Robotic Rectus Abdominis Myoperitoneal Flap for Posterior Vaginal Wall Reconstruction: Experience at a Single Institution
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
3.5. Case 5
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Selber, J. (Ed.) Preface. In Robotics in Plastic and Reconstructive Surgery; Springer Nature: Berlin, Germany, 2021; p. 7. [Google Scholar]
- Morrell, A.L.G.; Morrell-Junior, A.C.; Morrell, A.G.; Mendes, J.M.F.; Tustumi, F.; DE-Oliveira-E-Silva, L.G.; Morrell, A. The history of robotic surgery and its evolution: When illusion becomes reality. Rev. Col. Bras. Cir. 2021, 48, e20202798. [Google Scholar] [CrossRef] [PubMed]
- Handa, A.; Gaidhane, A.; Choudhari, S.G. Role of Robotic-Assisted Surgery in Public Health: Its Advantages and Challenges. Cureus 2024, 16, e62958. [Google Scholar] [CrossRef]
- Rivero-Moreno, Y.; Echevarria, S.; Vidal-Valderrama, C.; Pianetti, L.; Cordova-Guilarte, J.; Navarro-Gonzalez, J.; Acevedo-Rodríguez, J.; Dorado-Avila, G.; Osorio-Romero, L.; Chavez-Campos, C.; et al. Robotic Surgery: A Comprehensive Review of the Literature and Current Trends. Cureus 2023, 15, e42370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussain, A.; Malik, A.; Halim, M.U.; Ali, A.M. The use of robotics in surgery: A review. Int. J. Clin. Pract. 2014, 68, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Awad, L.; Reed, B.; Bollen, E.; Langridge, B.J.; Jasionowska, S.; Butler, P.E.M.; Ponniah, A. The emerging role of robotics in plastic and reconstructive surgery: A systematic review and meta-analysis. J. Robot. Surg. 2024, 18, 254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinha, R.; Sanjay, M.; Rupa, B.; Kumari, S. Robotic surgery in gynecology. J. Minim. Access Surg. 2015, 11, 50–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wright, J.D.; Ananth, C.V.; Lewin, S.N.; Burke, W.M.; Lu, Y.S.; Neugut, A.I.; Herzog, T.J.; Hershman, D.L. Robotically Assisted vs Laparoscopic Hysterectomy Among Women With Benign Gynecologic Disease. JAMA 2013, 309, 689–698. [Google Scholar] [CrossRef]
- Weinberg, L.; Rao, S.; Escobar, P.F. Robotic surgery in gynecology: An updated systematic review. Obstet. Gynecol. Int. 2011, 2011, 852061. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.A.; Scarpelli, E.; Armano, G.; Monfardini, L.; Celardo, A.; Munno, G.M.; Fortunato, N.; Vagnetti, P.; Schettino, M.T.; Grassini, G.; et al. Update of Robotic Surgery in Benign Gynecological Pathology: Systematic Review. Medicina 2022, 58, 552. [Google Scholar] [CrossRef]
- Asmar, J.; Even, M.; Carbonnel, M.; Goetgheluck, J.; Revaux, A.; Ayoubi, J.M. Myomectomy by Robotically Assisted Laparoscopic Surgery: Results at Foch Hospital, Paris. Front. Surg. 2015, 2, 40. [Google Scholar] [CrossRef] [PubMed]
- Sassani, J.C.; Glass Clark, S.; McGough, C.E.; Shepherd, J.P.; Bonidie, M. Sacrocolpopexy experience with a novel robotic surgical platform. Int. Urogynecol. J. 2022, 33, 3255–3260. [Google Scholar] [CrossRef] [PubMed]
- Hudson, C.O.; Northington, G.M.; Lyles, R.H.; Karp, D.R. Outcomes of robotic sacrocolpopexy: A systematic review and meta-analysis. Female Pelvic Med. Reconstr. Surg. 2014, 20, 252–260. [Google Scholar] [CrossRef]
