Diagnostic, Theranostic and Prognostic Value of Thyroglobulin in Thyroid Cancer
Abstract
:1. Introduction
2. Thyroglobulin: Biology and Laboratory Medicine
3. Thyroglobulin: Diagnostic and Prognostic Value
3.1. Pre-Operative Tg Measurement
3.2. Post-Operative Tg Measurement in Confirmed DTC
3.2.1. Tg in Monitoring the Therapeutic Effect and Follow-Up Care
3.2.2. Tg in Post-Operative Decision Making: A Theranostic Marker?
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rossi, E.D.; Pantanowitz, L.; Hornick, J.L. A Worldwide Journey of Thyroid Cancer Incidence Centred on Tumour Histology. Lancet Diabetes Endocrinol. 2021, 9, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Michael Tuttle, R.; Ahuja, S.; Avram, A.M.; Bernet, V.J.; Bourguet, P.; Daniels, G.H.; Dillehay, G.; Draganescu, C.; Flux, G.; Führer, D.; et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019, 29, 461–470. [Google Scholar] [CrossRef]
- Pizzimenti, C.; Fiorentino, V.; Ieni, A.; Rossi, E.D.; Germanà, E.; Giovanella, L.; Lentini, M.; Alessi, Y.; Tuccari, G.; Campennì, A.; et al. BRAF-AXL-PD-L1 Signaling Axis as a Possible Biological Marker for RAI Treatment in the Thyroid Cancer ATA Intermediate Risk Category. Int. J. Mol. Sci. 2023, 24, 10024. [Google Scholar] [CrossRef] [PubMed]
- Campennì, A.; Barbaro, D.; Guzzo, M.; Capoccetti, F.; Giovanella, L. Personalized Management of Differentiated Thyroid Cancer in Real Life—Practical Guidance from a Multidisciplinary Panel of Experts. Endocrine 2020, 70, 280–291. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A. Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [PubMed]
- Grebe, S.K.G. Diagnosis and Management of Thyroid Carcinoma: A Focus on Serum Thyroglobulin. Expert Rev. Endocrinol. Metab. 2014, 4, 25–43. [Google Scholar] [CrossRef]
- Giovanella, L. Highly Sensitive Thyroglobulin Measurements in Differentiated Thyroid Carcinoma Management. Clin. Chem. Lab. Med. 2008, 46, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Clark, P.M.; Chiovato, L.; Duntas, L.; Elisei, R.; Feldt-Rasmussen, U.; Leenhardt, L.; Luster, M.; Schalin-Jäntti, C.; Schott, M.; et al. Thyroglobulin Measurement Using Highly Sensitive Assays in Patients with Differentiated Thyroid Cancer: A Clinical Position Paper. Eur. J. Endocrinol. 2014, 171. [Google Scholar] [CrossRef] [PubMed]
- Algeciras-Schimnich, A. Thyroglobulin Measurement in the Management of Patients with Differentiated Thyroid Cancer. Crit. Rev. Clin. Lab. Sci. 2018, 55, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Feldt-Rasmussen, U.; Verburg, F.A.; Grebe, S.K.; Plebani, M.; Clark, P.M. Thyroglobulin Measurement by Highly Sensitive Assays: Focus on Laboratory Challenges. Clin. Chem. Lab. Med. 2015, 53, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.; Tennant, S.; Perros, P. Thyroglobulin in Differentiated Thyroid Cancer. Clin. Chim. Acta 2015, 444, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.; LoPresti, J.; Fatemi, S. How Sensitive (Second-Generation) Thyroglobulin Measurement Is Changing Paradigms for Monitoring Patients with Differentiated Thyroid Cancer, in the Absence or Presence of Thyroglobulin Autoantibodies. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; D’Aurizio, F.; Algeciras-Schimnich, A.; Görges, R.; Petranovic Ovcaricek, P.; Tuttle, R.M.; Visser, W.E.; Verburg, F.A. Thyroglobulin and Thyroglobulin Antibody: An Updated Clinical and Laboratory Expert Consensus. Eur. J. Endocrinol. 2023, 189, R11–R27. [Google Scholar] [CrossRef] [PubMed]
- Demers, L.M.; Spencer, C.A. Laboratory Medicine Practice Guidelines: Laboratory Support for the Diagnosis and Monitoring of Thyroid Disease. Clin. Endocrinol. 2003, 58, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, D.A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008, 29, S52. [Google Scholar]
- EP17A2|Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures, 2nd ed. Available online: https://clsi.org/standards/products/method-evaluation/documents/ep17/ (accessed on 2 March 2024).
