Interferon-γ Release Assay in the Assessment of Cellular Immunity—A Single-Centre Experience with mRNA SARS-CoV-2 Vaccine in Patients with Juvenile Idiopathic Arthritis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sayeed, M.A.; Shalim, E.; Farooqui, F.; Farman, S.; Khan, M.; Iqbal, A.; Ahmed, I.; Rajput, A.W.; Razzaque, A.; Quraishy, S. Comparison of the Disease Severity and Outcome of Vaccinated COVID-19 Patients with Unvaccinated Patients in a Specialized COVID-19 Facility: A Retrospective Cohort Study from Karachi, Pakistan. Vaccines 2023, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yuan, Y.; Liu, B.; Epstein, N.D.; Yang, Y. Protein-based nano-vaccines against SARS-CoV-2: Current design strategies and advances of candidate vaccines. Int. J. Biol. Macromol. 2023, 236, 123979. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, S.; Basu, M.; Ghosh, P.; Ansari, A.; Ghosh, M.K. COVID-19: Clinical status of vaccine development to date. Br. J. Clin. Pharmacol. 2023, 89, 114–149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Updated COVID-19 Vaccines for Use in the United States Beginning in Fall 2023. Available online: https://www.fda.gov/vaccines-blood-biologics/updated-covid-19-vaccines-use-united-states-beginning-fall-2023 (accessed on 1 September 2023).
- Stay Up to Date with COVID-19 Vaccines. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/stay-up-to-date.html (accessed on 30 September 2023).
- Kroon, F.P.B.; Najm, A.; Alunno, A.; Schoones, J.W.; Landewé, R.B.M.; Machado, P.M.; Navarro-Compán, V. Risk and prognosis of SARS-CoV-2 infection and vaccination against SARS-CoV-2 in rheumatic and musculoskeletal diseases: A systematic literature review to inform EULAR recommendations. Ann. Rheum. Dis. 2022, 81, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Hyrich, K.L.; Machado, P.M. Rheumatic disease and COVID-19: Epidemiology and outcomes. Nat. Rev. Rheumatol. 2021, 17, 71–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Conway, R.; Grimshaw, A.A.; Konig, M.F.; Putman, M.; Duarte-García, A.; Tseng, L.Y.; Cabrera, D.M.; Chock, Y.P.E.; Degirmenci, H.B.; Duff, E.; et al. SARS-CoV-2 Infection and COVID-19 Outcomes in Rheumatic Diseases: A Systematic Literature Review and Meta-Analysis. Arthritis Rheumatol. 2022, 74, 766–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boyarchuk, O.; Predyk, L.; Yuryk, I. COVID-19 in patients with juvenile idiopathic arthritis: Frequency and severity. Reumatologia 2021, 59, 197–199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haslak, F.; Yildiz, M.; Adrovic, A.; Sahin, S.; Koker, O.; Aliyeva, A.; Barut, K.; Kasapcopur, O. Management of childhood-onset autoinflammatory diseases during the COVID-19 pandemic. Rheumatol. Int. 2020, 40, 1423–1431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Wu, H.; Xia, S.L. New-Onset Arthritis Following COVID-19 Vaccination: A Systematic Review of Case Reports. Vaccines 2023, 11, 665. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mv, P.; Auanassova, A.; Yessirkepov, M.; Zimba, O.; Gasparyan, A.Y.; Kitas, G.D.; Ahmed, S. New-onset systemic vasculitis following SARS-CoV-2 infection and vaccination: The trigger, phenotype, and outcome. Clin. Rheumatol. 2023, 42, 2761–2775. [Google Scholar] [CrossRef] [PubMed]
- Gouda, W.; Albasri, A.; Alsaqabi, F.; Al Sabah, H.Y.; Alkandari, M.; Abdelnaby, H. Dermatomyositis Following BNT162b2 mRNA COVID-19 Vaccination. J. Korean Med. Sci. 2022, 37, e32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Padiyar, S.; Kamath, N.; Mathew, J.; Chandu, A.S.; Deodhar, D.; Shastry, B.A.; Shashikala, T.; Ganapati, A. New-onset Adult-onset Still’s disease-like syndrome after ChAdOx1 nCoV-19 vaccination-a case series with review of literature. Clin. Rheumatol. 