- Jones, N.; Fleming, N.D.; Nick, A.M.; Munsell, M.F.; Rallapalli, V.; Westin, S.N.; Meyer, L.A.; Schmeler, K.M.; Ramirez, P.T.; Soliman, P.T. Conversion from robotic surgery to laparotomy: A case-control study evaluating risk factors for conversion. Gynecol. Oncol. 2014, 134, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Dinoi, G.; Tarantino, V.; Bizzarri, N.; Perrone, E.; Capasso, I.; Giannarelli, D.; Querleu, D.; Giuliano, M.C.; Fagotti, A.; Scambia, G.; et al. Robotic-assisted versus conventional laparoscopic surgery in the management of obese patients with early endometrial cancer in the sentinel lymph node era: A randomized controlled study (RObese). Int. J. Gynecol. Cancer 2024, 34, 773–776. [Google Scholar] [CrossRef]
- Magrina, J.F.; Zanagnolo, V.; Giles, D.; Noble, B.N.; Kho, R.M.; Magtibay, P.M. Robotic surgery for endometrial cancer: Comparison of perioperative outcomes and recurrence with laparoscopy, vaginal/laparoscopy and laparotomy. Eur. J. Gynaecol. Oncol. 2011, 32, 476–480. [Google Scholar]
- Davila, A.A.; Goldman, J.; Kleban, S.; Lyons, M.; Brosious, J.; Bardakcioglu, O.; Baynosa, R.C. Reducing Complications and Expanding Use of Robotic Rectus Abdominis Muscle Harvest for Pelvic Reconstruction. Plast. Reconstr. Surg. 2022, 150, 190–195. [Google Scholar] [CrossRef]
- Bocková, M.; Hoch, J.; Kestlerová, A.; Amler, E. The dead space after extirpation of rectum. Current management and searching for new materials for filling. Physiol. Res. 2019, 68 (Suppl. 4), S509–S515. [Google Scholar] [CrossRef]
- Mori, G.A.; Tiernan, J.P. Management of Perineal Wounds Following Pelvic Surgery. Clin. Colon Rectal Surg. 2022, 35, 212–220. [Google Scholar] [CrossRef]
- Pusic, A.L.; Mehrara, B.J. Vaginal reconstruction: An algorithm approach to defect classification and flap reconstruction. J. Surg. Oncol. 2006, 94, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Arcieri, M.; Restaino, S.; Rosati, A.; Granese, R.; Martinelli, C.; Caretto, A.A.; Cianci, S.; Driul, L.; Gentileschi, S.; Scambia, G.; et al. Primary flap closure of perineal defects to avoid empty pelvis syndrome after pelvic exenteration in gynecologic malignancies: An old question to explore a new answer. Eur. J. Surg. Oncol. 2024, 50, 107278. [Google Scholar] [CrossRef]
- Salgado, C.J.; Chim, H.; Skowronski, P.P.; Oeltjen, J.; Rodriguez, M.; Mardini, S. Reconstruction of acquired defects of the vagina and perineum. Semin. Plast. Surg. 2011, 25, 155–162. [Google Scholar] [CrossRef]
- Maciel-Miranda, A.; Morris, S.F.; Hallock, G.G. Local flaps, including pedicled perforator flaps: Anatomy, technique, and applications. Plast. Reconstr. Surg. 2013, 131, 896e–911e. [Google Scholar] [CrossRef] [PubMed]
- Raposio, E.; Moioli, M.; Raposio, G.; Spinacih, S.; Cagnacci, A. Perforator flaps for vulvar reconstruction: Basic principles. Acta Bio Medica Atenei Parm. 2022, 93, e2022076. [Google Scholar] [CrossRef]
- Haverland, R.; Yi, J.; Rebecca, A.M. Rectus Abdominis Pedicled Flap: An Innovative Robotic Approach. J. Minim. Invasive Gynecol. 2019, 26, S9. [Google Scholar] [CrossRef]