- Oosterhuis, W.P.; Bayat, H.; Armbruster, D.; Coskun, A.; Freeman, K.P.; Kallner, A.; Koch, D.; Mackenzie, F.; Migliarino, G.; Orth, M.; et al. The Use of Error and Uncertainty Methods in the Medical Laboratory. Clin. Chem. Lab. Med. 2018, 56, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Treglia, G.; Sadeghi, R.; Trimboli, P.; Ceriani, L.; Verburg, F.A. Unstimulated Highly Sensitive Thyroglobulin in Follow-Up of Differentiated Thyroid Cancer Patients: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2014, 99, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Duntas, L.H. MANAGEMENT OF ENDOCRINE DISEASE: The Role of RhTSH in the Management of Differentiated Thyroid Cancer: Pros and Cons. Eur. J. Endocrinol. 2019, 181, R133–R145. [Google Scholar] [CrossRef] [PubMed]
- Chindris, A.M.; Diehl, N.N.; Crook, J.E.; Fatourechi, V.; Smallridge, R.C. Undetectable Sensitive Serum Thyroglobulin (<0.1 Ng/Ml) in 163 Patients with Follicular Cell-Derived Thyroid Cancer: Results of RhTSH Stimulation and Neck Ultrasonography and Long-Term Biochemical and Clinical Follow-Up. J. Clin. Endocrinol. Metab. 2012, 97, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Malandrino, P.; Latina, A.; Marescalco, S.; Spadaro, A.; Regalbuto, C.; Fulco, R.A.; Scollo, C.; Vigneri, R.; Pellegriti, G. Risk-Adapted Management of Differentiated Thyroid Cancer Assessed by a Sensitive Measurement of Basal Serum Thyroglobulin. J. Clin. Endocrinol. Metab. 2011, 96, 1703–1709. [Google Scholar] [CrossRef]
- Spencer, C.; Fatemi, S.; Singer, P.; Nicoloff, J.; Lopresti, J. Serum Basal Thyroglobulin Measured by a Second-Generation Assay Correlates with the Recombinant Human Thyrotropin-Stimulated Thyroglobulin Response in Patients Treated for Differentiated Thyroid Cancer. Thyroid 2010, 20, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Feldt-Rasmussen, U.; Schlumberger, M. European Interlaboratory Comparison of Serum Thyroglobulin Measurement. J. Endocrinol. Investig. 1988, 11, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.A.; Bergoglio, L.M.; Kazarosyan, M.; Fatemi, S.; LoPresti, J.S. Clinical Impact of Thyroglobulin (Tg) and Tg Autoantibody Method Differences on the Management of Patients with Differentiated Thyroid Carcinomas. J. Clin. Endocrinol. Metab. 2005, 90, 5566–5575. [Google Scholar] [CrossRef] [PubMed]
- Schlumberger, M.; Hitzel, A.; Toubert, M.E.; Corone, C.; Troalen, F.; Schlageter, M.H.; Claustrat, F.; Koscielny, S.; Taieb, D.; Toubeau, M.; et al. Comparison of Seven Serum Thyroglobulin Assays in the Follow-Up of Papillary and Follicular Thyroid Cancer Patients. J. Clin. Endocrinol. Metab. 2007, 92, 2487–2495. [Google Scholar] [CrossRef] [PubMed]
- Netzel, B.C.; Grebe, S.K.G.; Leon, B.G.C.; Castro, M.R.; Clark, P.M.; Hoofnagle, A.N.; Spencer, C.A.; Turcu, A.F.; Algeciras-Schimnich, A. Thyroglobulin (Tg) Testing Revisited: Tg Assays, TgAb Assays, and Correlation of Results With Clinical Outcomes. J. Clin. Endocrinol. Metab. 2015, 100, E1074–E1083. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Shankara-Narayana, N.; Wood, C.; Ward, P.; Sidhu, S.; Clifton-Bligh, R. Markedly Elevated Serum Thyroglobulin Associated with Heterophile Antibodies: A Cautionary Tale. Thyroid 2013, 23, 771–772. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Ghelfo, A. Undetectable Serum Thyroglobulin Due to Negative Interference of Heterophile Antibodies in Relapsing Thyroid Carcinoma. Clin. Chem. 2007, 53, 1871–1872. [Google Scholar] [CrossRef] [PubMed]
- Favresse, J.; Burlacu, M.C.; Maiter, D.; Gruson, D. Interferences with Thyroid Function Immunoassays: Clinical Implications and Detection Algorithm. Endocr. Rev. 2018, 39, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Keller, F.; Ceriani, L.; Tozzoli, R. Heterophile Antibodies May Falsely Increase or Decrease Thyroglobulin Measurement in Patients with Differentiated Thyroid Carcinoma. Clin. Chem. Lab. Med. 2009, 47, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Barbesino, G.; Algeciras-Schimnich, A.; Bornhorst, J. Thyroglobulin Assay Interferences: Clinical Usefulness of Mass-Spectrometry Methods. J. Endocr. Soc. 2022, 7, bvac169. [Google Scholar] [CrossRef] [PubMed]
