Elevated Prostaglandin E2 Synthesis Is Associated with Clinical and Radiological Disease Severity in Cystic Fibrosis
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Urinary PGE-M and PGD-M Levels
3.2. Correlations between Urinary PGE-M and PGD-M Levels and CFTR Gene Mutation Severity
3.3. Associations between Urinary PGE-M and PGD-M Levels and CF Severity Parameters
3.4. Associations between Urinary PGE-M and PGD-M Levels, Airway Infections, and a Docosahexaenoic (DHA)-Supplemented Diet
3.5. Associations between Prostaglandin Polymorphisms with CF Severity and Urinary Prostaglandin Levels
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: http://www.genet.sickkids.on.ca/ (accessed on 25 April 2011).
- De Boeck, K.; Amaral, M.D. Progress in therapies for cystic fibrosis. Lancet Respir. Med. 2016, 4, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.Y.; Dorfman, R.; Cipolli, M.; Gonska, T.; Castellani, C.; Keenan, K.; Freedman, S.D.; Zielenski, J.; Berthiaume, Y.; Corey, M.; et al. Type of CFRT mutations determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology 2011, 140, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Kristidis, P.; Bozon, D.; Corey, M.; Markiewicz, D.; Rommens, J.; Tsui, L.C.; Durie, P. Genetic determination of exocrine pancreatic function in cystic fibrosis. Am. J. Hum. Genet. 1992, 50, 1178–1184. [Google Scholar] [PubMed]
- Cleveland, R.H.; Zurakowski, D.; Slattery, D.; Collin, A.A. Cystic fibrosis genotype and assessing rates of decline in pulmonary status. Radiology 2009, 253, 813–821. [Google Scholar] [CrossRef] [PubMed]
- de Gracia, J.; Mata, F.; Álvarez, A.; Casals, T.; Gatner, S.; Vendrell, M.; de la Rosa, D.; Guarner, L.; Hermosilla, E. Genotype-phenotype correlation for pulmonary function in cystic fibrosis. Thorax 2005, 60, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Cogen, J.; Emerson, J.; Sanders, D.B.; Ren, C.; Schechter, M.S.; Gibson, R.L.; Morgan, W.; Rosenfeld, M. Risk factors for lung function decline in a large cohort of young cystic fibrosis patients. Pediatr. Pulmonol. 2015, 50, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Gran, K.H.; Geus, W.P.; Bakker, W.; Lamers, C.B.; Heijerman, H.G. Genetic and clinical features of patients with cystic fibrosis diagnosed after the age of 16 years. Thorax 1995, 50, 1301–1304. [Google Scholar]
- Hubert, D.; Bienvenu, T.; Desmazes-Dufeu, N.; Fajac, I.; Lacronique, J.; Matran, R.; Kaplan, J.; Dusser, D. Genotype-phenotype relationships in a cohort of adult cystic fibrosis patients. Eur. Respir. J. 1996, 9, 2207–2214. [Google Scholar] [CrossRef] [PubMed]
- Borgo, G.; Gasparini, P.; Bonizzato, A.; Cabrini, G.; Mastella, G.; Pignatti, P.F. Cystic fibrosis: The delta508 mutation does not lead to an exceptional severe phenotype. A cohort study. J. Pediatr. 1993, 152, 1006–1011. [Google Scholar] [CrossRef]
- Lai, H.J.; Cheng, Y.; Cho, H.; Kosorok, M.R.; Farrel, P.M. Association between initial disease presentation, lung disease outcomes, and survival in patient with cystic fibrosis. Am. J. Epidemiol. 2004, 159, 537–5446. [Google Scholar] [CrossRef]
- Zielenski, J. Genotype and phenotype in cystic fibrosis. Respiration 2000, 67, 117–133. [Google Scholar] [CrossRef]
- Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J. Cyst. Fibros. 2015, 14, 419–430. [Google Scholar] [CrossRef]
- Verhaeghe, K.; Delbecque, K.; de Leval, L.; Oury, C.; Bours, V. Early inflammation in the airways of the cystic fibrosis foetus. J. Cyst. Fibros. 2007, 6, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.; McCarron, A.; Rout-Pitt, N.; Donnelley, M.; Parsons, D.W.; Hryciw, D.H. Essential Fatty Acid Deficiency in Cystic Fibrosis Disease Progression: Role of Genotype and Sex. Nutrients 2022, 14, 4666. [Google Scholar] [CrossRef]