2022, 41, 1569–1575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akgün, Ö.; Çakmak, F.; Guliyeva, V.; Demirkan, F.G.; Tanatar, A.; Hançerli Torun, S.; Çin, D.; Meşe, S.; Ağaçfidan, A.; Aktay Ayaz, N. Humoral response and safety of BNT162b2 mRNA vaccine in children with rheumatic diseases. Rheumatology 2022, 61, 4482–4490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heshin-Bekenstein, M.; Ziv, A.; Toplak, N.; Hagin, D.; Kadishevich, D.; Butbul, Y.A.; Saiag, E.; Kaufman, A.; Shefer, G.; Sharon, O.; et al. Safety and immunogenicity of BNT162b2 mRNA COVID-19 vaccine in adolescents with rheumatic diseases treated with immunomodulatory medications. Rheumatology 2022, 61, 4263–4272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sen, E.S.; Julandani, D.; Ramanan, A.V. SARS-CoV-2 vaccinations in children and adolescents with rheumatic diseases. Rheumatology 2022, 61, 4229–4231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Z.R.; Jiang, Y.W.; Li, F.X.; Liu, D.; Lin, T.F.; Zhao, Z.Y.; Wei, C.; Jin, Q.Y.; Li, X.M.; Jia, Y.X.; et al. Efficacy of SARS-CoV-2 vaccines and the dose-response relationship with three major antibodies: A systematic review and meta-analysis of randomised controlled trials. Lancet Microbe 2023, 4, e236–e246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tarke, A.; Coelho, C.H.; Zhang, Z.; Dan, J.M.; Yu, E.D.; Methot, N.; Bloom, N.I.; Goodwin, B.; Phillips, E.; Mallal, S.; et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 2022, 185, 847–859.e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- GeurtsvanKessel, C.H.; Geers, D.; Schmitz, K.S.; Mykytyn, A.Z.; Lamers, M.M.; Bogers, S.; Scherbeijn, S.; Gommers, L.; Sablerolles, R.S.G.; Nieuwkoop, N.N.; et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 2022, 7, eabo2202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goletti, D.; Delogu, G.; Matteelli, A.; Migliori, G.B. The role of IGRA in the diagnosis of tuberculosis infection, differentiating from active tuberculosis, and decision making for initiating treatment or preventive therapy of tuberculosis infection. Int. J. Infect. Dis. 2022, 124 (Suppl. S1), S12–S19. [Google Scholar] [CrossRef] [PubMed]
- Kurteva, E.; Vasilev, G.; Tumangelova-Yuzeir, K.; Ivanova, I.; Ivanova-Todorova, E.; Velikova, T.; Kyurkchiev, D. Interferon-gamma release assays outcomes in healthy subjects following BNT162b2 mRNA COVID-19 vaccination. Rheumatol. Int. 2022, 42, 449–456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahil, S.K.; Bechman, K.; Raharja, A.; Domingo-Vila, C.; Baudry, D.; Brown, M.A.; Cope, A.P.; Dasandi, T.; Graham, C.; Khan, H.; et al. Humoral and cellular immunogenicity to a second dose of COVID-19 vaccine BNT162b2 in people receiving methotrexate or targeted immunosuppression: A longitudinal cohort study. Lancet Rheumatol. 2022, 4, e42–e52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tortorella, C.; Aiello, A.; Gasperini, C.; Agrati, C.; Castilletti, C.; Ruggieri, S.; Meschi, S.; Matusali, G.; Colavita, F.; Farroni, C.; et al. Humoral- and T-Cell-Specific Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients with MS Using Different Disease-Modifying Therapies. Neurology 2022, 98, e541–e554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cerna, K.; Duricova, D.; Hindos, M.; Hindos Hrebackova, J.; Lukas, M.; Machkova, N.; Hruba, V.; Mitrova, K.; Kubickova, K.; Kastylova, K.; et al. Cellular and Humoral Immune Responses to SARS-CoV-2 Vaccination in Inflammatory Bowel Disease Patients. J. Crohn’s Colitis 2022, 16, 1347–1353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Standardization of Uveitis Nomenclature (SUN) Working Group. Classification Criteria for Juvenile Idiopathic Arthritis-Associated Chronic Anterior Uveitis. Am. J. Ophthalmol. 2021, 228, 192–197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- STROBE Checklists. Available online: https://www.strobe-statement.org/checklists/ (accessed on 12 April 2024).