- Netzel, B.C.; Grebe, S.K.G.; Algeciras-Schimnich, A. Usefulness of a Thyroglobulin Liquid Chromatography-Tandem Mass Spectrometry Assay for Evaluation of Suspected Heterophile Interference. Clin. Chem. 2014, 60, 1016–1018. [Google Scholar] [CrossRef] [PubMed]
- Verburg, F.A.; Luster, M.; Cupini, C.; Chiovato, L.; Duntas, L.; Elisei, R.; Feldt-Rasmussen, U.; Rimmele, H.; Seregni, E.; Smit, J.W.A.; et al. Implications of Thyroglobulin Antibody Positivity in Patients with Differentiated Thyroid Cancer: A Clinical Position Statement. Thyroid 2013, 23, 1211–1225. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.A.; Takeuchi, M.; Kazarosyan, M.; Wang, C.C.; Guttler, R.B.; Singer, P.A.; Fatemi, S.; LoPresti, J.S.; Nicoloff, J.T. Serum Thyroglobulin Autoantibodies: Prevalence, Influence on Serum Thyroglobulin Measurement, and Prognostic Significance in Patients with Differentiated Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 1998, 83, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Rosário, P.W.S.; Maia, F.F.R.; Fagundes, T.A.; Vasconcelos, F.P.; Cardoso, L.D.; Purisch, S. Antithyroglobulin Antibodies in Patients with Differentiated Thyroid Carcinoma: Methods of Detection, Interference with Serum Thyroglobulin Measurement and Clinical Significance. Arq. Bras. Endocrinol. Metabol. 2004, 48, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Verburg, F.A.; Hartmann, D.; Grelle, I.; Giovanella, L.; Buck, A.K.; Reiners, C. Relationship between Antithyroglobulin Autoantibodies and Thyroglobulin Recovery Rates Using Different Thyroglobulin Concentrations in the Recovery Buffer. Horm. Metab. Res. 2013, 45, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.A.; LoPresti, J.S. Measuring Thyroglobulin and Thyroglobulin Autoantibody in Patients with Differentiated Thyroid Cancer. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Persoon, A.C.M.; Links, T.P.; Wilde, J.; Sluiter, W.J.; Wolffenbuttel, B.H.R.; Van Den Ouweland, J.M.W. Thyroglobulin (Tg) Recovery Testing with Quantitative Tg Antibody Measurement for Determining Interference in Serum Tg Assays in Differentiated Thyroid Carcinoma. Clin. Chem. 2006, 52, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Verburg, F.A.; Trimboli, P.; Imperiali, M.; Keller, F.; Ceriani, L. Measuring Thyroglobulin in Patients with Thyroglobulin Autoantibodies: Evaluation of the Clinical Impact of BRAHMS Kryptor® Tg-Minirecovery Test in a Large Series of Patients with Differentiated Thyroid Carcinoma. Clin. Chem. Lab. Med. 2019, 57, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.; Petrovic, I.; Fatemi, S. Current Thyroglobulin Autoantibody (TgAb) Assays Often Fail to Detect Interfering TgAb That Can Result in the Reporting of Falsely Low/Undetectable Serum Tg IMA Values for Patients with Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2011, 96, 1283–1291. [Google Scholar] [CrossRef]
- Katrangi, W.; Grebe, S.K.G.; Algeciras-Schimnich, A. Analytical and Clinical Performance of Thyroglobulin Autoantibody Assays in Thyroid Cancer Follow-Up. Clin. Chem. Lab. Med. 2017, 55, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- D’Aurizio, F.; Metus, P.; Ferrari, A.; Caruso, B.; Castello, R.; Villalta, D.; Steffan, A.; Gaspardo, K.; Pesente, F.; Bizzaro, N.; et al. Definition of the Upper Reference Limit for Thyroglobulin Antibodies According to the National Academy of Clinical Biochemistry Guidelines: Comparison of Eleven Different Automated Methods. Auto. Immun. Highlights 2017, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yu, S.; Jin, C.; Han, S.; Hu, Y.; Zhang, K.; Liu, H.; Qiu, L. Comparison of Three Different Assays for Measuring Thyroglobulin and Thyroglobulin Antibodies in Patients with Chronic Lymphocytic Thyroiditis. Clin. Biochem. 2017, 50, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- La’ulu, S.L.; Slev, P.R.; Roberts, W.L. Performance Characteristics of 5 Automated Thyroglobulin Autoantibody and Thyroid Peroxidase Autoantibody Assays. Clin. Chim. Acta 2007, 376, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Cubero, J.M.; Rodríguez-Espinosa, J.; Gelpi, C.; Estorch, M.; Corcoy, R. Thyroglobulin Autoantibody Levels below the Cut-off for Positivity Can Interfere with Thyroglobulin Measurement. Thyroid 2003, 13, 659–661. [Google Scholar] [CrossRef]