- Freedman, S.D.; Blanco, P.G.; Zaman, M.M.; Shea, J.C.; Ollero, M.; Hopper, I.K.; Weed, D.A.; Gelrud, A.; Regan, M.M.; Laposata, M.; et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N. Engl. J. Med. 2004, 350, 560–569. [Google Scholar] [CrossRef]
- Yang, J.; Eiserich, J.P.; Cross, C.E.; Morrisey, B.M.; Hammok, B.C. Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic. Biol. Med. 2012, 53, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.L.; Dewitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular and molecular biology. Ann. Rev. Biochem. 2000, 69, 145–182. [Google Scholar] [CrossRef]
- Roca-Ferrer, J.; Pujols, L.; Gartner, S.; Moreno, A.; Pumarola, F.; Mullol, J.; Cobos, N.; Picado, C. Upregulation of COX-1 and COX-2 in nasal polyps in cystic fibrosis. Thorax 2006, 61, 592–596. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.G.; Thomsen, K.; Brown, R.F.; Laposate, M. Elevated prostaglandin E metabolites and abnormal fatty acids at baseline in pediatric patients: A pilot study. Prostaglandins Leukot. Essent. Fat. Acids 2016, 113, 46–49. [Google Scholar] [CrossRef]
- Jabr, S.; Gartner, S.; Milne, G.L.; Roca-Ferrer, J.; Casas, J.; Moreno, A.; Gelpi, E.; Picado, C. Quantification of major urinary metabolites of PGE2 and PGD2 in cystic fibrosis: Correlation with disease severity. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 121–126. [Google Scholar] [CrossRef]
- Medjane, S.; Raymon, B.; Wu, Y.; Touqui, L. Impact of CFTR delta508 mutation on prostaglandin E2 production and type IIA phospholipase A2 expression by pulmonary epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 289, L816–L824. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, X.H.; Chen, H.; Guo, J.H.; Tsang, L.L.; Yu, M.K.; Xu, W.M.; Chan, H.C. CFRT negatively regulates cyclooxygenase-2-PGE2 positive feedback loop in inflammation. J. Cell. Physiol. 2012, 227, 2759–2766. [Google Scholar] [CrossRef] [PubMed]
- Borot, F.; Vieu, D.V.; Faure, G.; Fritsch, J.; Colas, J.; Moriceau, S. Eicosanoid Release Is Increased by Membrane Destabilization and CFTR Inhibition in Calu-3 Cells. PLoS ONE 2009, 4, e7116. [Google Scholar] [CrossRef] [PubMed]
- Seegmiller, A.C. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: Biochemical mechanisms and clinical implications. Int. J. Mol. Sci. 2014, 15, 16083–16099. [Google Scholar] [CrossRef] [PubMed]
- Kunzelmann, K.; Mehta, A. CFTR: A hub for kinases and crosstalk of cAMP and Ca2+. FEBS J. 2013, 280, 4417–4429. [Google Scholar] [CrossRef] [PubMed]
- Czerska, K.; Sobczyńska-Tomaszewska, A.; Sands, D.; Nowakowska, A.; Bąk, D.; Wertheim, K.; Poznański, J.; Zielenski, J.; Norek, A.; Bal, J. Prostaglandin-endoperoxide synthase genes COX1 and COX2—Novel modifiers of disease severity in cystic fibrosis patients. J. Appl. Genet. 2010, 51, 323–330. [Google Scholar] [CrossRef]
- Alonso, M.J.; Heine-Suñer, D.; Calvo, M.; Rosell, J.; Giménez, J.; Ramos, M.D.; Telleria, J.J.; Palacio, A.; Estivill, X.; Casals, T. Spectrum of mutations in the CFTR gene in cystic fibrosis patients of Spanish ancestry. Ann. Hum. Genet. 2006, 71, 194–201. [Google Scholar] [CrossRef]
- Anderson, C.M. Hypothesis revisited. Cystic fibrosis: A disturbance of water and electrolyte movement of exocrine secretory tissue associated with altered prostaglandin (PGE2) metabolism. J. Pediatr. Gastroenterol. Nutr. 1984, 3, 15–22. [Google Scholar] [CrossRef]
- de Jong, P.A.; Lindblad, A.; Rubin, L.; Hop, W.C.J.; de Jongste, J.C.; Brink, M.; Tiddens, H.A.W.M. Progression of lung disease on computed tomography and pulmonary function tests in children and adults with cystic fibrosis. Thorax 2006, 61, 80–85. [Google Scholar] [CrossRef]