- Kapten, K.; Orczyk, K.; Smolewska, E. Immunity in SARS-CoV-2 Infection: Clarity or Mystery? A Broader Perspective in the Third Year of a Worldwide Pandemic. Arch. Immunol. Ther. Exp. 2023, 71, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Mateus, J.; Coelho, C.H.; Dan, J.M.; Moderbacher, C.R.; Gálvez, R.I.; Cortes, F.H.; Grifoni, A.; Tarke, A.; Chang, J.; et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 2022, 185, 2434–2451.e17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kedzierska, K.; Thomas, P.G. Count on us: T cells in SARS-CoV-2 infection and vaccination. Cell Rep. Med. 2022, 3, 100562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Primorac, D.; Brlek, P.; Matišić, V.; Molnar, V.; Vrdoljak, K.; Zadro, R.; Parčina, M. Cellular Immunity-The Key to Long-Term Protection in Individuals Recovered from SARS-CoV-2 and after Vaccination. Vaccines 2022, 10, 442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599, Erratum in Nature 2021, 590, E17. [Google Scholar] [CrossRef] [PubMed]
- Agrati, C.; Castilletti, C.; Goletti, D.; Sacchi, A.; Bordoni, V.; Mariotti, D.; Notari, S.; Matusali, G.; Meschi, S.; Petrone, L.; et al. Persistent Spike-specific T cell immunity despite antibody reduction after 3 months from SARS-CoV-2 BNT162b2-mRNA vaccine. Sci. Rep. 2022, 12, 6687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Masiá, M.; de la Rica, A.; Fernández-González, M.; García, J.A.; Padilla, S.; García-Abellán, J.; Botella, Á.; Mascarell, P.; Gutiérrez, F. Integrating SARS-CoV-2-specific interferon-γ release assay testing in the evaluation of patients hospitalized with COVID-19. Microbiol. Spectr. 2023, 11, e0241923. [Google Scholar] [CrossRef] [PubMed]
- Schiffner, J.; Backhaus, I.; Rimmele, J.; Schulz, S.; Möhlenkamp, T.; Klemens, J.M.; Zapf, D.; Solbach, W.; Mischnik, A. Long-Term Course of Humoral and Cellular Immune Responses in Outpatients After SARS-CoV-2 Infection. Front. Public Health 2021, 9, 732787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huzly, D.; Panning, M.; Smely, F.; Enders, M.; Komp, J.; Falcone, V.; Steinmann, D. Accuracy and real life performance of a novel interferon-γ release assay for the detection of SARS-CoV2 specific T cell response. J. Clin. Virol. 2022, 148, 105098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lledó, A.; Retuerto, M.; Almendro-Vázquez, P.; Fernández-Ruiz, M.; Galindo, M.; Laguna-Goya, R.; Paz-Artal, E.; Lalueza, A.; Aguado, J.M.; Pablos, J.L. SARS-CoV-2-specific T-cell responses after COVID-19 recovery in patients with rheumatic diseases on immunosuppressive therapy. Semin. Arthritis Rheum. 2021, 51, 1258–1262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mu, X.; Cohen, C.A.; Leung, D.; Rosa Duque, J.S.; Cheng, S.M.S.; Chung, Y.; Wong, H.H.W.; Lee, A.M.T.; Li, W.Y.; Tam, I.Y.S.; et al. Antibody and T cell responses against wild-type and Omicron SARS-CoV-2 after third-dose BNT162b2 in adolescents. Signal Transduct. Target. Ther. 2022, 7, 397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, X.S.; Holmes, T.H.; Zhang, C.; Mahmood, K.; Kemble, G.W.; Lewis, D.B.; Dekker, C.L.; Greenberg, H.B.; Arvin, A.M. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J. Virol. 2006, 80, 11756–11766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rudolph, M.E.; McArthur, M.A.; Barnes, R.S.; Magder, L.S.; Chen, W.H.; Sztein, M.B. Differences Between Pediatric and Adult T Cell Responses to In Vitro Staphylococcal Enterotoxin B Stimulation. Front. Immunol. 2018, 9, 498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, Y.; Wang, Q.P.; Sun, D.; Wu, Z.B.; Peng, H.; Liu, X.W.; Liu, Y.L. Differences in Immune Responses between Children and Adults with COVID-19. Curr. Med. Sci. 2021, 41, 58–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geisen, U.M.; Berner, D.K.; Tran, F.; Sümbül, M.; Vullriede, L.; Ciripoi, M.; Reid, H.M.; Schaffarzyk, A.; Longardt, A.C.; Franzenburg, J.; et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort. Ann. Rheum. Dis. 2021, 80, 1306–1311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simon, D.; Tascilar, K.; Fagni, F.; Krönke, G.; Kleyer, A.; Meder, C.; Atreya, R.; Leppkes, M.; Kremer, A.E.; Ramming, A.; et al. SARS-CoV-2 vaccination responses in untreated, conventionally treated and anticytokine-treated patients with immune-mediated inflammatory diseases. Ann. Rheum. Dis. 2021, 80, 1312–1316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oyaert, M.; De Scheerder, M.A.; Van Herrewege, S.; Laureys, G.; Van Assche, S.; Cambron, M.; Naesens, L.; Hoste, L.; Claes, K.; Haerynck, F.; et al. Evaluation of Humoral and Cellular Responses in SARS-CoV-2 mRNA Vaccinated Immunocompromised Patients. Front. Immunol. 