- Côrtes, M.C.S.; Rosario, P.W.; Oliveira, L.F.F.; Calsolari, M.R. Clinical Impact of Detectable Antithyroglobulin Antibodies Below the Reference Limit (Borderline) in Patients with Papillary Thyroid Carcinoma with Undetectable Serum Thyroglobulin and Normal Neck Ultrasonography after Ablation: A Prospective Study. Thyroid 2018, 28, 229–235. [Google Scholar] [CrossRef]
- Dekker, B.L.; Van Der Horst-Schrivers, A.N.A.; Sluiter, W.J.; Brouwers, A.H.; Lentjes, E.G.W.M.; Heijboer, A.C.; Muller Kobold, A.C.; Links, T.P. Clinical Applicability of Low Levels of Thyroglobulin Autoantibodies as Cutoff Point for Thyroglobulin Autoantibody Positivity. Thyroid 2019, 29, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Dekker, B.L.; van der Horst-Schrivers, A.N.A.; Brouwers, A.H.; Shuford, C.M.; Kema, I.P.; Muller Kobold, A.C.; Links, T.P. Clinical Irrelevance of Lower Titer Thyroglobulin Autoantibodies in Patients with Differentiated Thyroid Carcinoma. Eur. Thyroid J. 2022, 11, e220137. [Google Scholar] [CrossRef] [PubMed]
- Van Kinschot, C.M.J.; Peeters, R.P.; Van Den Berg, S.A.A.; Verburg, F.A.; Van Noord, C.; Van Ginhoven, T.M.; Visser, W.E. Thyroglobulin and Thyroglobulin Antibodies: Assay-Dependent Management Consequences in Patients with Differentiated Thyroid Carcinoma. Clin. Chem. Lab. Med. 2022, 60, 756–765. [Google Scholar] [CrossRef]
- Barbesino, G.; Algeciras-Schimnich, A.; Bornhorst, J.A. False Positives in Thyroglobulin Determinations Due to the Presence of Heterophile Antibodies: An Underrecognized and Consequential Clinical Problem. Endocr. Pract. 2021, 27, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.J.; Zhang, Y.; Reitz, R.E. A Novel Mass Spectrometry-Based Assay for the Accurate Measurement of Thyroglobulin from Patient Samples Containing Antithyroglobulin Autoantibodies. J. Investig. Med. 2012, 60, 1157–1163. [Google Scholar] [CrossRef]
- Kushnir, M.M.; Rockwood, A.L.; Roberts, W.L.; Abraham, D.; Hoofnagle, A.N.; Meikle, A.W. Measurement of Thyroglobulin by Liquid Chromatography-Tandem Mass Spectrometry in Serum and Plasma in the Presence of Antithyroglobulin Autoantibodies. Clin. Chem. 2013, 59, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, E.; Hobo, Y.; Miyauchi, A.; Ito, Y.; Higuchi, M.; Hirokawa, M.; Ito, M.; Fukata, S.; Nishikawa, M.; Akamizu, T. Serum Thyroglobulin Evaluation on LC-MS/MS and Immunoassay in TgAb-Positive Patients with Papillary Thyroid Carcinoma. Eur. Thyroid J. 2022, 11, e210041. [Google Scholar] [CrossRef] [PubMed]
- Rosario, P.W.; Souza Côrtes, M.C.; Mourão, G.F. Follow-Up of Patients with Thyroid Cancer and Antithyroglobulin Antibodies: A Review for Clinicians. Endocr. Relat. Cancer 2021, 28, R111–R119. [Google Scholar] [CrossRef] [PubMed]
- Netzel, B.C.; Grant, R.P.; Hoofnagle, A.N.; Rockwood, A.L.; Shuford, C.M.; Grebe, S.K.G. First Steps toward Harmonization of LC-MS/MS Thyroglobulin Assays. Clin. Chem. 2016, 62, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Ylli, D.; Soldin, S.J.; Stolze, B.; Wei, B.; Nigussie, G.; Nguyen, H.; Mendu, D.R.; Mete, M.; Wu, D.; Gomes-Lima, C.J.; et al. Biotin Interference in Assays for Thyroid Hormones, Thyrotropin and Thyroglobulin. Thyroid 2021, 31, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Tourbah, A.; Lebrun-Frenay, C.; Edan, G.; Clanet, M.; Papeix, C.; Vukusic, S.; De Sèze, J.; Debouverie, M.; Gout, O.; Clavelou, P.; et al. MD1003 (High-Dose Biotin) for the Treatment of Progressive Multiple Sclerosis: A Randomised, Double-Blind, Placebo-Controlled Study. Mult. Scler. 2016, 22, 1719–1731. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, N.G.; Doery, J.C.G.; Lu, Z.X. Positive and Negative Interference in Immunoassays following Biotin Ingestion: A Pharmacokinetic Study. Pathology 2012, 44, 674–675. [Google Scholar] [CrossRef]
- Grimsey, P.; Frey, N.; Bendig, G.; Zitzler, J.; Lorenz, O.; Kasapic, D.; Zaugg, C.E. Population Pharmacokinetics of Exogenous Biotin and the Relationship between Biotin Serum Levels and In Vitro Immunoassay Interference. Int. J. Pharmacokinet. 2017, 2, 247–256. [Google Scholar] [CrossRef]
- Trambas, C.; Lu, Z.; Yen, T.; Sikaris, K. Depletion of Biotin Using Streptavidin-Coated Microparticles: A Validated Solution to the Problem of Biotin Interference in Streptavidin-Biotin Immunoassays. Ann. Clin. Biochem. 2018, 55, 216–226. [Google Scholar] [CrossRef]
