenous Fistula Induces Changes in sVCAM and sICAM in Patients on Hemodialysis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2023, 38, 1752–1760. [Google Scholar] [CrossRef]
- Arbănaşi, E.-M.; Suzuki, S.; Ciucanu, C.C.; Mureşan, A.V.; Coşarcă, C.M.; Chirilă, T.V.; Ion, A.P.; Arbănaşi, E.-M.; Harpa, M.M.; Russu, E. Ex-vivo Mechanical Augmentation of Human Saphenous Vein Graft By UV-A Irradiation in Emergency Vascular Reconstruction—Preliminary Results. J. Cardiovasc. Emergencies 2023, 9, 59–64. [Google Scholar] [CrossRef]
- Arbănaşi, E.-M.; Russu, E.; Arbănaşi, E.-M.; Ciucanu, C.C.; Mureșan, A.V.; Suzuki, S.; Chirilă, T.V. Effect of Ultraviolet Radiation on the Enzymolytic and Biomechanical Profiles of Abdominal Aortic Adventitia Tissue. J. Clin. Med. 2024, 13, 633. [Google Scholar] [CrossRef] [PubMed]
Variables | All Patients n = 158 | Functional AVF n = 129 | AVF Failure n = 29 | p Value |
---|---|---|---|---|
Age mean ± SD | 60.26 ± 14.44 | 59.88 ± 14.78 | 61.93 ± 12.93 | 0.457 |
Male gender no. (%) | 98 (62.02%) | 84 (65.11%) | 14 (48.27%) | 0.091 |
Comorbidities and Risk factors, no. (%) | ||||
Hypertension | 145 (91.77%) | 119 (92.25%) | 26 (89.66%) | 0.646 |
Atrial Fibrillation | 14 (8.86%) | 8 (6.20%) | 6 (20.69%) | 0.013 |
Diabetes | 64 (40.51%) | 47 (36.43%) | 17 (58.62%) | 0.028 |
Ischemic Heart Disease | 103 (65.19%) | 81 (62.79%) | 22 (75.86%) | 0.182 |
Peripheral Arterial Disease | 22 (13.92%) | 16 (12.4%) | 6 (20.69%) | 0.244 |
Prevalent Myocardial Infarction | 9 (5.70%) | 6 (4.65%) | 3 (10.34%) | 0.232 |
Prevalent Stroke | 9 (5.70%) | 7 (5.43%) | 2 (6.90%) | 0.758 |
Smoking | 15 (9.49%) | 13 (10.08%) | 2 (6.90%) | 0.597 |
Obesity | 32 (20.25%) | 26 (20.16%) | 6 (20.69%) | 0.948 |
Laboratory data, median (Q1–Q3) | ||||
Leukocytes ×103/μL | 7.85 (6.28–9.43) | 7.5 (6.13–9.02) | 9.18 (7.32–10.2) | 0.003 |
Potassium mmol/l | 5.19 (4.65–5.66) | 5.10 (4.55–5.56) | 5.42 (4.97–6.01) | 0.008 |
Sodium mmol/l | 139.6 (137–141) | 140 (137–142) | 139 (137.5–140) | 0.257 |
Glucose (mg/dL) | 103 (89–133) | 100.5 (89–126.97) | 118 (92.15–163.4) | 0.012 |
BUN (mg/dL) | 134.82 (98.77–177.95) | 141.9 (99.65–182.95) | 122.4 (89.9–168) | 0.319 |
Creatinine (mg/dL) | 6.81 (5.47–9.38) | 6.84 (5.23–9.48) | 6.52 (6.06–7.66) | 0.754 |
Hemoglobin g/dL | 10.1 (8.55–11.25) | 9.98 (8.47–11) | 10.6 (9.83–11.6) | 0.119 |
Hematocrit % | 30.6 (26.66–34.77) | 30.4 (26.3–34.51) | 33 (29.6–36.1) | 0.181 |
Neutrophils ×103/μL | 5.26 (4.15–6.55) | 5.12 (4.07–6.42) | 5.85 (4.82–6.98) | 0.043 |
Lymphocytes ×103/μL | 1.41 (1.05–1.93) | 1.38 (1.03–1.89) | 1.52 (1.16–2.122) | 0.075 |
Monocyte ×103/μL | 0.57 (0.44–0.75) | 0.57 (0.43–0.73) | 0.61 (0.48–0.79) | 0.087 |
PLT ×103/μL | 222.8 (181.5–283.37) | 223.0 (181–281.35) | 221.0 (191.1–306) | 0.149 |
Serum Albumin g/dL | 3.6 (3.35–4.01) | 3.6 (3.35–4.02) | 3.36 (3.3–3.48) | 0.177 |
Total Protein g/dL | 6.44 (5.99–7.07) | 6.42 (5.94–6.92) | 6.95 (6.16–7.81) | 0.111 |
Total Calcium mmol/L | 2.10 (1.93–2.22) | 2.11 (1.93–2.27) | 1.64 (1.59–1.91) | 0.178 |
Cholesterol mg/dL | 160.55 (131.62–184.62) | 161.5 (133.05–192) | 154.0 (129.3–181.1) | 0.860 |
Triglyceride mg/dL | 142.25 (121.65–199.2) | 150.5 (120.7–201.8) | 134.0 (124.3–192.4) | 0.441 |
Interleukin-6 pg/mL * | 5.90 (4.7–7.6) | 5.48 (4.41–6.95) | 9.15 (7.41–11.52) | <0.001 |
Pre-Operative Vascular Mapping #, mean ± SD | ||||
Arterial diameter (mm) | 3.11 ± 1.05 | 3.17 ± 0.98 | 2.77 ± 1.30 | 0.007 |
