Virtual Hemodynamic Assessment of Coronary Lesions: The Advent of Functional Angiography and Coronary Imaging
Abstract
:1. Introduction
2. Fluid Mechanics and Computational Fluid Dynamics
3. Virtual FFR Based on Non-Invasive Imaging
3.1. FFRCT® by HeartFlow: Offsite Computations
3.2. FFRCT by Other Groups: Onsite Studies
3.3. FFR-CT and the Impact on the Decision-Making Process
4. Virtual FFR Based on Invasive Imaging
4.1. Invasive Angiography Derived Virtual FFR
4.1.1. Early Pioneering Studies
4.1.2. Large Clinical Studies (QFR, FFRangio)
4.1.3. Outcome-Based Studies
4.1.4. Discrepancy Versus FFR
4.2. Virtual FFR Based on Intravascular Imaging
5. Functional Angiography and Coronary Imaging: Future Perspectives
6. Conclusions
Funding
Conflicts of Interest
References
- Mangla, A.; Oliveros, E.; Williams, K.A., Sr.; Kalra, D.K. Cardiac Imaging in the Diagnosis of Coronary Artery Disease. Curr. Probl. Cardiol. 2017, 42, 316–366. [Google Scholar] [CrossRef]
- McCullough, P.A. Coronary artery disease. Clin. J. Am. Soc. Nephrol. 2007, 2, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Dou, K.; Guan, C.; Zou, T.; Zhang, M.; Yuan, S.; Qiao, Z.; Xie, L.; Sun, Z.; Song, L.; et al. Outcomes of quantitative flow ratio-based percutaneous coronary intervention in an all-comers study. EuroIntervention 2022, 17, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Schampaert, E.; Kumar, G.; Achenbach, S.; Galli, S.; Tanaka, N.; Teraphongphom, T.; Ginn, G.; Zhang, Z.; Somi, S.; Amoroso, G.; et al. A global registry of fractional flow reserve (FFR)-guided management during routine care: Study design, baseline characteristics and outcomes of invasive management. Catheter. Cardiovasc. Interv. 2020, 96, E423–E431. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.V.; Liu, G.; Plomondon, M.E.; Sehested, T.S.G.; Hlatky, M.A.; Waldo, S.W.; Fearon, W.F. Utilization and Outcomes of Measuring Fractional Flow Reserve in Patients with Stable Ischemic Heart Disease. J. Am. Coll. Cardiol. 2020, 75, 521. [Google Scholar] [CrossRef] [PubMed]
- Fearon, W.F.; Bornschein, B.; Tonino, P.A.; Gothe, R.M.; Bruyne, B.D.; Pijls, N.H.; Siebert, U. Economic evaluation of fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. Circulation 2010, 122, 2545–2550. [Google Scholar] [CrossRef]
- Carvalho, V.; Pinho, D.; Lima, R.A.; Teixeira, J.C.; Teixeira, S.J.F. Blood Flow Modeling in Coronary Arteries: A review. Fluids 2021, 6, 53. [Google Scholar] [CrossRef]
- Kannojiya, V.; Das, A.K.; Das, P.K. Simulation of Blood as Fluid: A Review From Rheological Aspects. IEEE Rev. Biomed. Eng. 2021, 14, 327–341. [Google Scholar] [CrossRef]
- Vardhan, M.; Randles, A.J.B.R. Application of physics-based flow models in cardiovascular medicine: Current practices and challenges. Biophys. Rev. 2021, 2, 011302. [Google Scholar] [CrossRef]