- Yang, J.; Wiencek, J.R. Mitigating Biotin Interference in Two Roche Immunoassays by Premixing Biotinylated Capturing Molecules with Streptavidin Coated Beads. Clin. Chim. Acta 2020, 505, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Perros, P.; Boelaert, K.; Colley, S.; Evans, C.; Evans, R.M.; Gerrard Ba, G.; Gilbert, J.; Harrison, B.; Johnson, S.J.; Giles, T.E.; et al. Guidelines for the Management of Thyroid Cancer. Clin. Endocrinol. 2014, 81 (Suppl. S1), 1–122. [Google Scholar] [CrossRef]
- Rink, T.; Dembowski, W.; Schroth, H.J.; Klinger, K. Impact of Serum Thyroglobulin Concentration in the Diagnosis of Benign and Malignant Thyroid Diseases. Nuklearmedizin 2000, 39, 133–138. [Google Scholar] [PubMed]
- Broecker-Preuss, M.; Simon, D.; Fries, M.; Kornely, E.; Weber, M.; Vardarli, I.; Gilman, E.; Herrmann, K.; Görges, R. Update on Calcitonin Screening for Medullary Thyroid Carcinoma and the Results of a Retrospective Analysis of 12,984 Patients with Thyroid Nodules. Cancers 2023, 15, 2333. [Google Scholar] [CrossRef]
- Moriyama, K.; Akamizu, T.; Umemoto, M.; Miura, M.; Saijo, M.; Taniguchi, K.; Nakao, K. A Case of Hashimoto’s Thyroiditis with Markedly Elevated Serum Thyroglobulin and Evidence of Its Influence on the Measurement of Anti-Thyroglobulin Antibody by Highly Sensitive Assays. Endocr. J. 1999, 46, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Treglia, G.; Giovanella, L. Preoperative Measurement of Serum Thyroglobulin to Predict Malignancy in Thyroid Nodules: A Systematic Review. Horm. Metab. Res. 2015, 47, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Deniwar, A.; Hambleton, C.; Thethi, T.; Moroz, K.; Kandil, E. Examining the Bethesda Criteria Risk Stratification of Thyroid Nodules. Pathol. Res. Pract. 2015, 211, 345–348. [Google Scholar] [CrossRef]
- Eszlinger, M.; Ullmann, M.; Ruschenburg, I.; Böhme, K.; Görke, F.; Franzius, C.; Adam, S.; Molwitz, T.; Landvogt, C.; Amro, B.; et al. Low Malignancy Rates in Fine-Needle Aspiration Cytologies in a Primary Care Setting in Germany. Thyroid 2017, 27, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.B.; Bondeson, L.; Ericsson, U.B.; Lindholm, K. Prediction of Malignancy in the Solitary Thyroid Nodule by Physical Examination, Thyroid Scan, Fine-Needle Biopsy and Serum Thyroglobulin. A Prospective Study of 100 Surgically Treated Patients—PubMed. Acta Chir. Scand. 1984, 150, 433–439. [Google Scholar] [PubMed]
- Kars, A.; Aktan, B.; Kilic, K.; Sakat, M.S.; Gözeler, M.S.; Yörük, Ö.; Mutlu, V.; Yllmaz, S. Preoperative Serum Thyroglobulin Level as a Useful Predictive Marker to Differentiate Thyroid Cancer. ORL J. Otorhinolaryngol. Relat. Spec. 2018, 80, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Hulikal, N.; Azhagamuthu, R.E.; Banoth, M.; Chowhan, A.K.; Yutla, M.; Sachan, A. Can Preoperative Serum Thyroglobulin Levels Predict the Risk of Malignancy? Results from Prospective Analysis of Biochemical Predictors of Malignancy in Thyroid Nodules. Acta Otorhinolaryngol. Ital. 2020, 40, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Sands, N.B.; Karls, S.; Rivera, J.; Tamilia, M.; Hier, M.P.; Black, M.J.; Gologan, O.; Payne, R.J. Preoperative Serum Thyroglobulin as an Adjunct to Fine-Needle Aspiration in Predicting Well-Differentiated Thyroid Cancer. J. Otolaryngol. Head Neck Surg. 2010, 39, 669–673. [Google Scholar] [PubMed]
- Lee, S.H.; Baek, J.S.; Lee, J.Y.; Lim, J.A.; Cho, S.Y.; Lee, T.H.; Ku, Y.H.; Kim, H.I.; Kim, M.J. Predictive Factors of Malignancy in Thyroid Nodules with a Cytological Diagnosis of Follicular Neoplasm. Endocr. Pathol. 2013, 24, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Chung, K.W.; Min, H.S.; Kim, T.S.; Kim, T.H.; Ryu, J.S.; Jung, Y.S.; Kim, S.K.; Lee, Y.J. Preoperative Serum Thyroglobulin as a Useful Predictive Marker to Differentiate Follicular Thyroid Cancer from Benign Nodules in Indeterminate Nodules. J. Korean Med. Sci. 2012, 27, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Lando, A.; Holm, K.; Nysom, K.; Krogh Rasmussen, Å.; Høier Madsen, M.; Feldt-Rasmussen, U.; Müller, J. Serum Thyroglobulin as a Marker of Thyroid Neoplasms after Childhood Cancer. Acta Paediatr. 2003, 92, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- Panza, N.; Lombardi, G.; De Rosa, M.; Pacilio, G.; Lapenta, L.; Salvatore, M. High Serum Thyroglobulin Levels. Diagnostic Indicators in Patients with Metastases from Unknown Primary Sites. Cancer 1987, 60, 2233–2236. [Google Scholar] [CrossRef]