- Appel, R.; Shih, L.; Gimenez, A.; Bay, C.; Chai, C.Y.; Maricevich, M. Robotic Rectus Abdominis Harvest for Pelvic Reconstruction after Abdominoperineal Resection. Semin. Plast. Surg. 2023, 37, 188–192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taylor, J.P.; Stem, M.; Althumairi, A.A.; Gearhart, S.L.; Safar, B.; Fang, S.H.; Efron, J.E. Minimally Invasive Proctectomy for Rectal Cancer: A National Perspective on Short-term Outcomes and Morbidity. World J. Surg. 2020, 44, 3130–3140. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, A.T.; Albutt, K.; Wise, P.E.; Alavi, K.; Sudan, R.; Kaiser, A.M.; Bordeianou, L.; Continuing Education Committee of the SSAT. Abdominoperineal Resection for Rectal Cancer in the Twenty-First Century: Indications, Techniques, and Outcomes. J. Gastrointest. Surg. 2018, 22, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.E.; Sarhane, K.A.; Pederson, J.C.; Selber, J.C. Robotic harvest of the rectus abdominis muscle: Principles and clinical applications. Semin. Plast. Surg. 2014, 28, 26–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, N.V.; Pedersen, J.C. Robotic harvest of the rectus abdominis muscle: A preclinical investigation and case report. J. Reconstr. Microsurg. 2012, 28, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.; Song, D.H.; Selber, J.C. Robotic, intraperitoneal harvest of the rectus abdominis muscle. Plast. Reconstr. Surg. 2014, 134, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Haverland, R.; Rebecca, A.M.; Hammond, J.; Yi, J. A Case Series of Robot-assisted Rectus Abdominis Flap Harvest for Pelvic Reconstruction: A Single Institution Experience. J. Minim. Invasive Gynecol. 2021, 28, 245–248. [Google Scholar] [CrossRef]
- Singh, P.; Teng, E.; Cannon, L.M.; Bello, B.L.; Song, D.H.; Umanskiy, K. Dynamic Article: Tandem Robotic Technique of Extralevator Abdominoperineal Excision and Rectus Abdominis Muscle Harvest for Immediate Closure of the Pelvic Floor Defect. Dis. Colon Rectum 2015, 58, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.B.; Howarth, A.L.; Haverland, R.A.; Rebecca, A.M.; Yi, J.; Bryant, L.A.; Polveroni, T.M.; Mishra, N. Robotic Harvest of a Rectus Abdominis Muscle Flap After Abdominoperineal Resection. Dis. Colon Rectum 2020, 63, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Song, D.H. The rectus abdominis musculoperitoneal flap for the immediate reconstruction of partial vaginal defects. Plast. Reconstr. Surg. 2005, 115, 559–562. [Google Scholar] [CrossRef]
- Büyükünal, S.N.; Kaner, G.; Celayir, S. An alternative treatment modality in closing bladder exstrophy: Use of rectus abdominus muscle flap--preliminary results in a rat model. J. Pediatr. Surg. 1989, 24, 586–589. [Google Scholar] [CrossRef]
- Niazi, Z.B.; Kutty, M.; Petro, J.A.; Kogan, S.; Chuang, L. Vaginal reconstruction with a rectus abdominis musculoperitoneal flap. Ann. Plast. Surg. 2001, 46, 563–568. [Google Scholar] [CrossRef]
- Jiao, Y.; Cao, F.; Liu, H. Radiation-induced Cell Death and Its Mechanisms. Health Phys. 2022, 123, 376–386. [Google Scholar] [CrossRef]
- Bouten, R.M.; Young, E.F.; Selwyn, R.; Iacono, D.; Rittase, W.B.; Day, R.M. Chapter Two—Effects of radiation on endothelial barrier and vascular integrity. In Tissue Barriers in Disease, Injury and Regeneration; Gorbunov, N.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 43–94. ISBN 9780128185612. [Google Scholar] [CrossRef]
- Morris, L.; Do, V.; Chard, J.; Brand, A.H. Radiation-induced vaginal stenosis: Current perspectives. Int. J. Women’s Health 2017, 9, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Nunez, R.; Rebecca, A.; Khan, A.; Wolter, C. Robot-Assisted Vesicovaginal Fistula Repair with Rectus Abdominals Flap: Description of the Technique; ICS: Bristol, UK, 1 January 1970; Available online: https://www.ics.org/2017/abstract/735 (accessed on 2 November 2024).