- Zhong, L.; Zhang, J.M.; Su, B.; Tan, R.S.; Allen, J.C.; Kassab, G.S. Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities. Front Physiol. 2018, 9, 337458. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Vignon-Clementel, I.E.; Coogan, J.S.; Figueroa, C.A.; Jansen, K.E.; Taylor, C.A. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 2010, 38, 3195–3209. [Google Scholar] [CrossRef]
- Chinnaiyan, K.M.; Safian, R.D.; Gallagher, M.L.; George, J.; Dixon, S.R.; Bilolikar, A.N.; Abbas, A.E.; Shoukfeh, M.; Brodsky, M.; Stewart, J.; et al. Clinical Use of CT-Derived Fractional Flow Reserve in the Emergency Department. JACC Cardiovasc. Imaging 2020, 13, 452–461. [Google Scholar] [CrossRef]
- Koo, B.K.; Erglis, A.; Doh, J.H.; Daniels, D.V.; Jegere, S.; Kim, H.S.; Dunning, A.; DeFrance, T.; Lansky, A.; Leipsic, J.; et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J. Am. Coll. Cardiol. 2011, 58, 1989–1997. [Google Scholar] [PubMed]
- Nakazato, R.; Park, H.B.; Berman, D.S.; Gransar, H.; Koo, B.K.; Erglis, A.; Lin, F.Y.; Dunning, A.M.; Budoff, M.J.; Malpeso, J.; et al. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: Results from the DeFACTO study. Circ. Cardiovasc. Imaging 2013, 6, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Gaur, S.; Achenbach, S.; Leipsic, J.; Mauri, L.; Bezerra, H.G.; Jensen, J.M.; Bøtker, H.E.; Lassen, J.F.; Nørgaard, B.L. Rationale and design of the HeartFlowNXT (HeartFlow analysis of coronary blood flow using CT angiography: NeXt sTeps) study. J. Cardiovasc. Comput. Tomogr. 2013, 7, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, B.L.; Leipsic, J.; Gaur, S.; Seneviratne, S.; Ko, B.S.; Ito, H.; Jensen, J.M.; Mauri, L.; De Bruyne, B.; Bezerra, H.; et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J. Am. Coll. Cardiol. 2014, 63, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, B.; Wang, S.; Zhao, S.; Lu, M. Computed tomography angiography-derived fractional flow reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: Systematic review and meta-analysis. Eur. Radiol. 2020, 30, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Hecht, H.S.; Narula, J.; Fearon, W.F. Fractional Flow Reserve and Coronary Computed Tomographic Angiography: A Review and Critical Analysis. Circ. Res. 2016, 119, 300–316. [Google Scholar] [CrossRef]
- Renker, M.; Schoepf, U.J.; Wang, R.; Meinel, F.G.; Rier, J.D.; Bayer, R.R., 2nd; Möllmann, H.; Hamm, C.W.; Steinberg, D.H.; Baumann, S. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am. J. Cardiol. 2014, 114, 1303–1308. [Google Scholar] [CrossRef]
- Kruk, M.; Wardziak, Ł.; Demkow, M.; Pleban, W.; Pręgowski, J.; Dzielińska, Z.; Witulski, M.; Witkowski, A.; Rużyłło, W.; Kępka, C. Workstation-Based Calculation of CTA-Based FFR for Intermediate Stenosis. JACC Cardiovasc. Imaging 2016, 9, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.S.; Cameron, J.D.; Munnur, R.K.; Wong, D.T.L.; Fujisawa, Y.; Sakaguchi, T.; Hirohata, K.; Hislop-Jambrich, J.; Fujimoto, S.; Takamura, K.; et al. Noninvasive CT-Derived FFR Based on Structural and Fluid Analysis: A Comparison with Invasive FFR for Detection of Functionally Significant Stenosis. JACC Cardiovasc. Imaging 2017, 10, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, P.M.; Kolossváry, M.; Karády, J.; Ball, P.A.; Kelly, S.; Fitzsimons, D.; Spence, M.S.; Celeng, C.; Horváth, T.; Szilveszter, B.; et al. Experience with an On-Site Coronary Computed Tomography-Derived Fractional Flow Reserve Algorithm for the Assessment of Intermediate Coronary Stenoses. Am. J. Cardiol. 