Comparison of the Trabecular Titanium Acetabular Shell with Burch–Schneider Cages in Revision Hip Arthroplasty
Abstract
1. Introduction
2. Material and Methods
2.1. Procedure Description
2.2. Perioperative Blood Loss and Transfusion Assessment
3. Results
3.1. Data of Surgery
3.1.1. A. Duration of Surgery
3.1.2. Intraoperative and Postoperative Blood Loss
3.2. Data of Postoperative Follow-Up
3.2.1. Postoperative Blood Loss
3.2.2. Packed Red Blood Cell (PRBC) and Fresh Frozen Plasma (FFP) Transfusion
3.2.3. Bone Grafts and Screws
3.2.4. Hospitalization Time
3.3. Data of Last Follow-Up
3.3.1. Preoperative Harris Hip Score (HHS) and Visual Analogue Scale (VAS)
3.3.2. One-Year Postoperative Harris Hip Score (HHS) and Visual Analogue Scale (VAS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wykonanie Świadczeń Endoprotezoplastyki Stawowej W 2022 R. (Provision of Joint Arthroplasty Services in 2022). Available online: http://www.nfz.gov.pl/o-nfz/publikacje (accessed on 5 April 2025).
- Annual Report 2023 The Swedish Arthroplasty Register. Available online: https://sar.registercentrum.se/news/download-the-sar-annual-report-2023 (accessed on 5 April 2025).
- American Joint Replacement Registry (AJRR): 2024 Annual Report; Academy of Orthopaedic Surgeons (AAOS): Rosemont, IL, USA, 2024; Available online: https://www.aaos.org/registries/publications/ajrr-annual-report/ (accessed on 5 April 2025).
- Ali, E.; Howard, L.C.; Neufeld, M.E.; Masri, B.A. Treatment of femoral bone loss in revision total hip arthroplasty: A clinical practice review. Ann. Jt. 2024, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Sculco, P.K.; Wright, T.; Malahias, M.A.; Gu, A.; Bostrom, M.; Haddad, F.; Jerabek, S.; Bolognesi, M.; Fehring, T.; Gonzalez DellaValle, A. The Diagnosis and Treatment of Acetabular Bone Loss in Revision Hip Arthroplasty: An International Consensus Symposium. J. Musculoskelet. J. Hosp. Spec. Surg. 2022, 18, 8–41. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Zuke, W.A.; Surace, P.; Kamath, A.F. Management of acetabular bone loss in revision total hip replacement: A narrative literature review. Ann. Jt. 2023, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Sanghavi, S.A.; Paprosky, W.G.; Sheth, N.P. Evaluation and Management of Acetabular Bone Loss in Revision Total Hip Arthroplasty: A 10-year Update. J. Am. Acad. Orthop. Surg. 2024, 32, e466–e475. [Google Scholar] [CrossRef] [PubMed]
- Baauw, M.; van Hooff, M.L.; Spruit, M. Current Construct Options for Revision of Large Acetabular Defects: A Systematic Review. BJS Rev. 2016, 4, e2. [Google Scholar] [CrossRef] [PubMed]
- Giaretta, S.; Lunardelli, E.; Di Benedetto, P.; Aprato, A.; Spolettini, P.; Mancuso, F.; Momoli, A.; Causero, A. The current treatment of hip arthroplasty revision: A systematic review of the literature. Acta Biomed. 2023, 94, e2023092. [Google Scholar] [CrossRef] [PubMed]
- Gamradt, S.C.; Lieberman, J.R. Bone graft for revision hip arthroplasty: Biology and future applications. Clin. Orthop. Relat. Res. 2003, 417, 183–194. [Google Scholar] [CrossRef]
