Effects of Paraspinal Intramuscular Injection of Atelocollagen in Patients with Chronic Low Back Pain: A Retrospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Lumbar Epidural Steroid Injection
2.3. Atelocollagen Injection
2.4. Post-Injection Care
2.5. Evaluation of Outcome Variables
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Paraspinal Muscles in LBP Patients
4.2. Skeletal Muscles with Aging
4.3. Extracellular Matrix in Muscle Generation and Repair
4.4. Clinical Use of Collagen
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McIntosh, G.; Hall, H. Low back pain (acute). Clin. Evid. 2011, 5, 1102. [Google Scholar]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.; Maher, C.G.; Pinto, R.Z.; Traeger, A.C.; Lin, C.C.; Chenot, J.F.; van Tulder, M.; Koes, B.W. Clinical practice guidelines for the management of non-specific low back pain in primary care: An updated overview. Eur. Spine J. 2018, 27, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- Bardin, L.D.; King, P.; Maher, C.G. Diagnostic triage for low back pain: A practical approach for primary care. Med. J. Aust. 2017, 206, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Liu, P.; Cheng, J.; Ma, Z.; Liu, J.; Qin, T. Correlation between intervertebral disc degeneration, paraspinal muscle atrophy, and lumbar facet joints degeneration in patients with lumbar disc herniation. BMC Musculoskelet. Disord. 2017, 18, 167. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Bicket, M.C.; Jamison, D.; Wilkinson, I.; Rathmell, J.P. Epidural steroids: A comprehensive, evidence-based review. Reg. Anesth. Pain. Med. 2013, 38, 175–200. [Google Scholar] [CrossRef]
- Wilkinson, I.M.; Cohen, S.P. Epidural steroid injections. Curr. Pain. Headache Rep. 2012, 16, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Moon, J.Y.; Park, K.S.; Yoo, D.H.; Kim, Y.C.; Sim, W.S.; Lee, C.J.; Shin, H.Y.; Kim, J.H.; Kim, Y.D.; et al. Epidural steroid injection in korean pain physicians: A national survey. Korean J. Pain. 2014, 27, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Verbunt, J.A.; Seelen, H.A.; Vlaeyen, J.W.; Bousema, E.J.; van der Heijden, G.J.; Heuts, P.H.; Knottnerus, J.A. Pain-related factors contributing to muscle inhibition in patients with chronic low back pain: An experimental investigation based on superimposed electrical stimulation. Clin. J. Pain. 2005, 21, 232–240. [Google Scholar] [CrossRef]
- Shipton, E.A. Physical therapy approaches in the treatment of low back pain. Pain. Ther. 2018, 7, 127–137. [Google Scholar] [CrossRef]
- Sions, J.M.; Elliott, J.M.; Pohlig, R.T.; Hicks, G.E. Trunk muscle characteristics of the multifidi, erector spinae, psoas, and quadratus lumborum in older adults with and without chronic low back pain. J. Orthop. Sports Phys. Ther. 2017, 47, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Pergolizzi, J.V., Jr.; LeQuang, J.A. Rehabilitation for low back pain: A narrative review for managing pain and improving function in acute and chronic conditions. Pain. Ther. 2020, 9, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Goubert, D.; Oosterwijck, J.V.; Meeus, M.; Danneels, L. Structural changes of lumbar muscles in non-specific low back pain. Pain. Physician 2016, 19, E985–E999. [Google Scholar] [PubMed]
- Zdzieblik, D.; Oesser, S.; Baumstark, M.W.; Gollhofer, A.; Konig, D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomised controlled trial. Br. J. Nutr. 2015, 114, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Kirmse, M.; Oertzen-Hagemann, V.; de Marees, M.; Bloch, W.; Platen, P. Prolonged collagen peptide supplementation and resistance exercise training affects body composition in recreationally active men. Nutrients 2019, 11, 1154. [Google Scholar] [CrossRef] [PubMed]