2018, 121, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Röther, J.; Moshage, M.; Dey, D.; Schwemmer, C.; Tröbs, M.; Blachutzik, F.; Achenbach, S.; Schlundt, C.; Marwan, M. Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: Results from a PC-based prototype algorithm. J. Cardiovasc. Comput. Tomogr. 2018, 12, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Wardziak, Ł.; Kruk, M.; Pleban, W.; Demkow, M.; Rużyłło, W.; Dzielińska, Z.; Kępka, C. Coronary CTA enhanced with CTA based FFR analysis provides higher diagnostic value than invasive coronary angiography in patients with intermediate coronary stenosis. J. Cardiovasc. Comput. Tomogr. 2019, 13, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Siogkas, P.K.; Anagnostopoulos, C.D.; Liga, R.; Exarchos, T.P.; Sakellarios, A.I.; Rigas, G.; Scholte, A.J.; Papafaklis, M.I.; Loggitsi, D.; Pelosi, G.; et al. Noninvasive CT-based hemodynamic assessment of coronary lesions derived from fast computational analysis: A comparison against fractional flow reserve. Eur. Radiol. 2019, 29, 2117–2126. [Google Scholar] [CrossRef] [PubMed]
- Siogkas, P.K.; Lakkas, L.; Sakellarios, A.I.; Rigas, G.; Kyriakidis, S.; Stefanou, K.A.; Anagnostopoulos, C.D.; Clemente, A.; Rocchiccioli, S.; Pelosi, G.; et al. SmartFFR, a New Functional Index of Coronary Stenosis: Comparison with Invasive FFR Data. Front. Cardiovasc. Med. 2021, 8, 714471. [Google Scholar] [CrossRef] [PubMed]
- Sakellarios, A.I.; Rigas, G.; Kigka, V.; Siogkas, P.; Tsompou, P.; Karanasiou, G.; Exarchos, T.; Andrikos, I.; Tachos, N.; Pelosi, G.; et al. SMARTool: A tool for clinical decision support for the management of patients with coronary artery disease based on modeling of atherosclerotic plaque process. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; Volume 2017, pp. 96–99. [Google Scholar]
- Driessen, R.S.; Danad, I.; Stuijfzand, W.J.; Raijmakers, P.G.; Schumacher, S.P.; van Diemen, P.A.; Leipsic, J.A.; Knuuti, J.; Underwood, S.R.; van de Ven, P.M.; et al. Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis. J. Am. Coll. Cardiol. 2019, 73, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, C.D.; Siogkas, P.K.; Liga, R.; Benetos, G.; Maaniitty, T.; Sakellarios, A.I.; Koutagiar, I.; Karakitsios, I.; Papafaklis, M.I.; Berti, V.; et al. Characterization of functionally significant coronary artery disease by a coronary computed tomography angiography-based index: A comparison with positron emission tomography. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 897–905. [Google Scholar] [CrossRef]
- Pontone, G.; Rabbat, M.G. The New Era of Computational Fluid Dynamics in CT Angiography: Far Beyond the FFR Number. JACC Cardiovasc. Imaging 2017, 10, 674–676. [Google Scholar] [CrossRef]