- Van de Wall, B.J.M.; Beeres, F.J.P.; Rompen, I.F.; Link, B.C.; Babst, R.; Schoeneberg, C.; Michelitsch, C.; Nebelung, S.; Pape, H.C.; Gueorguiev, B.; et al. RIA Versus Iliac Crest Bone Graft Harvesting: A meta-analysis and systematic review. Injury 2022, 53, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Butscheidt, S.; Moritz, M.; Gehrke, T.; Püschel, K.; Amling, M.; Hahn, M.; Rolvien, T. Incorporation and remodeling of structural allografts in acetabular reconstruction multiscale, micro-morphological analysis of 13 pelvic explants. J. Bone Jt. Surg. Am. 2018, 15, 1406–1415. [Google Scholar] [CrossRef]
- Zamborsky, R.; Svec, A.; Bohac, M.; Kilian, M.; Kokavec, M. Infection in Bone Allograft Transplants. Exp. Clin. Transpl. 2016, 14, 484–490. [Google Scholar] [PubMed]
- Shinar, A.A.; Harris, W.H. Bulk structural autogenous grafts and allografts for reconstruction of the acetabulum in total hip arthroplasty. Sixteen-year-average follow-up. J. Bone Joint. Surg. Am. 1997, 79, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.J.; Sledge, J.B.; Müller, M.E. The Bürch-Schneider anti-protrusio cage in revision total hip arthroplasty: Indications, principles and long-term results. J. Bone Joint. Surg. Br. 1998, 80, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Wachtl, S.W.; Jung, M.; Jakob, R.P.; Gautier, E. The Burch-Schneider antiprotrusio cage in acetabular revision surgery: A mean follow-up of 12 years. J. Arthroplast. 2000, 15, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Torres-Campos, A.; Albareda Albareda, J.; Seral García, B.; Blanco Rubio, N.; Gómez Vallejo, J.; Ezquerra Herrando, L. Burch–Schneider ring associated with morselized bone allografts, survival and clinical outcomes after acetabular revision surgery. Rev. Esp. Cir. Ortop. Traumatol. 2018, 62, 428–435. [Google Scholar] [CrossRef]
- van Koeveringe, A.J.; Ochsner, P.E. PERevision cup arthroplasty using Burch-Schneider anti-protrusio cage. Int. Orthop. 2002, 26, 291–295. [Google Scholar] [CrossRef]
- Weise, K.; Winter, E. Revision arthroplasty--acetabular aspect: Cementless acetabular bone reconstruction. Int. Orthop. 2003, 27 (Suppl. S1), S29–S36. [Google Scholar] [PubMed]
- Pemov, A.; Dewan, R.; Hansen, N.F.; Chandrasekharappa, S.C.; Ray-Chaudhury, A.; Jones, K.; Luo, W.; Heiss, J.D.; Mullikin, J.C.; Chittiboina, P.; et al. A novel, multi-level approach to assess allograft incorporation in revision total hip arthroplasty. Sci. Rep. 2020, 10, 12120. [Google Scholar] [CrossRef]
- Butscheidt, S.; von Kroge, S.; Stürznickel, J.; Beil, F.T.; Gehrke, T.; Püschel, K.; Amling, M.; Hahn, M.; Rolvien, T. Allograft Chip Incorporation in Acetabular Reconstruction: Multiscale Characterization Revealing Osteoconductive Capacity. J. Bone Joint. Surg. Am. 2021, 103, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Hahn, H.; Palich, W. Preliminary Evaluation of Porous Metal Surfaced Titanium for Orthopedic Implants. J. Biomed. Mater. Res. 1970, 4, 571–577. [Google Scholar] [CrossRef]
- Zardiackas, L.; Parsell, D.E.; Dillon, L.D.; Mitchell, D.W.; Nunnery, L.A.; Poggie, R. Structure, Metallurgy and Mechanical Properties of a Porous Titanium Foam. J. Biomed. Mater. Res. 2001, 58, 180–187. [Google Scholar] [CrossRef]
- Boscainos, P.J.; Kellett, C.F.; Maury, A.C.; Backstein, D.; Gross, A.E. Management of periacetabular bone loss in revision hip arthroplasty. Clin. Orthop. Relat. Res. 2007, 465, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Bobyn, J.D.; Stackpool, G.J.; Hacking, S.A.; Tanzer, M.; Krygier, J.J. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone. Joint. Surg. Br. 1999, 81, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Keaveny, T.; Hayes, M. Bone, Vol. 7: Bone Growth–B; Hall, B.K., Ed.; CRC Press: Boca Raton, FL, USA, 1992; pp. 285–344. [Google Scholar]