- Edmonds, C.J.; Willis, C.L. Serum Thyroglobulin in the Investigation of Patients Presenting with Metastases. Br. J. Radiol. 1988, 61, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.H.; Kumar, A.; Vijayan, U.; Dandekar, S.R.; Krishna, B.A.; Rao, R.S. Clinical Utility of Serum Thyroglobulin in Metastatic Disease. Indian J. Med. Res. 1994, 100, 232–236. [Google Scholar] [PubMed]
- Wang, L.; Li, H.; Yang, Z.; Guo, Z.; Zhang, Q. Preoperative Serum Thyrotropin to Thyroglobulin Ratio Is Effective for Thyroid Nodule Evaluation in Euthyroid Patients. Otolaryngol. Head Neck Surg. 2015, 153, 15–19. [Google Scholar] [CrossRef]
- Yazici, P.; Mihmanli, M.; Bozkurt, E.; Ozturk, F.Y.; Uludag, M. Which Is the Best Predictor of Thyroid Cancer: Thyrotropin, Thyroglobulin or Their Ratio? Hormones 2016, 15, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Karvounis, E.; Kappas, I.; Angelousi, A.; Makris, G.M.; Siamatras, T.D.; Kassi, E. The Diagnostic and Predictive Accuracy of Thyroglobulin to TSH Ratio and TSH to Thyroglobulin Ratio in Detecting Differentiated Thyroid Carcinoma in Normothyroid Patients with Thyroid Nodules: A Retrospective Cohort Study and Systematic Review of the Literature. Oncol. Rev. 2021, 14, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Aydogdu, Y.F.; Emreol, U.; Emre, G.; Buyukkasap, C.; Akin, M. Determination of Diagnostic Features of Serum Thyroid Hormones and Thyroglobulin Ratios in Normothyroid Differentiated Thyroid Carcinoma Cases. Med. Bull. Sisli Etfal Hosp. 2023, 57, 257. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Ceriani, L.; Garo, M.L. Is Thyroglobulin a Reliable Biomarker of Differentiated Thyroid Cancer in Patients Treated by Lobectomy? A Systematic Review and Meta-Analysis. Clin. Chem. Lab. Med. 2022, 60, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Eustatia-Rutten, C.F.A.; Smit, J.W.A.; Romijn, J.A.; Van Der Kleij-Corssmit, E.P.M.; Pereira, A.M.; Stokkel, M.P.; Kievit, J. Diagnostic Value of Serum Thyroglobulin Measurements in the Follow-Up of Differentiated Thyroid Carcinoma, a Structured Meta-Analysis. Clin. Endocrinol. 2004, 61, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Pacini, F.; Schlumberger, M.; Dralle, H.; Elisei, R.; Smit, J.W.A.; Wiersinga, W.; Moreno-Reyes, R.; Van den Bruel, A.; Zira, C.; Feldt-Rasmussen, U.; et al. European Consensus for the Management of Patients with Differentiated Thyroid Carcinoma of the Follicular Epithelium. Eur. J. Endocrinol. 2006, 154, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; et al. Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef] [PubMed]
- Kloos, R.T.; Mazzaferri, E.L. A Single Recombinant Human Thyrotropin-Stimulated Serum Thyroglobulin Measurement Predicts Differentiated Thyroid Carcinoma Metastases Three to Five Years Later. J. Clin. Endocrinol. Metab. 2005, 90, 5047–5057. [Google Scholar] [CrossRef] [PubMed]
- Castagna, M.G.; Brilli, L.; Pilli, T.; Montanaro, A.; Cipri, C.; Fioravanti, C.; Sestini, F.; Capezzone, M.; Pacini, F. Limited Value of Repeat Recombinant Human Thyrotropin (RhTSH)-Stimulated Thyroglobulin Testing in Differentiated Thyroid Carcinoma Patients with Previous Negative RhTSH-Stimulated Thyroglobulin and Undetectable Basal Serum Thyroglobulin Levels. J. Clin. Endocrinol. Metab. 2008, 93, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Pabst, K.M.; Seifert, R.; Hirmas, N.; Broecker-Preuss, M.; Weber, M.; Peter Fendler, W.; Bartel, T.; Theurer, S.; Herrmann, K.; Görges, R. Predictive Value of Highly Sensitive Basal versus Stimulated Thyroglobulin Measurement in Long-Term Follow-Up of Thyroid Cancer. Endocr. Connect. 2023, 12, e220312. [Google Scholar] [CrossRef] [PubMed]
- Black, E.G.; Sheppard, M.C.; Hoffenberg, R. Serial Serum Thyroglobulin Measurements in the Management of Differentiated Thyroid Carcinoma. Clin. Endocrinol. 1987, 27, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Rössing, R.M.; Jentzen, W.; Nagarajah, J.; Bockisch, A.; Görges, R. Serum Thyroglobulin Doubling Time in Progressive Thyroid Cancer. Thyroid 2016, 26, 1712–1718. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Garo, M.L.; Albano, D.; Görges, R.; Ceriani, L. The Role of Thyroglobulin Doubling Time in Differentiated Thyroid Cancer: A Meta-Analysis. Endocr. Connect. 2022, 11, e210648. [Google Scholar] [CrossRef] [PubMed]