- Bush, A.; Sly, P.D. Evolution of cystic fibrosis lung function in the early years. Curr. Opin. Pulm. Med. 2015, 21, 602–608. [Google Scholar] [CrossRef]
- McMahon, M.A.; Chotirmall, S.H.; McCullagh, B.; Branagan, P.; McElvaney, N.G.; Logan, P.M. Radiological abnormalities associated with Aspergillus colonization in a cystic fibrosis population. Eur. J. Radiol. 2012, 81, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Loeve, M.; Gerbrandts, K.; Hop, W.C.; Rosenfield, M.; Hartman, I.C.; Tiddens, H.A.L. Bronchiectasis and pulmonary exacerbations in children and young adults with cystic fibrosis. Chest 2011, 140, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Loeve, M.; van Hal, P.T.W.; Robinson, P.; A de Jong, P.; Lequin, M.H.; Hop, W.C.; Williams, T.J.; Nossent, G.D.; Tiddens, H.A. The spectrum of structural abnormalities on CT scans from patients with CF with severe advanced lung disease. Thorax 2009, 64, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Tepper, L.A.; Utens, E.M.; Caudri, D.; Bos, A.C.; Gonzalez-Graniel, K.; Duivenvoorden, H.J.; van der Wiel, E.C.; Quittner, A.L.; Tiddens, H.A. Impact of bronchiectasis and trapped air on quality of life and exacerbations in cystic fibrosis. Eur. Respir. J. 2013, 42, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Horati, H.; Janssens, H.M.; Margaroli, C.; Veltman, M.; Stolarczyk, M.; Kilgore, M.B.; Chou, J.; Peng, L.; Tiddens, H.A.; Chandler, J.D.; et al. Airway profile of bioactive lipids predicts early progression of lung disease in cystic fibrosis. J. Cyst. Fibros. 2020, 19, 902–909. [Google Scholar] [CrossRef]
- O’Connor, M.G.; Seegmiller, A. The effects of ivacaftor on CF fatty acid metabolism: An analysis from the GOAL study. J. Cyst. Fibros. 2017, 16, 132–138. [Google Scholar] [CrossRef]
FVC, % pred (n = 93) | 104.1 ± 1.8 |
FEV1, % pred (n = 93) | 94.3 ± 2.3 |
Pancreatic insufficiency, (n = 103) % | 70 (68%) |
Severity of CFTR gene mutation (n = 101): | |
Mild, % | 28.7% |
Moderate, % | 6.9% |
Severe, % | 64.4% |
Clinical severity (n = 101): | |
Mild, % | 64.4% |
Moderate, % | 29.7% |
Severe, % | 5.9% |
Bronchiectasis, (n = 102) % | 45 (44%) |
Air Trapping (n = 92) % | 64 (69.%) |
F508del homozygote, n (%) | 19 (18.4%) |
F508del heterozygote, n (%) | 59 (57.3%) |
Other pathogenic variants, n (%) | 25 (24.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gartner, S.; Roca-Ferrer, J.; Fernandez-Alvarez, P.; Lima, I.; Rovira-Amigo, S.; García-Arumi, E.; Tizzano, E.F.; Picado, C. Elevated Prostaglandin E2 Synthesis Is Associated with Clinical and Radiological Disease Severity in Cystic Fibrosis. J. Clin. Med. 2024, 13, 2050. https://doi.org/10.3390/jcm13072050
Gartner S, Roca-Ferrer J, Fernandez-Alvarez P, Lima I, Rovira-Amigo S, García-Arumi E, Tizzano EF, Picado C. Elevated Prostaglandin E2 Synthesis Is Associated with Clinical and Radiological Disease Severity in Cystic Fibrosis. Journal of Clinical Medicine. 2024; 13(7):2050. https://doi.org/10.3390/jcm13072050
Chicago/Turabian StyleGartner, Silvia, Jordi Roca-Ferrer, Paula Fernandez-Alvarez, Isabel Lima, Sandra Rovira-Amigo, Elena García-Arumi, Eduardo F. Tizzano, and César Picado. 2024. "Elevated Prostaglandin E2 Synthesis Is Associated with Clinical and Radiological Disease Severity in Cystic Fibrosis" Journal of Clinical Medicine 13, no. 7: 2050. https://doi.org/10.3390/jcm13072050
APA StyleGartner, S., Roca-Ferrer, J., Fernandez-Alvarez, P., Lima, I., Rovira-Amigo, S., García-Arumi, E., Tizzano, E. F., & Picado, C. (2024). Elevated Prostaglandin E2 Synthesis Is Associated with Clinical and Radiological Disease Severity in Cystic Fibrosis. Journal of Clinical Medicine, 13(7), 2050. https://doi.org/10.3390/jcm13072050