C3 Hypocomplementemia Predicts the Progression of CKD towards End-Stage Kidney Disease in IgA Nephropathy, Irrespective of Histological Evidence of Thrombotic Microangiopathy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Histopathological Findings
3.2. Renal Outcomes
Mediation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Floege, J.; Amann, K. Primary glomerulonephritides. Lancet 2016, 387, 2036–2048. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Hinglais, N. Intercapillary deposits of IgA-IgG. J. Urol. Nephrol. 1968, 74, 694–695. [Google Scholar]
- Schena, F.P.; Nistor, I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin. Nephrol. 2018, 38, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.N.; Tang, S.C.W.; Schena, F.P.; Novak, J.; Tomino, Y.; Fogo, A.B.; Glassock, R.J. IgA nephropathy. Nat. Rev. Dis. Prim. 2016, 2, 16001. [Google Scholar] [CrossRef]
- Berthoux, F.C.; Mohey, H.; Afiani, A. Natural History of Primary IgA Nephropathy. Semin. Nephrol. 2008, 28, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Magistroni, R.; D’agati, V.D.; Appel, G.B.; Kiryluk, K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 2015, 88, 974–989. [Google Scholar] [CrossRef] [PubMed]
- O‘Shaughnessy, M.M.; Hogan, S.L.; Thompson, B.D.; Coppo, R.; Fogo, A.B.; Jennette, J.C. Glomerular disease frequencies by race, sex and region: Results from the International Kidney Biopsy Survey. Nephrol. Dial. Transplant. 2018, 33, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Hastings, M.C.; Bursac, Z.; Julian, B.A.; Baca, E.V.; Featherston, J.; Woodford, S.Y.; Bailey, L.; Wyatt, R.J. Life Expectancy for Patients from the Southeastern United States with IgA Nephropathy. Kidney Int. Rep. 2017, 3, 99–104. [Google Scholar] [CrossRef]
- Jennette, J.C. The Immunohistology of IgA Nephropathy. Am. J. Kidney Dis. 1988, 12, 348–352. [Google Scholar]
- Knoppova, B.; Reily, C.; King, R.G.; Julian, B.A.; Novak, J.; Green, T.J. Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. J. Clin. Med. 2021, 10, 4501. [Google Scholar] [CrossRef]
- Maillard, N.; Wyatt, R.J.; Julian, B.A.; Kiryluk, K.; Gharavi, A.; Fremeaux-Bacchi, V.; Novak, J. Current Understanding of the Role of Complement in IgA Nephropathy. J. Am. Soc. Nephrol. 2015, 26, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, A.M.; Gutiérrez, E.; Yuste, C.; Cavero, T.; Mérida, E.; Rodríguez, P.; García, A.; Morales, E.; Fernández, C.; Martínez, M.A.; et al. Remission of Hematuria Improves Renal Survival in IgA Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 3089–3099. [Google Scholar] [CrossRef] [PubMed]
- Zand, L.; Fervenza, F.C.; Coppo, R. Microscopic hematuria as a risk factor for IgAN progression: Considering this biomarker in selecting and monitoring patients. Clin. Kidney J. 2023, 16 (Suppl. S2), ii19–ii27. [Google Scholar] [CrossRef] [PubMed]