- Jacoby, A.; Maliha, S.; Granieri, M.A.; Cohen, O.; Dy, G.W.; Bluebond-Langner, R.; Zhao, L.C. Robotic Davydov Peritoneal Flap Vaginoplasty for Augmentation of Vaginal Depth in Feminizing Vaginoplasty. J. Urol. 2019, 201, 1171–1176. [Google Scholar] [CrossRef]
- Sabbatini, F.; La Regina, D.; Murgante Testa, N.; Senatore, A.M.; Saporito, A.; Pini, R.; Mongelli, F. Hospital costs of robotic-assisted and open treatment of large ventral hernias. Sci. Rep. 2024, 14, 11523. [Google Scholar] [CrossRef] [PubMed]
- Da Vinci 5 Has Force Feedback. Intuitive. n.d. Available online: https://www.intuitive.com/en-us/about-us/newsroom/Force%20Feedback (accessed on 2 November 2024).
- Surgical Robotics Technology. Medtronic Announces Clinical Studies for HugoTM Ras System. 23 May 2024. Available online: https://www.surgicalroboticstechnology.com/news/medtronic-announces-clinical-studies-for-hugo-ras-system/ (accessed on 2 November 2024).
- Microsure. Microsure Secures €38 Million to Advance Its Microsurgical Robot, Musa-3. PR Newswire: Press Release Distribution, Targeting, Monitoring and Marketing. 4 October 2023. Available online: https://www.prnewswire.com/news-releases/microsure-secures-38-million-to-advance-its-microsurgical-robot-musa-3-301946937.html (accessed on 2 November 2024).
Patient | Age | Pathology | Concomitant Operation | BMI kg/m2 | Complication |
---|---|---|---|---|---|
Case 1 | 32 | Rectovaginal fistula, rectal cancer | Abdominoperineal resection | 24.0 | Vaginal stenosis |
Case 2 | 33 | Bartholin gland carcinoma | Abdominoperineal resection | 39.9 | Minor wound complications amenable to topical treatment |
Case 3 | 66 | Rectovaginal fistula secondary to rectal cancer | Takedown of rectovaginal fistula | 26 | No reported complications from flap (ureter injury from initial fistula takedown) |
Case 4 | 72 | Adenocarcinoma of rectosigmoid junction | Abdominoperineal resection | 20.9 | No reported complications |
Case 5 | 78 | Squamous cell cancer of the anus | Abdominoperineal resection | 39.9 | No reported complications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iftekhar, N.; Cataldo, K.; Seo, S.J.; Allen, B.; Giles, C.; Kelecy, M.W.; MacDavid, J.; Baynosa, R.C. Robotic Rectus Abdominis Myoperitoneal Flap for Posterior Vaginal Wall Reconstruction: Experience at a Single Institution. J. Clin. Med. 2025, 14, 292. https://doi.org/10.3390/jcm14010292
Iftekhar N, Cataldo K, Seo SJ, Allen B, Giles C, Kelecy MW, MacDavid J, Baynosa RC. Robotic Rectus Abdominis Myoperitoneal Flap for Posterior Vaginal Wall Reconstruction: Experience at a Single Institution. Journal of Clinical Medicine. 2025; 14(1):292. https://doi.org/10.3390/jcm14010292
Chicago/Turabian StyleIftekhar, Noama, Kathryn Cataldo, Seungwon Jong Seo, Brett Allen, Casey Giles, Matthew William Kelecy, Joshua MacDavid, and Richard C. Baynosa. 2025. "Robotic Rectus Abdominis Myoperitoneal Flap for Posterior Vaginal Wall Reconstruction: Experience at a Single Institution" Journal of Clinical Medicine 14, no. 1: 292. https://doi.org/10.3390/jcm14010292
APA StyleIftekhar, N., Cataldo, K., Seo, S. J., Allen, B., Giles, C., Kelecy, M. W., MacDavid, J., & Baynosa, R. C. (2025). Robotic Rectus Abdominis Myoperitoneal Flap for Posterior Vaginal Wall Reconstruction: Experience at a Single Institution. Journal of Clinical Medicine, 14(1), 292. https://doi.org/10.3390/jcm14010292