- Wang, C.X.; da Huang, Z.; Wu, B.J.; Li, W.B.; Fang, X.Y.; Zhang, W.M. Cup-cage solution for massive acetabular defects: A systematic review and meta-analysis. Orthop. Surg. 2020, 12, 701–707. [Google Scholar] [CrossRef]
- Chougle, A.; Hemmady, M.V.; Hodgkinson, J.P. Long-term survival of the acetabular component after total hip arthroplasty with cement in patients with developmental dysplasia of the hip. J. Bone Jt. Surg. 2006, 88, 71–79. [Google Scholar]
- Ilyas, I.; Alrumaih, H.A.; Kashif, S.; Rabbani, S.A.; Faqihi, A.H. Revision of type III and type IVB acetabular defects with Burch-Schneider anti-protrusio cages. J. Arthroplast. 2015, 30, 259–264. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Keating, E.; Ritter, M.; Meding, J.; Brunsman, M. Early Clinical Outcomes with a 3-D Porous Titanium Acetabular Cup. Open J. Orthop. 2016, 6, 121–125. [Google Scholar] [CrossRef]
- Jessica, J.M.; Telleria, M.D.; Albert, O.; Gee, M.D. Classifications in Brief Paprosky Classification of Acetabular Bone LossClin. Orthop. Relat. Res. 2013, 471, 3725–3730. [Google Scholar] [CrossRef]
- Delee, J.; Charnley, J. Radiological Demarcation of Cemented Sockets in Total Hip Replacement. Clin. Orthop. Relat. Res. 1976, 20, 32. [Google Scholar] [CrossRef]
- Lopez-Picado, A.; Albinarrate, A.; Barrachina, B. Determination of Perioperative Blood Loss: Accuracy or Approximation? Anesth. Analg. 2017, 125, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Hamlet, S.M.; Ivanovski, S. Titanium surface hydrophilicity enhances platelet activation. Dent. Mater. J. 2014, 33, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.; Saastamoinen, H.; Shasha, N.; Gross, A. Complications of ilioischial reconstruction rings in revision total hip arthroplasty. J. Arthroplast. 2004, 19, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Masui, T.; Iwase, T.; Kouyama, A.; Shidou, T. Autogenous bulk structural bone grafting for reconstruction of the acetabulum in primary total hip arthroplasty: Average 12-year follow-up. J. Orthop. Sci. 2008, 13, 401–408. [Google Scholar] [CrossRef]
- Benazzo, F.; Botta, L.; Scaffino Met, a.l. Trabecular titanium can induce in vitro osteogenic differentiation of human adipose derived stem cells without osteogenic factors. J. Biomed. Mater. Res. Part A 2013, 102, 2061–2071. [Google Scholar] [CrossRef]
- Bobyn, J.; Toh, K.; Hacking, S.; Tanzer, M.; Krygier, J.; Bobyn, J.; Toh, K.; Hacking, S.; Tanzer, M.; Krygier, J. Tissue response to trabecular tantalum acetabular cups. J. Arthroplast. 1999, 14, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, Y.; Fujibayashi, S.; Onoe, H.; Goto, K.; Otsuki, B.; Kawai, T.; Okuzu, Y.; Shimizu, T.; Ikeda, N.; Orita, K.; et al. Bone ingrowth into a porous structure is achieved by preceding fibrogenesis and vascularization. Acta Biomater. 2024, 177, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Fusi, S.; Pressacco, M.; Paussa, L.; Fedrizzi, L. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium. J. Mech. Behav. Biomed. Mater. 2010, 3, 373–381. [Google Scholar] [CrossRef]