- Manenti, L.; Rossi, G.M.; Pisani, I.; Gentile, M.; Fontana, F.; Pilato, F.P.; Delsante, M.; Ricco, F.; Mignani, R.; Mele, C.; et al. IgA nephropathy and atypical hemolytic uremic syndrome: A case series and a literature review. J. Nephrol. 2022, 35, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.S.; Zandbergen, M.; Wolterbeek, R.; Baelde, H.J.; van Es, L.A.; de Fijter, J.W.; Bruijn, J.A.; Bajema, I.M. Complement-mediated microangiopathy in IgA nephropathy and IgA vasculitis with nephritis. Mod. Pathol. 2019, 32, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- George, J.N.; Nester, C.M. Syndromes of Thrombotic Microangiopathy. N. Engl. J. Med. 2014, 371, 654–666. [Google Scholar] [CrossRef]
- El Karoui, K.; Hill, G.S.; Karras, A.; Jacquot, C.; Moulonguet, L.; Kourilsky, O.; Frémeaux-Bacchi, V.; Delahousse, M.; Van Huyen, J.-P.D.; Loupy, A.; et al. A Clinicopathologic Study of Thrombotic Microangiopathy in IgA Nephropathy. J. Am. Soc. Nephrol. 2012, 23, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Shi, S.; Wang, S.; Ren, Y.; Hou, W.; Liu, L.; Lv, J.; Haas, M.; Zhang, H. Microangiopathic Lesions in IgA Nephropathy: A Cohort Study. Am. J. Kidney Dis. 2019, 74, 629–639. [Google Scholar] [CrossRef]
- Neves, P.D.M.d.M.; Souza, R.A.; Torres, F.M.; Reis, F.A.; Pinheiro, R.B.; Dias, C.B.; Yu, L.; Woronik, V.; Furukawa, L.S.; Cavalcante, L.B.; et al. Evidences of histologic thrombotic microangiopathy and the impact in renal outcomes of patients with IgA nephropathy. PLoS ONE 2020, 15, e0233199. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L.; Zhou, S.; Xu, Q.; Xu, Q.; Liu, D.; Liu, L.; Hu, R.; Quan, S.; Xing, G. Intrarenal Arterial Lesions Are Associated with Higher Blood Pressure, Reduced Renal Function and Poorer Renal Outcomes in Patients with IgA Nephropathy. Kidney Blood Press. Res. 2018, 43, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Kowalewska, J.; Smith, K.; Nicosia, R.; Alpers, C. A clinicopathologic study of thrombotic microangiopathy in the setting of IgA nephropathy. Clin. Nephrol. 2006, 66, 397–404. [Google Scholar] [CrossRef]
- Pan, M.; Zhou, Q.; Zheng, S.; You, X.; Li, D.; Zhang, J.; Chen, C.; Xu, F.; Li, Z.; Zhou, Z.; et al. Serum C3/C4 ratio is a novel predictor of renal prognosis in patients with IgA nephropathy: A retrospective study. Immunol. Res. 2018, 66, 381–391. [Google Scholar] [CrossRef]
- Kim, S.J.; Koo, H.M.; Lim, B.J.; Oh, H.J.; Yoo, D.E.; Shin, D.H.; Lee, M.J.; Doh, F.M.; Park, J.T.; Yoo, T.-H.; et al. Decreased Circulating C3 Levels and Mesangial C3 Deposition Predict Renal Outcome in Patients with IgA Nephropathy. PLoS ONE 2012, 7, e40495. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Trimarchi, H.; Barratt, J.; Cattran, D.C.; Cook, H.T.; Coppo, R.; Haas, M.; Liu, Z.-H.; Roberts, I.S.; Yuzawa, Y.; Zhang, H.; et al. Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017, 91, 1014–1021. [Google Scholar] [CrossRef]