- Lu, M.T.; Ferencik, M.; Roberts, R.S.; Lee, K.L.; Ivanov, A.; Adami, E.; Mark, D.B.; Jaffer, F.A.; Leipsic, J.A.; Douglas, P.S.; et al. Noninvasive FFR Derived From 600 Coronary CT Angiography: Management and Outcomes in the PROMISE Trial. JACC Cardiovasc. Imaging 2017, 10, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): 603 an open-label, parallel-group, multicentre trial. Lancet 2015, 385, 2383–2391. [CrossRef] [PubMed]
- Adamson, P.D.; Newby, D.E.; Hill, C.L.; Coles, A.; Douglas, P.S.; Fordyce, C.B. Comparison of International 605 Guidelines for Assessment of Suspected Stable Angina: Insights from the PROMISE and SCOT-HEART. JACC Cardiovasc. Imaging 2018, 11, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Curzen, N.P.; Nolan, J.; Zaman, A.G.; Nørgaard, B.L.; Rajani, R. Does the Routine Availability of CT-Derived FFR 608 Influence Management of Patients with Stable Chest Pain Compared to CT Angiography Alone?: The FFR(CT) 609 RIPCORD Study. JACC Cardiovasc. Imaging 2016, 9, 1188–1194. [Google Scholar] [CrossRef]
- Morris, P.D.; Ryan, D.; Morton, A.C.; Lycett, R.; Lawford, P.V.; Hose, D.R.; Gunn, J.P. Virtual fractional flow reserve 611 from coronary angiography: Modeling the significance of coronary lesions: Results from the VIRTU-1 (VIRTUal 612 Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc. Interv. 2013, 6, 149–157. [Google Scholar] [CrossRef]
- Tu, S.; Barbato, E.; Köszegi, Z.; Yang, J.; Sun, Z.; Holm, N.R.; Tar, B.; Li, Y.; Rusinaru, D.; Wijns, W.; et al. Fractional flow reserve calculation from 3- 615 dimensional quantitative coronary angiography and TIMI frame count: A fast computer model to quantify the 616 functional significance of moderately obstructed coronary arteries. JACC Cardiovasc. Interv. 2014, 7, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Papafaklis, M.I.; Muramatsu, T.; Ishibashi, Y.; Lakkas, L.S.; Nakatani, S.; Bourantas, C.V.; Ligthart, J.; Onuma, Y.; Echavarria-Pinto, M.; Tsirka, G.; et al. Fast virtual 619 functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in 620 humans: Comparison with pressure wire—fractional flow reserve. EuroIntervention 2014, 10, 574–583. [Google Scholar] [CrossRef]
- Tu, S.; Westra, J.; Yang, J.; von Birgelen, C.; Ferrara, A.; Pellicano, M.; Nef, H.; Tebaldi, M.; Murasato, Y.; Lansky, A.; et al. Diagnostic Accuracy of Fast 624 Computational Approaches to Derive Fractional Flow Reserve from Diagnostic Coronary Angiography: The 625 International Multicenter FAVOR Pilot Study. JACC Cardiovasc. Interv. 2016, 9, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Tu, S.; Qiao, S.; Qu, X.; Chen, Y.; Yang, J.; Guo, L.; Sun, Z.; Li, Z.; Tian, F.; et al. Diagnostic Accuracy of Angiography-Based Quantitative 627 Flow Ratio Measurements for Online Assessment of Coronary Stenosis. J. Am. Coll. Cardiol. 2017, 70, 3077–3087. [Google Scholar] [CrossRef]