- Oertzen-Hagemann, V.; Kirmse, M.; Eggers, B.; Pfeiffer, K.; Marcus, K.; de Marees, M.; Platen, P. Effects of 12 weeks of hypertrophy resistance exercise training combined with collagen peptide supplementation on the skeletal muscle proteome in recreationally active men. Nutrients 2019, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, R.W. Role of collagen hydrolysate in bone and joint disease. Semin. Arthritis Rheum. 2000, 30, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Lynn, A.K.; Yannas, I.V.; Bonfield, W. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 343–354. [Google Scholar] [CrossRef]
- Suh, D.S.; Lee, J.K.; Yoo, J.C.; Woo, S.H.; Kim, G.R.; Kim, J.W.; Choi, N.Y.; Kim, Y.; Song, H.S. Atelocollagen enhances the healing of rotator cuff tendon in rabbit model. Am. J. Sports Med. 2017, 45, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Sano, A.; Maeda, M.; Nagahara, S.; Ochiya, T.; Honma, K.; Itoh, H.; Miyata, T.; Fujioka, K. Atelocollagen for protein and gene delivery. Adv. Drug Deliv. Rev. 2003, 55, 1651–1677. [Google Scholar] [CrossRef]
- Wysocki, T.; Sacewicz, I.; Wiktorska, M.; Niewiarowska, J. Atelocollagen as a potential carrier of therapeutics [Atelokolagen jako potencjalny nośnik terapeutyków]. Postep. Hig. Med. Dosw. 2007, 61, 646–654. [Google Scholar]
- Kodama, T.; Minabe, M.; Hori, T.; Watanabe, Y. The effect of various concentrations of collagen barrier on periodontal wound healing. J. Periodontol. 1989, 60, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, D.J.; Lee, H.J.; Kim, B.K.; Kim, Y.S. Atelocollagen injection improves tendon integrity in partial-thickness rotator cuff tears: A prospective comparative study. Orthop. J. Sports Med. 2020, 8, 2325967120904012. [Google Scholar] [CrossRef]
- Kim, M.; Choi, Y.S.; You, M.W.; Kim, J.S.; Young, K.W. Sonoelastography in the evaluation of plantar fasciitis treatment: 3-month follow-up after collagen injection. Ultrasound Q. 2016, 32, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Oh, K.J.; Moon, Y.W.; In, Y.; Lee, H.J.; Kwon, S.Y. Intra-articular injection of type I atelocollagen to alleviate knee pain: A double-blind, randomized controlled trial. Cartilage 2021, 13, 342S–350S. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, E.; Kawai, N.; Kinouchi, N.; Mori, H.; Ohsawa, Y.; Ishimaru, N.; Sunada, Y.; Noji, S.; Tanaka, E. Local applications of myostatin-siRNA with atelocollagen increase skeletal muscle mass and recovery of muscle function. PLoS ONE 2013, 8, e64719. [Google Scholar] [CrossRef] [PubMed]
- Kinouchi, N.; Ohsawa, Y.; Ishimaru, N.; Ohuchi, H.; Sunada, Y.; Hayashi, Y.; Tanimoto, Y.; Moriyama, K.; Noji, S. Atelocollagen-mediated local and systemic applications of myostatin-targeting siRNA increase skeletal muscle mass. Gene Ther. 2008, 15, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Nakasa, T.; Ishikawa, M.; Shi, M.; Shibuya, H.; Adachi, N.; Ochi, M. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J. Cell Mol. Med. 2010, 14, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Kin, S.; Hagiwara, A.; Nakase, Y.; Kuriu, Y.; Nakashima, S.; Yoshikawa, T.; Sakakura, C.; Otsuji, E.; Nakamura, T.; Yamagishi, H. Regeneration of skeletal muscle using in situ tissue engineering on an acellular collagen sponge scaffold in a rabbit model. ASAIO J. 2007, 53, 506–513. [Google Scholar] [CrossRef]
- Chun, E.H.; Park, H.S. Effect of high-volume injectate in lumbar transforaminal epidural steroid injections: A randomized, active control trial. Pain. Physician 2015, 18, 519–525. [Google Scholar]