- Wang, C.; Xu, D.; Lin, L.; Li, S.; Hou, W.; He, Y.; Sheng, L.; Yi, C.; Zhang, X.; Li, H.; et al. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 131, 112499. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhao, Y.; Ma, Q.; Wang, Y.; Wu, Z.; Weng, X. 3D-printed porous titanium changed femoral head repair growth patterns: Osteogenesis and vascularisation in porous titanium. J. Mater. Sci. Mater. Med. 2017, 28, 62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, L.; Liu, L.; Lv, L.; Gao, L.; Liu, N.; Wang, X. Ye Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. J. Orthop. Surg. Res. 2020, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Unger, A.; Lewis, R.; Gruen, T. Evaluation of a Trabecular Tantalum Uncemented Acetabular Cup in Revision Total Hip Arthroplasty. J. Arthroplast. 2005, 20, 1002–1009. [Google Scholar] [CrossRef]
- Abolghasemian, M.; Tangsataporn, S.; Sternheim, A.; Backstein, D.; Safir, O.; Gross, A. Combined trabecular metal acetabular shell and augment for acetabular revision with substantial bone loss: A mid-term review. Bone Jt. J. 2013, 95-B, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Sporer, S.; Paprosky, W. Acetabular Revision Using a Trabecular Metal Acetabular Component for Severe Acetabular Bone Loss Associated With a Pelvic Discontinuity. J. Arthroplast. 2006, 21, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ahn, P.; Fitzpatrick, D.; Heiner, A.; Poggie, R.; Brown, T. Interfacial frictional behavior: Cancellous bone, cortical bone and a novel trabecular tantalum biomaterial. J. Musculoskelet. Res. 1999, 03, 245–251. [Google Scholar] [CrossRef]
- Meneghini, R.; Meyer, C.; Buckley, C.; Hanssen, A.; Lewallen, D. Mechanical Stability of Novel Highly Trabecular Metal Acetabular Components in Revision Total Hip Arthroplasty. J. Arthroplast. 2010, 25, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, T.; Bangert, Y.; Schwantes, B.; Gebauer, M.; Kendoff, D. Acetabular revision in THA using tantalum augments combined with impaction bone grafting. J. Clin. Exp. Res. Hip Pathol. Ther. 2013, 23, 359–365. [Google Scholar] [CrossRef]
- Ornstein, E.; Franzén, H.; Johnsson, R.; Stefánsdóttir, A.; Sundberg, M.; Tägil, M. Hip revision with impacted morselized allografts: Unrestricted weight-bearing and restricted weight-bearing have similar effect on migration. A radiostereometry analysis. Arch. Orthop. Trauma Surg. 2003, 123, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Kosashvili, Y.; Backstein, D.; Safir, O.; Lakstein, D.; Gross, A. Acetabular revision using an anti-protrusion (ilio-ischial) cage and trabecular metal acetabular component for severe acetabular bone loss associated with pelvic discontinuity. J. Bone Jt. Surg. Br. Vol. 2009, 91-B, 870–876. [Google Scholar] [CrossRef]
- Perticarini, L.; Zanon, G.; Rossi, S.; Benazzo, F. Clinical and radiographic outcomes of a trabecular titanium™ acetabular component in hip arthroplasty: Results at minimum 5 years follow-up. BMC Musculoskelet. Disord. 2015, 16, 375. [Google Scholar] [CrossRef]
- Holt, G.; Murnaghan, C.; Reilly, J.; Meek, R.M. The biology of aseptic osteolysis. Clin. Orthop. Relat. Res. 2007, 460, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Malahias, M.-A.; Mancino, F.; Gu, A.; De Martino, I.; Togninalli, D.; Bostrom, M.P.G.; Sculco, P.K. Trabecular Metal Augments for Treatment of Acetabular Defects: A Systematic Review. J. Wrist Surg. 2021, 05, 032–046. [Google Scholar] [CrossRef]