- Andersen, B.K.; Sejr-Hansen, M.; Westra, J.; Campo, G.; Efterkhari, A.; Tu, S.; Escaned, J.; Koltowski, L.; Stähli, B.E.; Erglis, A.; et al. Quantitative flow ratio versus fractional flow reserve for guiding percutaneous coronary intervention: Design and rationale of the randomised, FAVOR III Europe Japan trial. EuroIntervention 2023, 18, e1358–e1364. [Google Scholar] [CrossRef]
- Westra, J.; Tu, S.; Winther, S.; Nissen, L.; Vestergaard, M.B.; Andersen, B.K.; Holck, E.N.; Fox Maule, C.; Johansen, J.K.; Andreasen, L.N.; et al. Evaluation of Coronary Artery 630 Stenosis by Quantitative Flow Ratio During Invasive Coronary Angiography: The WIFI II Study (Wire-Free 631 Functional Imaging II). Circ. Cardiovasc. Imaging 2018, 11, e007107. [Google Scholar] [CrossRef]
- Yazaki, K.; Otsuka, M.; Kataoka, S.; Kahata, M.; Kumagai, A.; Inoue, K.; Koganei, H.; Enta, K.; Ishii, Y. Applicability of 3-Dimensional 633 Quantitative Coronary Angiography-Derived Computed Fractional Flow Reserve for Intermediate Coronary Stenosis. Circ. J. 2017, 81, 988–992. [Google Scholar] [CrossRef]
- Siogkas, P.K.; Stefanou, K.A.; Athanasiou, L.S.; Papafaklis, M.I.; Michalis, L.K.; Fotiadis, D.I. Art care: A multi-modality coronary 3D reconstruction and hemodynamic status assessment software. Technol. Health Care 2018, 26, 187–193. [Google Scholar] [CrossRef]
- Fearon, W.F.; Achenbach, S.; Engstrom, T.; Assali, A.; Shlofmitz, R.; Jeremias, A.; Fournier, S.; Kirtane, A.J.; Kornowski, R.; Greenberg, G.; et al. Accuracy of Fractional 639 Flow Reserve Derived from Coronary Angiography. Circulation 2019, 139, 477–484. [Google Scholar] [CrossRef]
- Witberg, G.; De Bruyne, B.; Fearon, W.F.; Achenbach, S.; Engstrom, T.; Matsuo, H.; Kornowski, R. Diagnostic Performance 641 of Angiogram-Derived Fractional Flow Reserve: A Pooled Analysis of 5 Prospective Cohort Studies. JACC Cardiovasc. Interv. 2020, 13, 488–497. [Google Scholar] [CrossRef]
- Song, L.; Xu, B.; Tu, S.; Guan, C.; Jin, Z.; Yu, B.; Fu, G.; Zhou, Y.; Wang, J.A.; Chen, Y.; et al. 2-Year Outcomes of Angiographic Quantitative Flow Ratio-Guided Coronary Interventions. J. Am. Coll. Cardiol. 2022, 80, 2089–2101. [Google Scholar] [CrossRef] [PubMed]
- Dobrić, M.; Furtula, M.; Tešić, M.; Timčić, S.; Borzanović, D.; Lazarević, N.; Lipovac, M.; Farkić, M.; Ilić, I.; Boljević, D.; et al. Current status and future perspectives of fractional flow reserve derived from invasive coronary angiography. Front. Cardiovasc. Med. 2023, 10, 1181803. [Google Scholar] [CrossRef] [PubMed]
- Scoccia, A.; Byrne, R.A.; Banning, A.P.; Landmesser, U.; Van Belle, E.; Amat-Santos, I.J.; Sabaté, M.; Tijssen, J.G.; Spitzer, E.; Daemen, J. Fractional flow reserve or 3D-quantitative-coronary-angiography based vessel-FFR guided revascularization. Rationale and study design of the prospective randomized fast III trial. Am. Heart J. 2023, 260, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Siogkas, P.K.; Papafaklis, M.I.; Lakkas, L.; Exarchos, T.P.; Karmpaliotis, D.; Ali, Z.A.; Pelosi, G.; Parodi, O.; Katsouras, C.S.; Fotiadis, D.I.; et al. Virtual Functional Assessment of Coronary Stenoses Using Intravascular Ultrasound Imaging: A Proof-of-Concept Pilot Study. Heart Lung Circ. 2019, 28, e33–e36. [Google Scholar] [CrossRef]