Vein diameter (mm) | 3.17 ± 0.82 | 3.27 ± 0.83 | 2.71 ± 0.65 | 0.008 |
Vein depth (mm) | 2.69 ± 0.99 | 2.72 ± 0.94 | 2.63 ± 1.21 | 0.317 |
AVF type and placement, no. (%) | ||||
RC-AVF | 74 (46.83%) | 62 (48.06%) | 12 (41.37%) | 0.513 |
BC-AVF | 67 (42.40%) | 54 (41.86%) | 13 (44.82%) | 0.770 |
BB-AVF | 17 (10.75%) | 13 (10.07%) | 4 (13.79%) | 0.561 |
Dominant Limb | 31 (19.62%) | 26 (20.15%) | 5 (17.24%) | 0.721 |
Non-Dominant Limb | 127 (80.38%) | 103 (79.85%) | 24 (82.76%) | |
Ambulatory AVF, no. (%) | 77 (48.73%) | 56 (43.41%) | 21 (72.41%) | 0.006 |
Hospitalization AVF, no. (%) | 81 (51.27%) | 73 (56.59%) | 8 (27.59%) | |
Follow-up period (years) mean ± SD/max | 1.75 ± 1.21/5.03 | 1.89 ± 1.17/5.03 | 1.18 ± 1.77/5.02 | 0.001 |
Variables | Cut-Off | AUC | Std. Error | 95% CI | Sensitivity | Specificity | p Value |
---|---|---|---|---|---|---|---|
AVF Failure | |||||||
Leukocytes ×103/μL | 8.14 | 0.702 | 0.052 | 0.599–0.802 | 75.9% | 63.6% | 0.001 |
Glucose | 103.25 | 0.653 | 0.056 | 0.543–0.762 | 72.4% | 54.5% | 0.010 |
Neutrophils ×103/μL | 4.94 | 0.648 | 0.056 | 0.538–0.759 | 72.4% | 48.1% | 0.013 |
LGI | 0.95 | 0.729 | 0.051 | 0.630–0.829 | 72.4% | 68% | <0.001 |
Variables | AVF Failure | ||
---|---|---|---|
HR * | 95% CI | p Value | |
Male | 0.51 | 0.24–1.06 | 0.073 |
Atrial Fibrillation | 3.10 | 1.25–7.68 | 0.014 |
Diabetes | 1.91 | 0.90–4.04 | 0.092 |
Leukocytes ×103/μL | 1.26 | 0.91–1.74 | 0.176 |
Glucose (mg/dL) | 1.35 | 1.05–1.73 | 0.018 |
Neutrophils ×103/μL | 1.17 | 0.84–1.64 | 0.337 |
Lymphocytes ×103/μL | 1.33 | 0.93–1.91 | 0.116 |
Monocyte ×103/μL | 1.07 | 0.78–1.48 | 0.659 |
Biomarker | Model | AVF Failure | ||
---|---|---|---|---|
HR | 95% CI | p Value | ||
LGI | Model 1 | 1.48 | 1.14–1.92 | 0.003 |
Model 2 | 1.65 | 1.22–2.22 | 0.001 | |
Model 3 | 1.63 | 1.12–2.38 | 0.012 | |
Model 4 * | 3.49 | 1.08–11.34 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mureșan, A.V.; Florea, E.; Arbănași, E.-M.; Bartus, R.; Arbănași, E.-M.; Ion, A.P.; Cordoș, B.A.; Halatiu, V.B.; Niculescu, R.; Stoian, A.; et al. Elevated Leukocyte Glucose Index Is Associated with Long-Term Arteriovenous Fistula Failure in Dialysis Patients. J. Clin. Med. 2024, 13, 2037. https://doi.org/10.3390/jcm13072037
Mureșan AV, Florea E, Arbănași E-M, Bartus R, Arbănași E-M, Ion AP, Cordoș BA, Halatiu VB, Niculescu R, Stoian A, et al. Elevated Leukocyte Glucose Index Is Associated with Long-Term Arteriovenous Fistula Failure in Dialysis Patients. Journal of Clinical Medicine. 2024; 13(7):2037. https://doi.org/10.3390/jcm13072037
Chicago/Turabian StyleMureșan, Adrian Vasile, Elena Florea, Emil-Marian Arbănași, Réka Bartus, Eliza-Mihaela Arbănași, Alexandru Petru Ion, Bogdan Andrei Cordoș, Vasile Bogdan Halatiu, Raluca Niculescu, Adina Stoian, and et al. 2024. "Elevated Leukocyte Glucose Index Is Associated with Long-Term Arteriovenous Fistula Failure in Dialysis Patients" Journal of Clinical Medicine 13, no. 7: 2037. https://doi.org/10.3390/jcm13072037
APA StyleMureșan, A. V., Florea, E., Arbănași, E. -M., Bartus, R., Arbănași, E. -M., Ion, A. P., Cordoș, B. A., Halatiu, V. B., Niculescu, R., Stoian, A., Ciucanu, C. C., & Russu, E. (2024). Elevated Leukocyte Glucose Index Is Associated with Long-Term Arteriovenous Fistula Failure in Dialysis Patients. Journal of Clinical Medicine, 13(7), 2037. https://doi.org/10.3390/jcm13072037