- Lopez-Torres, I.I.; Sanz-Ruiz, P.; Sanz-Ruiz, P.; Sánchez-Pérez, C.; Andrade-Albarracín, R.L.; Vaquero, J.; Vaquero, J. Clinical and radiological outcomes of trabecular metal systems and antiprotrusion cages in acetabular revision surgery with severe defects: A comparative study. Int. Orthop. 2018, 42, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Gallart, X.; Fernández-Valencia, J.; Riba, J.; Bori, G.; García, S.; Tornero, E.; Combalía, A. Trabecular TitaniumTM cups and augments in revision total hip arthroplasty: Clinical results, radiology and survival outcomes. J. Clin. Exp. Res. Hip Pathol. Ther. 2016, 26, 486–491. [Google Scholar] [CrossRef]
- Malahias, M.-A.; Sarantis, M.; Gkiatas, I.; Jang, S.J.; Gu, A.; Thorey, F.; Alexiades, M.M.; Nikolaou, V.S. The modern Burch-Schneider antiprotrusio cage for the treatment of acetabular defects: Is it still an option? A systematic review. Hip Int. 2022, 33, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Gautam, D. Cup-Cage Construct Using Porous Cup with Burch-Schneider Cage in the Management of Complex Acetabular Fractures. Hip Pelvis 2019, 31, 87–94. [Google Scholar] [CrossRef]
- Aprato, A.; Olivero, M.; Branca Vergano, L.; Massè, A. Outcome of cages in revision arthroplasty of the acetabulum: A systematic review. Acta Bio-Medica Atenei Parm. 2019, 90, 24–31. [Google Scholar] [CrossRef]
- Kenanidis, E.; Tsiridis, E.; Highcock, A.J.; Gross, A.E.; Flecher, X.; Ledford, C.K.; Statz, J.M.; Trousdale, R.T. Cup-Cage Technique; Springer: Cham, Switzerland, 2018; pp. 445–458. [Google Scholar] [CrossRef]
- Jones, L.D.; Grammatopoulos, G.; Singer, G.C. The Burch-Schneider cage: 9-year survival in Paprosky type 3 acetabular defects. Clinical and radiological follow-up. Hip Int. 2012, 22, 28–34. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Age ≥ 18 years | Active infection in the hip joint (clinical or microbiological) |
Underwent revision total hip arthroplasty (THA) | Ongoing systemic infection or sepsis |
Diagnosis of aseptic loosening of the acetabular component | Severe medical comorbidities precluding surgery (e.g., ASA IV–V) |
Paprosky classification type 2B to 3A | Paprosky type 1, 2A, or 3C acetabular defects |
Underwent surgery using either Burch–Schneider cages or Regenerex trabecular titanium | History of periprosthetic joint infection in the past 6 months |
Written informed consent obtained | Incomplete radiological or clinical documentation pre- or postoperatively |
Available for a minimum of 15 months of follow-up | Prior radiation therapy to the pelvis |
Able to undergo clinical and radiological follow-up (HHS, VAS, X-rays) | Neuromuscular or neurodegenerative disorders affecting lower limbs (e.g., ALS) |
Bone grafting required during revision | Severe psychiatric illness impacting compliance |
No contraindications for regional or general anesthesia | Pregnancy |
Patients who died within 12 months after the revision procedure | |
Patients who were lost to follow-up |
Category | Burch–Schneider Cage Group | Regenerex Trabecular Titanium Group |
---|---|---|
Series | 55 patients | 165 patients |