- Seike, F.; Uetani, T.; Nishimura, K.; Kawakami, H.; Higashi, H.; Fujii, A.; Aono, J.; Nagai, T.; Inoue, K.; Suzuki, J.; et al. Intravascular Ultrasound-Derived 647 Virtual Fractional Flow Reserve for the Assessment of Myocardial Ischemia. Circ. J. 2018, 82, 815–823. [Google Scholar] [CrossRef]
- Zafar, H.; Sharif, F.; Leahy, M.J. Feasibility of intracoronary frequency domain optical coherence tomography derived fractional flow reserve for the assessment of coronary artery stenosis. Int. Heart J. 2014, 55, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Kim, J.S.; Lim, J.; Kim, G.; Lee, S.; Lee, J.S.; Shin, D.H.; Kim, B.K.; Ko, Y.G.; Choi, D.; et al. Assessing Computational Fractional Flow Reserve from Optical Coherence Tomography in Patients with Intermediate Coronary Stenosis in the Left Anterior Descending Artery. Circ. Cardiovasc. Interv. 2016, 9, e003613. [Google Scholar] [CrossRef]
- Yu, W.; Huang, J.; Jia, D.; Chen, S.; Raffel, O.C.; Ding, D.; Tian, F.; Kan, J.; Zhang, S.; Yan, F.; et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity. EuroIntervention 2019, 15, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Poon, E.K.W.; Thondapu, V.; Revalor, E.; Ooi, A.; Barlis, P. Coronary optical coherence tomography-derived 659 virtual fractional flow reserve (FFR): Anatomy and physiology all-in-one. Eur. Heart J. 2017, 38, 3604–3605. [Google Scholar] [CrossRef] [PubMed]
Study, Year | Imaging Modality | Sample Size (Patients, Vessels) | Pearson Correlation Coefficient | Agreement (Bias ± SD: Virtual Index−FFR) | Overall Diagnostic Accuracy | AUC |
---|---|---|---|---|---|---|
DISCOVER-FLOW, 2011 [14] | CCTA | 103, 159 | 0.68 | 0.02 ± 0.116 | 84% (per vessel) | 0.90 |
DeFACTO, 2012 [15] | CCTA | 252, 407 | 0.63 | 0.06 | 73% (per vessel) | 0.81 |
HeartFlow NXT, 2014 [16,17] | CCTA | 251, 484 | 0.82 | 0.02 ± 0.074 | 86% (per vessel) | 0.93 |
Renker., 2014 [20] | CCTA | 53 | 0.66 | - | 77% | 0.92 |
Kruk, 2016 [21] | CCTA | 90, 96 | 0.67 | −0.01 ± 0.095 | 74% | 0.83 |
Ko, 2016 [22] | CCTA | 42, 78 | 0.57 | −0.065 ± 0.137 | 83.9% (per vessel) | 0.88 |
Donnelly, 2018 [23] | CCTA | 44 | 0.73 | −0.48 | 63% | 0.89 |
Röther, 2018 [24] | CCTA | 71, 91 | 0.85 | 0.0049 | 86% | 0.94 |
Wardziak, 2019 [25] | CCTA | 90, 92 | - | - | 74% | 0.835 |
Siogkas, 2019 [26] | CCTA/vFAI | 63, 74 | 0.89 | 0.034 ± 0.042 | 93.2% | 0.97 |
Anagnostopoulos, 2019 [30] | PET/CCTA | 78 | 0.79 | - | 78.6% and 75% (MBF and MFR) (15O-water) | 0.866 and 0.737 (MBF and MFR) (15O-water) |
82.7% and 71.2% (MBF and MFR) (13N-ammonia) | 0.887 and 0.78 (MBF and MFR) (13N-ammonia) | |||||
Siogkas, 2021 [27] | SmartFFR CCTA/ICA | 167, 202 | 0.83 | 0.007 ± 0.053 | 86.4% | 0.956 |
Study, Year | Imaging Modality | Sample Size (Patients, Vessels) | Pearson Correlation Coefficient | Agreement (Bias ± SD: Virtual Index—FFR) | Overall Diagnostic Accuracy | AUC |