- Görges, R.; Binse, I. Stellenwert Konventioneller vs. Hochsensitiver Thyreoglobulin-Assays in Der Nachsorge Des Differenzierten Schilddrüsenkarzinoms. In Schilddrüse 2015—Personalisierte Schilddrüsenmedizin; Führer, D., Ed.; Lehmanns Media: Cologne, Germany, 2016; pp. 203–217. [Google Scholar]
- Murray, J.R.; Williams, G.R.; Harrington, K.J.; Newbold, K.; Nutting, C.M. Rising Thyroglobulin Tumour Marker during Pregnancy in a Thyroid Cancer Patient: No Cause for Alarm? Clin. Endocrinol. 2012, 77, 155–157. [Google Scholar] [CrossRef]
- Baumgarten, J.; Happel, C.; Groener, D.; Staudt, J.; Bockisch, B.; Sabet, A.; Grünwald, F.; Rink, T. Retrospective Analysis of the Development of Human Thyroglobulin during Pregnancy in Patients with Treated Non-Recurrent Differentiated Thyroid Cancer. Curr. Oncol. 2022, 29, 4012–4019. [Google Scholar] [CrossRef] [PubMed]
- Görges, R.; Brandt-Mainz, K.; Freudenberg, L.; Frilling, A.; Grimm, W.; Bockisch, A. Continously Increasing Sensitivity in Thyroid Cancer Aftercare in the Course of Three Generations of Thyroglobulin IMAs. Nuklearmedizin 2003, 42, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Zöphel, K.; Wunderlich, G.; Smith, B.R. Serum Thyroglobulin Measurements with a High Sensitivity Enzyme-Linked Immunosorbent Assay: Is There a Clinical Benefit in Patients with Differentiated Thyroid Carcinoma? Thyroid 2003, 13, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Milan, L.; Roll, W.; Weber, M.; Schenke, S.; Kreissl, M.; Vrachimis, A.; Pabst, K.; Murat, T.; Petranovic Ovcaricek, P.; et al. Postoperative Thyroglobulin as a Yard-Stick for Radioiodine Therapy: Decision Tree Analysis in a European Multicenter Series of 1317 Patients with Differentiated Thyroid Cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.C.; Howard, R.S.; Stojadinovic, A.; Gaitonde, D.Y.; Wallace, M.K.; Ahmed, J.; Burch, H.B. The Utility of Serum Thyroglobulin Measurement at the Time of Remnant Ablation for Predicting Disease-Free Status in Patients with Differentiated Thyroid Cancer: A Meta-Analysis Involving 3947 Patients. J. Clin. Endocrinol. Metab. 2012, 97, 2754–2763. [Google Scholar] [CrossRef] [PubMed]
- Vaisman, A.; Orlov, S.; Yip, J.; Hu, C.; Lim, T.; Dowar, M.; Freeman, J.L.; Walfish, P.G. Application of Post-Surgical Stimulated Thyroglobulin for Radioiodine Remnant Ablation Selection in Low-Risk Papillary Thyroid Carcinoma. Head Neck 2010, 32, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Ceriani, L.; Suriano, S.; Ghelfo, A.; Maffioli, M. Thyroglobulin Measurement before RhTSH-Aided 131I Ablation in Detecting Metastases from Differentiated Thyroid Carcinoma. Clin. Endocrinol. 2008, 69, 659–663. [Google Scholar] [CrossRef]
- Campennì, A.; Ruggeri, R.M.; Siracusa, M.; Comis, A.D.; Romano, D.; Vento, A.; Lanzafame, H.; Capoccetti, F.; Alibrandi, A.; Baldari, S.; et al. Early Preablation RhTSH-Stimulated Thyroglobulin Predicts Outcome of Differentiated Thyroid Cancer (DTC) Patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2466–2475. [Google Scholar] [CrossRef]
Low-Risk DTC | Intermediate-Risk DTC | High-Risk DTC |
---|---|---|
No local or distant metastases | Microscopic ETE | Macroscopic ETE |
All macroscopic tumor resected | cN1 or >5 pN1 (all < 30 mm) | Incomplete tumor resection |
No extra-thyroid loco-regional invasion | Aggressive histology | Distant metastases |
No aggressive histology or vascular invasion | Vascular invasion | Post-operative Tg levels consistent with distant metastases |
131I given, no uptake outside the thyroid bed on PT-WBS | mPTC (m) with ETE and mutated BRAF V600E | High Tg levels compared to PT-WBS findings |
cN0 or pN1 micro-MTS (<0.2 mm) | 131I uptake outside the thyroid bed on PT-WBS | pN1 with any metastatic LN > 30 mm |
Intra-thyroid FTC with capsular invasion and/or <4 foci of vascular invasion | FTC with >4 foci of vascular invasion |
Aim | 131I Activities | Preparation | |
---|---|---|---|