2022, 13, 858399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calcoen, B.; Callewaert, N.; Vandenbulcke, A.; Kerstens, W.; Imbrechts, M.; Vercruysse, T.; Dallmeier, K.; Van Weyenbergh, J.; Maes, P.; Bossuyt, X.; et al. High Incidence of SARS-CoV-2 Variant of Concern Breakthrough Infections Despite Residual Humoral and Cellular Immunity Induced by BNT162b2 Vaccination in Healthcare Workers: A Long-Term Follow-Up Study in Belgium. Viruses 2022, 14, 1257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vogrig, M.; Berger, A.E.; Bourlet, T.; Waeckel, L.; Haccourt, A.; Chanavat, A.; Hupin, D.; Roche, F.; Botelho-Nevers, E.; Pozzetto, B.; et al. Monitoring of Both Humoral and Cellular Immunities Could Early Predict COVID-19 Vaccine Efficacy against the Different SARS-CoV2 Variants. J. Clin. Immunol. 2023, 43, 31–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, S.; Mehta, P.; Paul, A.; Anu, S.; Cherian, S.; Shenoy, V.; Nalianda, K.K.; Joseph, S.; Poulose, A.; Shenoy, P. Postvaccination antibody titres predict protection against COVID-19 in patients with autoimmune diseases: Survival analysis in a prospective cohort. Ann. Rheum. Dis. 2022, 81, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Amanat, F.; Thapa, M.; Lei, T.; Ahmed, S.M.S.; Adelsberg, D.C.; Carreño, J.M.; Strohmeier, S.; Schmitz, A.J.; Zafar, S.; Zhou, J.Q.; et al. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell 2021, 184, 3936–3948.e10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sureshchandra, S.; Lewis, S.A.; Doratt, B.M.; Jankeel, A.; Coimbra Ibraim, I.; Messaoudi, I. Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine. JCI Insight 2021, 6, e153201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Total Number of Patients | Received SARS-CoV-2 Vaccine | |
---|---|---|
n = 55 | n = 8 | |
Male/Female | 14/41 | 2/6 |
Age on examination (years) | 10.31 ± 4.16 | 13.75 ± 1.47 |
Type of JIA: | ||
systemic | 6 | 2 |
oligoarticular | 29 | 4 |
polyarticular | 20 | 2 |
Newly diagnosed JIA | 15 | 2 |
Flare of JIA | 8 | 0 |
History of confirmed SARS-CoV-2 infection | 8 | 0 |
Treatment regime: | ||
Biological agents specifically: | 22 | 3 |
adalimumab | 13 | 3 |
tocilizumab | 6 | 0 |
etanercept | 2 | 0 |
baricitinib | 1 | 0 |
Methotrexate | 32 | 4 |
Sulfasalazine | 8 | 0 |
Hydroxychloroquine | 7 | 2 |
Cyclosporine | 3 | 0 |
Azathioprine | 1 | 1 |
Glucocorticoids | 4 | 0 |
Questions | Did Your Child Have Confirmed SARS-CoV-2 Infection or COVID-like Symptoms since Being Included in the Clinical Trial? |
---|---|
Answers: | Number of patients |
No | 37 |
Possible, present some of COVID-like symptoms, no PCR confirmation | 8 |
Highly possible, many COVID-like symptoms, no PCR confirmation | 2 |
Yes, infection confirmed in PCR | 6 |
Did not answer the phone | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapten, K.; Orczyk, K.; Maeser, A.; Smolewska, E. Interferon-γ Release Assay in the Assessment of Cellular Immunity—A Single-Centre Experience with mRNA SARS-CoV-2 Vaccine in Patients with Juvenile Idiopathic Arthritis. J. Clin. Med. 2024, 13, 2523. https://doi.org/10.3390/jcm13092523
Kapten K, Orczyk K, Maeser A, Smolewska E. Interferon-γ Release Assay in the Assessment of Cellular Immunity—A Single-Centre Experience with mRNA SARS-CoV-2 Vaccine in Patients with Juvenile Idiopathic Arthritis. Journal of Clinical Medicine. 2024; 13(9):2523. https://doi.org/10.3390/jcm13092523
Chicago/Turabian StyleKapten, Katarzyna, Krzysztof Orczyk, Anna Maeser, and Elzbieta Smolewska. 2024. "Interferon-γ Release Assay in the Assessment of Cellular Immunity—A Single-Centre Experience with mRNA SARS-CoV-2 Vaccine in Patients with Juvenile Idiopathic Arthritis" Journal of Clinical Medicine 13, no. 9: 2523. https://doi.org/10.3390/jcm13092523
APA StyleKapten, K., Orczyk, K., Maeser, A., & Smolewska, E. (2024). Interferon-γ Release Assay in the Assessment of Cellular Immunity—A Single-Centre Experience with mRNA SARS-CoV-2 Vaccine in Patients with Juvenile Idiopathic Arthritis. Journal of Clinical Medicine, 13(9), 2523. https://doi.org/10.3390/jcm13092523