- Capdevila, X.; Macaire, P.; Dadure, C.; Choquet, O.; Biboulet, P.; Ryckwaert, Y.; D’Athis, F. Continuous psoas compartment block for postoperative analgesia after total hip arthroplasty: New landmarks, technical guidelines, and clinical evaluation. Anesth. Analg. 2002, 94, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Breidenbach, K.A.; Wahezi, S.E.; Kim, S.Y.; Koushik, S.S.; Gritsenko, K.; Shaparin, N.; Kaye, A.D.; Viswanath, O.; Wu, H.; Kim, J.H. Contrast spread after erector spinae plane block at the fourth lumbar vertebrae: A cadaveric study. Pain. Ther. 2023, 12, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Lee, S.H.; Lee, H.Y.; Lee, H.J.; Chang, S.B.; Chung, S.K.; Kim, H.J. Validation of the Korean version of the oswestry disability index. Spine 2005, 30, E123–E127. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Zhang, H. Extracellular matrix: An important regulator of cell functions and skeletal muscle development. Cell Biosci. 2021, 11, 65. [Google Scholar] [CrossRef]
- Csapo, R.; Gumpenberger, M.; Wessner, B. Skeletal muscle extracellular matrix–what do we know about its composition, regulation, and physiological roles? A narrative review. Front. Physiol. 2020, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Ranger, T.A.; Cicuttini, F.M.; Jensen, T.S.; Peiris, W.L.; Hussain, S.M.; Fairley, J.; Urquhart, D.M. Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J. 2017, 17, 1729–1748. [Google Scholar] [CrossRef]
- Cooley, J.R.; Walker, B.F.; MArdakani, E.; Kjaer, P.; Jensen, T.S.; Hebert, J.J. Relationships between paraspinal muscle morphology and neurocompressive conditions of the lumbar spine: A systematic review with meta-analysis. BMC Musculoskelet. Disord. 2018, 19, 351. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kang, M. Correlation between psoas muscle index and degeneration of spinal back muscle in patients with back pain. Healthcare 2021, 9, 1189. [Google Scholar] [CrossRef] [PubMed]
- Arbanas, J.; Pavlovic, I.; Marijancic, V.; Vlahovic, H.; Starcevic-Klasan, G.; Peharec, S.; Bajek, S.; Miletic, D.; Malnar, D. MRI features of the psoas major muscle in patients with low back pain. Eur. Spine J. 2013, 22, 1965–1971. [Google Scholar] [CrossRef]
- Mann, C.J.; Perdiguero, E.; Kharraz, Y.; Aguilar, S.; Pessina, P.; Serrano, A.L.; Munoz-Canoves, P. Aberrant repair and fibrosis development in skeletal muscle. Skelet. Muscle 2011, 1, 21. [Google Scholar] [CrossRef]
- Wang, C.; Bai, L. Sarcopenia in the elderly: Basic and clinical issues. Geriatr. Gerontol. Int. 2012, 12, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, S.; Hashida, R.; Matsuse, H.; Higashi, E.; Bekki, M.; Iwanaga, S.; Hara, K.; Higuchi, T.; Hirakawa, Y.; Kubota, A.; et al. The impact of sarcopenia on low back pain and quality of life in patients with osteoporosis. BMC Musculoskelet. Disord. 2022, 23, 142. [Google Scholar] [CrossRef] [PubMed]
- Snijders, T.; Verdijk, L.B.; van Loon, L.J. The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res. Rev. 2009, 8, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Ryall, J.G.; Schertzer, J.D.; Lynch, G.S. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 2008, 9, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Stearns-Reider, K.M.; D’Amore, A.; Beezhold, K.; Rothrauff, B.; Cavalli, L.; Wagner, W.R.; Vorp, D.A.; Tsamis, A.; Shinde, S.; Zhang, C.; et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 2017, 16, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Jarvinen, T.A.; Jozsa, L.; Kannus, P.; Jarvinen, T.L.; Jarvinen, M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. J. Muscle Res. Cell Motil. 2002, 23, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Price, F.; Rudnicki, M.A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 2013, 93, 23–67. [Google Scholar] [CrossRef] [PubMed]