---|---|---|---|---|---|---|
Morris et al. (VIRTU-1), 2013 [36] | Invasive angiography | 19, 35 | 0.84 | 0.02 ± 0.080 | 97% (per vessel) | 0.97 |
Tu et al., 2014 [37] | Invasive angiography | 68, 77 | 0.81 | 0.00 ± 0.06 | 88.3% | 0.93 |
Papafaklis et al. (vFAI), 2014 [38] | Invasive angiography | 120, 139 | 0.78 | 0.004 ± 0.085 | 87.8% | 0.92 |
FAVOR Pilot Study (QFR), 2016 [39,40,41] | Invasive angiography | 73, 84 | fQFR: 0.69 | 0.003 ± 0.068 | 80% | 0.88 |
cQFR: 0.77 | 0.001 ± 0.059 | 86% | 0.92 | |||
aQFR: 0.72 | −0.001 ± 0.065 | 87% | 0.91 | |||
FAVOR III Pilot Study (QFR), 2023 [39,40,41] | Invasive angiography | 2000 | 0.70 | −0.01± 0.063 | 92.7% (per vessel) | 0.96 |
WIFI II study (QFR), 2018 [42] | Invasive angiography | 191, 292 | 0.70 | 0.00±0.06 | 83% | 0.86 |
FAST-FFR (FFRangio), 2019 [44,45] | Invasive angiography | 301, 319 | 0.80 | −0.14 to 0.12 | 92% | - |
FAST-FFR III (FFRangio), 2023 [44,45] | Invasive angiography | 2228 | 0.89 | 0.0029 ±0.0642 | 95% | 0.93 |
Witberg et al. (FFRangio), 2021 [46] | Invasive angiography | 588, 700 | 0.83 | 0.00 ± 0.12 | 93% | 0.95 |
Seike et al. (IVUS-FFR) 2018 [51] | Intravascular Ultrasound | 48, 50 | 0.78 | 0.057 | ||
Siogkas et al., 2018 [50] | Intravascular Ultrasound | 22 | 0.88 | 0.0196 ± 0.037 | 95.5% | - |
Zafar et al., 2014 [52] | Optical Coherence Tomography | 20, 26 | 0.69 | 0.05 ± 0.14 | - | - |
Yu et al., 2019 [54] | Optical Coherence Tomography | 135, 143 | 0.70 | 0.01±0.07 | 87% (per vessel) | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikopoulos, S.; Papafaklis, M.I.; Tsompou, P.; Sakellarios, A.; Siogkas, P.; Sioros, S.; Fotiadis, D.I.; Katsouras, C.S.; Naka, K.K.; Nikas, D.; et al. Virtual Hemodynamic Assessment of Coronary Lesions: The Advent of Functional Angiography and Coronary Imaging. J. Clin. Med. 2024, 13, 2243. https://doi.org/10.3390/jcm13082243
Nikopoulos S, Papafaklis MI, Tsompou P, Sakellarios A, Siogkas P, Sioros S, Fotiadis DI, Katsouras CS, Naka KK, Nikas D, et al. Virtual Hemodynamic Assessment of Coronary Lesions: The Advent of Functional Angiography and Coronary Imaging. Journal of Clinical Medicine. 2024; 13(8):2243. https://doi.org/10.3390/jcm13082243
Chicago/Turabian StyleNikopoulos, Sotirios, Michail I. Papafaklis, Panagiota Tsompou, Antonis Sakellarios, Panagiotis Siogkas, Spyros Sioros, Dimitrios I. Fotiadis, Christos S. Katsouras, Katerina K. Naka, Dimitrios Nikas, and et al. 2024. "Virtual Hemodynamic Assessment of Coronary Lesions: The Advent of Functional Angiography and Coronary Imaging" Journal of Clinical Medicine 13, no. 8: 2243. https://doi.org/10.3390/jcm13082243
APA StyleNikopoulos, S., Papafaklis, M. I., Tsompou, P., Sakellarios, A., Siogkas, P., Sioros, S., Fotiadis, D. I., Katsouras, C. S., Naka, K. K., Nikas, D., & Michalis, L. (2024). Virtual Hemodynamic Assessment of Coronary Lesions: The Advent of Functional Angiography and Coronary Imaging. Journal of Clinical Medicine, 13(8), 2243. https://doi.org/10.3390/jcm13082243