Ablative | To eliminate thyroid remnant tissue and facilitate long-term follow-up | 1.1–2.0 GBq | rhTSH preferred |
Adjuvant | To lower the risk of recurrence | 2.0–5.5 GBq | rhTSH preferred |
Treatment | To treat persistent/recurrent disease | 3.7–7.4 GBq | THW preferred |
Parameter | Definition |
---|---|
Functional Sensitivity (FS) | Concentration of thyroglobulin corresponding to a coefficient of variation of 20%. Determined in pools of thyroglobulin-autoantibody-negative patients in the clinically relevant concentration range, in two different lots of reagents and calibrators, and over a period of 6 months. |
Limit of Detection (LOD) | The lowest analyte concentration distinguished from the limit of the blank with 95% confidence. |
Limit of Quantitation (LOQ) | The lowest analyte concentration reliably measurable, within pre-defined accuracy goals for total allowable error (bias and imprecision). Determined with the use of 2 reagent lots, one instrument system, 3 days, at least 4 independent low-level samples and 3 replicates per day, resulting in at least 36 total low-concentration sample replicates per reagent lot (3 days × 4 independent low-level samples × 3 replicates). |
Manufacturer | Tg Assay | Principle | Analytical Sensitivity (µg/L) | Assay Classification |
---|---|---|---|---|
Abbott | Architect Tg | CLIA | LOB 0.05 | High sensitivity |
LOD 0.09 | ||||
LOQ 0.14 | ||||
Abbott | Alinity I Tg | CLIA | LOB 0.07 | High sensitivity |
LOD 0.09 | ||||
LOQ 0.14 | ||||
Beckman Coulter | Access Tg | CLIA | AS ≤ 0.1 | High sensitivity |
BRAHMS Thermofisher | BRAHMS h-Tg Sensitive KRYPTOR | TRACE | LoD 0.09 | High sensitivity |
LoQ 0.17 | ||||
FS 0.15 | ||||
Diasorin | Liaison® Tg II Gen | CLIA | LOD 0.1 | High sensitivity |
LOQ 0.17 | ||||
Mindray | Thyroglobulin (Tg) | CLIA | AS ≤ 0.1 | High sensitivity |
Roche Diagnostics AG | Elecsys Tg II | ECLIA | LOB 0.02 | High sensitivity |
LOD 0.04 | ||||
LOQ 0.1 | ||||
Siemens Healthineers | Atellica® IM | CLIA | LOB 0.026 | High sensitivity |
LOD 0.036 | ||||
LOQ 0.05 | ||||
Siemens Healthineers | Immulite 2000 Tg | CLIA | LOD 0.2 | Conventional |
FS 0.9 | ||||
Shenzhen New Industries Biomedical Engineering Diagnostic | Maglumi® TG | CLIA | LOB 0.1 | Conventional |
LOD 0.25 | ||||
LOQ 0.8 |
Manufacturer | TgAb Assay | Principle | Analytical Sensitivity (kIU/L) | MCO (kIU/L) |
---|---|---|---|---|
Abbott Diagnostics | ARCHITECT Anti-Tg | CLIA | LOD 0.07 | 4.11 |
FS 0.31 | ||||
Abbott Diagnostics | Alinity I Anti-Tg | CLIA | LOB 0.05 | 4.11 |
LOD 0.11 | ||||
LOQ 0.33 | ||||
Beckman Coulter | Access Thyroglobulin Antibody II | CLIA | LOB 0.17 | 4 |
LOD 0.37 | ||||
BRAHMS Thermofisher a | BRAHMS ANTI-TGn KRYPTOR | TRACE | LOD 9 | 33 |
LOQ 42.4 | ||||
FS 33 | ||||
Diasorin | LIAISON® Anti-Tg | CLIA | LOD 5 | 100 |
LOQ 10 | ||||
Mindray | Antibody to thyroglobulin (anti-TG) | CLIA | AS ≤ 0.9 | 4 |
Roche Diagnostics | Elecsys Anti-Tg | ECLIA | LOB 7 | 115 |
LOD 10 | ||||
LOQ 15 | ||||
Siemens Healthineers | Atellica® IM Anti-Thyroglobulin II (aTgII) | CLIA | LOB 0.7 | 1.3 b 4.5 c |
LOD 0.9 | ||||
LOQ 0.9 | ||||
Siemens Healthineers | IMMULITE® 2000 Anti-TG Ab | CLIA | LOD 2.2 | 40 |
Shenzhen New Industries Biomedical Engineering Diagnostic | Maglumi® TGA | CLIA | LOD 0.5 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovanella, L.; D’Aurizio, F.; Petranović Ovčariček, P.; Görges, R. Diagnostic, Theranostic and Prognostic Value of Thyroglobulin in Thyroid Cancer. J. Clin. Med. 2024, 13, 2463. https://doi.org/10.3390/jcm13092463
Giovanella L, D’Aurizio F, Petranović Ovčariček P, Görges R. Diagnostic, Theranostic and Prognostic Value of Thyroglobulin in Thyroid Cancer. Journal of Clinical Medicine. 2024; 13(9):2463. https://doi.org/10.3390/jcm13092463
Chicago/Turabian StyleGiovanella, Luca, Federica D’Aurizio, Petra Petranović Ovčariček, and Rainer Görges. 2024. "Diagnostic, Theranostic and Prognostic Value of Thyroglobulin in Thyroid Cancer" Journal of Clinical Medicine 13, no. 9: 2463. https://doi.org/10.3390/jcm13092463
APA StyleGiovanella, L., D’Aurizio, F., Petranović Ovčariček, P., & Görges, R. (2024). Diagnostic, Theranostic and Prognostic Value of Thyroglobulin in Thyroid Cancer. Journal of Clinical Medicine, 13(9), 2463. https://doi.org/10.3390/jcm13092463