- Halper, J.; Kjaer, M. Basic components of connective tissues and extracellular matrix: Elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv. Exp. Med. Biol. 2014, 802, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Fry, C.S.; Kirby, T.J.; Kosmac, K.; McCarthy, J.J.; Peterson, C.A. Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell 2017, 20, 56–69. [Google Scholar] [CrossRef]
- Deries, M.; Goncalves, A.B.; Vaz, R.; Martins, G.G.; Rodrigues, G.; Thorsteinsdottir, S. Extracellular matrix remodeling accompanies axial muscle development and morphogenesis in the mouse. Dev. Dyn. 2012, 241, 350–364. [Google Scholar] [CrossRef]
- Purslow, P.P. The structure and role of intramuscular connective tissue in muscle function. Front. Physiol. 2020, 11, 495. [Google Scholar] [CrossRef] [PubMed]
- Huijing, P.A. Muscle as a collagen fiber reinforced composite: A review of force transmission in muscle and whole limb. J. Biomech. 1999, 32, 329–345. [Google Scholar] [CrossRef] [PubMed]
- McKee, T.J.; Perlman, G.; Morris, M.; Komarova, S.V. Extracellular matrix composition of connective tissues: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 10542. [Google Scholar] [CrossRef] [PubMed]
- Kovanen, V. Intramuscular extracellular matrix: Complex environment of muscle cells. Exerc. Sport. Sci. Rev. 2002, 30, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Light, N.; Champion, A.E. Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem. J. 1984, 219, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Charvet, B.; Malbouyres, M.; Pagnon-Minot, A.; Ruggiero, F.; Le Guellec, D. Development of the zebrafish myoseptum with emphasis on the myotendinous junction. Cell Tissue Res. 2011, 346, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Dickson, D.W.; Spiro, A.J. Abnormal expression of laminin β1 chain in skeletal muscle of adult-onset limb-girdle muscular dystrophy. Arch. Neurol. 1997, 54, 1457–1461. [Google Scholar] [CrossRef]
- Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 1961, 9, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.K.; Walters, T.J. Muscle-derived decellularised extracellular matrix improves functional recovery in a rat latissimus dorsi muscle defect model. J. Plast. Reconstr. Aesthet. Surg. 2013, 66, 1750–1758. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Y.; Long, X.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Ogura, T.; Wang, D.O.; Ikejima, T. Type I collagen promotes the migration and myogenic differentiation of C2C12 myoblasts via the release of interleukin-6 mediated by FAK/NF-kappaB p65 activation. Food Funct. 2020, 11, 328–338. [Google Scholar] [CrossRef]
- Lluri, G.; Langlois, G.D.; McClellan, B.; Soloway, P.D.; Jaworski, D.M. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates neuromuscular junction development via a beta1 integrin-mediated mechanism. J. Neurobiol. 2006, 66, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Lepore, E.; Casola, I.; Dobrowolny, G.; Musarò, A. Neuromuscular junction as an entity of nerve-muscle communication. Cells 2019, 8, 906. [Google Scholar] [CrossRef] [PubMed]
- Melo, F.; Carey, D.J.; Brandan, E. Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression. J. Cell. Biochem. 1996, 62, 227–239. [Google Scholar] [CrossRef]
- Rodriguez Cruz, P.M.; Cossins, J.; Beeson, D.; Vincent, A. The neuromuscular junction in health and disease: Molecular mechanisms governing synaptic formation and homeostasis. Front. Mol. Neurosci. 2020, 13, 610964. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.E.; Oesser, S. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: A review of the literature. Curr. Med. Res. Opin. 2006, 22, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.H.; Shetty, A.A.; Kim, S.J.; Jang, J.D.; Kim, Y.J.; Chung, Y.G.; Choi, N.Y.; Liu, C.H. Autologous collagen-induced chondrogenesis using fibrin and atelocollagen mixture. Cells Tissues Organs 2013, 198, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.; Ciccone, V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J. Int. Soc. Sports Nutr. 2013, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Candow, D.G. Sarcopenia: Current theories and the potential beneficial effect of creatine application strategies. Biogerontology 2011, 12, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Kouguchi, T.; Ohmori, T.; Shimizu, M.; Takahata, Y.; Maeyama, Y.; Suzuki, T.; Morimatsu, F.; Tanabe, S. Effects of a chicken collagen hydrolysate on the circulation system in subjects with mild hypertension or high-normal blood pressure. Biosci. Biotechnol. Biochem. 2013, 77, 691–696. [Google Scholar] [CrossRef]
- Ciampi, P.; Scotti, C.; Nonis, A.; Vitali, M.; Di Serio, C.; Peretti, G.M.; Fraschini, G. The benefit of synthetic versus biological patch augmentation in the repair of posterosuperior massive rotator cuff tears: A 3-year follow-up study. Am. J. Sports Med. 2014, 42, 1169–1175. [Google Scholar] [CrossRef]
- Ide, J.; Mochizuki, Y.; van Noort, A.; Ochi, H.; Sridharan, S.; Itoi, E.; Greiner, S. Local rhBMP-12 on an absorbable collagen sponge as an adjuvant therapy for rotator cuff repair-a phase 1, randomized, standard of care control, multicenter study: Part 2-a pilot study of functional recovery and structural outcomes. Orthop. J. Sports Med. 2017, 5, 2325967117726740. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Tanzil, G.; Mobasheri, A.; Clegg, P.D.; Sendzik, J.; John, T.; Shakibaei, M. Cultivation of human tenocytes in high-density culture. Histochem. Cell Biol. 2004, 122, 219–228. [Google Scholar] [CrossRef] [PubMed]
Variable | Group | p-Value | |
---|---|---|---|
Group LES (n = 340) | Group ATCOL (n = 268) | ||
Age | <0.001 * | ||
Mean (SD) | 58.55 (15.74) | 69.69 (13.06) | |
Gender | <0.001 * | ||
1 (male) | 154 (45.3%) | 79 (29.5%) | |
2 (female) | 186 (54.7%) | 189 (70.5%) | |
Height | <0.001 * | ||
Mean (SD) | 162.29 (9.60) | 158.60 (9.05) | |
Weight | 0.019 | ||
Mean (SD) | 63.96 (12.89) | 61.69 (10.89) |
Variable | Pre NRS | Post NRS | NRS Difference | † p-Value |
---|---|---|---|---|
Group LES | 6.69 (1.33) | 5.27 (1.77) | 1.41 (1.58) | <0.001 |
Group ATCOL | 6.56 (1.21) | 4.49 (1.85) | 2.07 (1.68) | <0.001 |
‡ p-value | 0.232 | <0.001 | <0.001 | |
Pre ODI | Post ODI | ODI Difference | † p-Value | |
Group LES | 42.27 (11.05) | 37.72 (12.83) | 4.55 (6.39) | <0.001 |
Group ATCOL | 41.25 (9.60) | 32.91 (12.43) | 8.34 (7.90) | <0.001 |
‡ p-value | 0.224 | <0.001 | <0.001 |
Variable | Group LES | Group ATCOL | p-Value |
---|---|---|---|
Successful/Total | 54/340 (15.9%) | 84/268 (31.3%) | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.K.; Gil, H.Y. Effects of Paraspinal Intramuscular Injection of Atelocollagen in Patients with Chronic Low Back Pain: A Retrospective Observational Study. J. Clin. Med. 2024, 13, 2607. https://doi.org/10.3390/jcm13092607
Kim TK, Gil HY. Effects of Paraspinal Intramuscular Injection of Atelocollagen in Patients with Chronic Low Back Pain: A Retrospective Observational Study. Journal of Clinical Medicine. 2024; 13(9):2607. https://doi.org/10.3390/jcm13092607
Chicago/Turabian StyleKim, Tae Kwang, and Ho Young Gil. 2024. "Effects of Paraspinal Intramuscular Injection of Atelocollagen in Patients with Chronic Low Back Pain: A Retrospective Observational Study" Journal of Clinical Medicine 13, no. 9: 2607. https://doi.org/10.3390/jcm13092607
APA StyleKim, T. K., & Gil, H. Y. (2024). Effects of Paraspinal Intramuscular Injection of Atelocollagen in Patients with Chronic Low Back Pain: A Retrospective Observational Study. Journal of Clinical Medicine, 13(9), 2607. https://doi.org/10.3390/jcm13092607