- Discacciati, A.; Bellavia, A.; Lee, J.J.; Mazumdar, M.; Valeri, L. Med4way: A Stata command to investigate mediating and interactive mechanisms using the four-way effect decomposition. Int. J. Epidemiol. 2019, 48, 15–20. [Google Scholar] [CrossRef]
- VanderWeele, T.J. A Unification of Mediation and Interaction: A 4-way decomposition. Epidemiology 2014, 25, 749–761. [Google Scholar] [CrossRef]
- Yang, X.; Wei, R.-B.; Wang, Y.; Su, T.-Y.; Li, Q.-P.; Yang, T.; Huang, M.-J.; Li, K.-Y.; Chen, X.-M. Decreased Serum C3 Levels in Immunoglobulin A (IgA) Nephropathy with Chronic Kidney Disease: A Propensity Score Matching Study. Med. Sci. Monit. 2017, 23, 673–681. [Google Scholar] [CrossRef]
- Medjeral-Thomas, N.R.; Cook, H.T.; Pickering, M.C. Complement activation in IgA nephropathy. Semin. Immunopathol. 2021, 43, 679–690. [Google Scholar] [CrossRef]
- Ștefan, G.; Jullien, P.; Masson, I.; Alamartine, E.; Mariat, C.; Maillard, N. Circulating alternative pathway complement cleavage factor Bb is associated with vascular lesions and outcomes in IgA nephropathy. Nephrol. Dial. Transplant. 2023, 38 (Suppl. S2), ii11–ii18. [Google Scholar] [CrossRef]
- Caravaca-Fontán, F.; Gutiérrez, E.; Sevillano, Á.M.; Praga, M. Targeting complement in IgA nephropathy. Clin. Kidney J. 2023, 16 (Suppl. S2), ii28–ii39. [Google Scholar] [CrossRef] [PubMed]
Low Serum C3 at Biopsy | p Value | ||
---|---|---|---|
No | Yes | ||
Number of pts (%) | 44 (78.6) | 12 (21.4) | |
Age, years (mean ± SD) | 46.7 ± 17.4 | 42.4 ± 17.5 | 0.496 |
Male (n, %) | 33 (75) | 6 (50) | 0.072 |
Non-white ethnicity (n, %) | 4 (9) | 3 (25) | 0.128 |
Hypertension, history | 24 (45.5) | 6 (50) | 1.000 |
eGFR mL/min/1.73 m2 (mean ± SD) | 54.2 ± 40.4 | 52.8 ± 46.5 | 0.775 |
Serum Albumin, g/dL (mean ± SD) | 3.4 ± 0.6 | 3.2 ± 0.6 | 0.195 |
Proteinuria, g/day (mean ± SD) | 2.6 ± 2.1 | 5.5 ± 7.7 | 0.383 |
C3, mg/dL (mean ± SD) | 117.6 ± 20.3 | 78.4 ± 10.9 | 0.000 |
C4, mg/dL (mean ± SD) | 28.5 ± 6.9 | 23.8 ± 7.8 | 0.027 |
Hb, g/dL (mean ± SD) | 11.2 ± 2.3 | 12.4 ± 2.3 | 0.113 |
LDH, IU/L (mean ± SD) | 397.0 ± 121.2 | 412.9 ± 103.2 | 0.450 |
Platelets (×1000/mm3) (mean ± SD) | 216.4 ± 49.1 | 212.7 ± 63.3 | 0.829 |
Histology Immunofluorescence | |||
IF deposition—IgA (mean ± SD) | 2.5 ± 0.6 | 2.6 ± 0.5 | 1.000 |
IF deposition—IgA (mean ± SD) | 0.8 ± 0.5 | 1.0 ± 0.5 | 0.546 |
IF deposition—IgM (mean ± SD) | 1.2 ± 0.6 | 1.4 ± 0.5 | 0.352 |
IF deposition—C3 (mean ± SD) | 2.4 ± 0.6 | 2.4 ± 0.5 | 1.000 |
MEST-C (n, %) | |||
Mesangial | 11 (25.0) | 4 (33.3) | 0.462 |
Endocapillary | 11 (25.0) | 3 (25.0) | 0.720 |
Sclerosis | 31 (70.4) | 6 (50.0) | 0.113 |
Tubular atrophy | 23 (52.3) | 6 (50.0) | 1.000 |
Crescents | 15 (34.1) | 4 (33.0) | 1.000 |
MEST-C score sum | 2.4 (1.2) | 2.3 (1.2) | 0.667 |
TMA (n, %) | 10 (22.7) | 7 (58.3) | 0.002 |
Acute | 6 | 2 | |
Chronic | 4 | 5 | |
Therapy (n, %) | |||
Prednisone | 38 (86.3) | 10 (83.3) | 0.639 |
RAAS inhibitors | 36 (81.8) | 6 (50.0) | 0.054 |
Other immunosuppressant | 11 (25.0) | 6 (50.0) | 0.154 |
LowC3-Crude | TMA-Crude | LowC3-Adj. | TMA-Adj. | LowC3-Adj.+RAASi | TMA-Adj.+RAASi | LowC3+TMA | LowC3+TMA-Adj. | LowC3+TMA Adj.+RAASi | |
---|---|---|---|---|---|---|---|---|---|
LowC3 | 4.62 *** | 7.98 *** | 5.84 *** | 4.14 *** | 6.77 *** | 5.55 ** | |||
[1.71, 12.48] | [2.48, 25.76] | [1.69, 20.15] | [1.47, 11.68] | [1.90, 24.14] | [1.46, 21.01] | ||||
0.003 | 0.001 | 0.005 | 0.007 | 0.003 | 0.012 | ||||
TMA | 2.17 | 3.00 * | 2.21 | 1.51 | 1.46 | 1.15 | |||
[0.80, 5.87] | [0.94, 9.59] | [0.66, 7.47] | [0.53, 4.30] | [0.42, 5.05] | [0.30, 4.48] | ||||
0.126 | 0.064 | 0.200 | 0.438 | 0.552 | 0.836 | ||||
Age, yrs | 1.04 ** | 1.03 | 1.02 | 1.01 | 1.03 * | 1.02 | |||
[1.00, 1.07] | [0.99, 1.06] | [0.98, 1.06] | [0.97, 1.05] | [1.00, 1.07] | [0.98, 1.06] | ||||
0.049 | 0.115 | 0.326 | 0.606 | 0.056 | 0.321 | ||||
Non-white ethnicity | 8.05 *** | 6.97 *** | 6.34 *** | 5.23 *** | 7.97 *** | 6.42 *** | |||
[2.34, 27.66] | [2.13, 22.82] | [1.74, 23.14] | [1.55, 17.64] | [2.29, 27.70] | [1.74, 23.63] | ||||
0.001 | 0.001 | 0.005 | 0.008 | 0.001 | 0.005 | ||||
Male sex | 1.24 | 1.27 | 1.27 | 1.19 | 1.33 | 1.31 | |||
[0.42, 3.73] | [0.40, 3.99] | [0.41, 3.90] | [0.36, 3.90] | [0.43, 4.11] | [0.41, 4.16] | ||||
0.697 | 0.688 | 0.674 | 0.776 | 0.621 | 0.648 | ||||
RAASi | 0.46 | 0.32 * | 0.48 | ||||||
[0.13, 1.66] | [0.10, 1.03] | [0.12, 1.87] | |||||||
0.236 | 0.057 | 0.291 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, G.M.; Ricco, F.; Pisani, I.; Delsante, M.; Maggiore, U.; Fiaccadori, E.; Manenti, L. C3 Hypocomplementemia Predicts the Progression of CKD towards End-Stage Kidney Disease in IgA Nephropathy, Irrespective of Histological Evidence of Thrombotic Microangiopathy. J. Clin. Med. 2024, 13, 2594. https://doi.org/10.3390/jcm13092594
Rossi GM, Ricco F, Pisani I, Delsante M, Maggiore U, Fiaccadori E, Manenti L. C3 Hypocomplementemia Predicts the Progression of CKD towards End-Stage Kidney Disease in IgA Nephropathy, Irrespective of Histological Evidence of Thrombotic Microangiopathy. Journal of Clinical Medicine. 2024; 13(9):2594. https://doi.org/10.3390/jcm13092594
Chicago/Turabian StyleRossi, Giovanni Maria, Federico Ricco, Isabella Pisani, Marco Delsante, Umberto Maggiore, Enrico Fiaccadori, and Lucio Manenti. 2024. "C3 Hypocomplementemia Predicts the Progression of CKD towards End-Stage Kidney Disease in IgA Nephropathy, Irrespective of Histological Evidence of Thrombotic Microangiopathy" Journal of Clinical Medicine 13, no. 9: 2594. https://doi.org/10.3390/jcm13092594
APA StyleRossi, G. M., Ricco, F., Pisani, I., Delsante, M., Maggiore, U., Fiaccadori, E., & Manenti, L. (2024). C3 Hypocomplementemia Predicts the Progression of CKD towards End-Stage Kidney Disease in IgA Nephropathy, Irrespective of Histological Evidence of Thrombotic Microangiopathy. Journal of Clinical Medicine, 13(9), 2594. https://doi.org/10.3390/jcm13092594