Mean Age (years) | 71.4 ± 10.5 | 68.2 ± 12.3 |
Gender (F/M) | 50/5 | 113/52 |
Paprosky Defect Types | II A: 10.91% II B: 30.91% II C: 23.64% III A: 12.73% III B: 16.36% III C: 5.45% | II A: 13.93% II B: 30.91% II C: 19.39% III A: 24.85% III B: 9.09% III C: 0.61% |
Surgical Procedure | Anterolateral approach; use of Burch–Schneider reinforcement cages with allogenic bone grafts; cemented polyethylene cups | Anterolateral approach; Regenerex titanium shell with modular inserts; minimal bone grafting; cemented polyethylene cups |
Mean Duration of Surgery (minutes) | 138.18 ± 41.01 | 139.52 ± 42.62 |
Mean Intraoperative Blood Loss (mL) | 711.82 ± 422.84 | 742.73 ± 348.61 |
Post-Operative Follow-Up | Partial weight-bearing delayed for 6 weeks | Early partial weight-bearing from 30% body weight |
Mean Hospitalization Time (days) | 16 (IQR 8) | 15 (IQR 8) |
Mean Follow-Up (months) | 112.5 months (range 15–209) | 112.5 months (range 15–209) |
Statistics | Statistical analysis performed using Shapiro–Wilk test for normality, Student’s t-test and Mann–Whitney U test; significance set at α = 0.05 | Statistical analysis performed using Shapiro–Wilk test for normality, Student’s t-test and Mann–Whitney U test; significance set at α = 0.05 |
Paprosky Classification | Burch–Schneider Cage | Regenerex | p | ||
---|---|---|---|---|---|
n | % | n | % | ||
I | - | - | 1 | 0.61 | (p < 0.05) |
II A | 6 | 10.91 | 23 | 13.93 | |
II B | 17 | 30.91 | 51 | 30.91 | |
II C | 13 | 23.64 | 32 | 19.39 | |
II B/C | - | - | 1 | 0.61 | |
III A | 7 | 12.73 | 41 | 24.85 | |
III B | 9 | 16.36 | 15 | 9.09 | |
III C | 3 | 5.45 | 1 | 0.61 |
Parameter | n (BS Cage) | Mean/Median (BS Cage) | SD/IQR (BS Cage) | n (Regenerex) | Mean/Median (Regenerex) | SD/IQR (Regenerex) | p-Value |
---|---|---|---|---|---|---|---|
Duration of surgery [min] | 55 | 138.18 | 41.01 | 165 | 139.52 | 42.62 | 0.84 |
Intraoperative blood loss [mL] | 55 | 711.82 | 422.84 | 165 | 742.73 | 348.61 | 0.59 |
Postoperative blood loss [mL] | 55 | 1127.64 | 601.54 | 165 | 948.12 | 507.84 | 0.03 |
Re-transfusion [mL] | 55 | 122.55 | 319.07 | 165 | 81.52 | 187.18 | 0.67 |
PRBC [units] | 55 | 4 | 3 | 165 | 4 | 3 | 0.57 |
FFP [units] | 55 | 1 | 2 | 165 | 2 | 2 | 0.11 |
Number of bone grafts used | 55 | 71.38 | 46.22 | 165 | 48.25 | 40.3 | <0.01 |
Number of screws used | 55 | 3.89 | 1.57 | 165 | 4.48 | 1.19 | <0.01 |
Hospitalization time [days] | 55 | 16 | 8 | 165 | 15 | 8 | 0.49 |
Burch–Schneider Cage | Regenerex | p | |||||
---|---|---|---|---|---|---|---|
n | Mean | SD | n | Mean | SD | ||
HHS | 43 | 15.43 | 9.77 | 127 | 25.48 | 11.75 | <0.01 |
VAS | 42 | 9.02 | 0.6 | 126 | 7.22 | 1.95 | <0.01 |
Burch–Schneider Rings | Regenerex | p | |||||
---|---|---|---|---|---|---|---|
n | Mean | SD | n | Mean | SD | ||
HHS | 43 | 67.48 | 33.04 | 127 | 68.15 | 23.28 | 0.89 |
VAS | 42 | 3.5 | 2.82 | 126 | 3.19 | 1.89 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiński, P.; Ambroży, J.; Obuchowicz, R. Comparison of the Trabecular Titanium Acetabular Shell with Burch–Schneider Cages in Revision Hip Arthroplasty. J. Clin. Med. 2025, 14, 4381. https://doi.org/10.3390/jcm14124381
Kamiński P, Ambroży J, Obuchowicz R. Comparison of the Trabecular Titanium Acetabular Shell with Burch–Schneider Cages in Revision Hip Arthroplasty. Journal of Clinical Medicine. 2025; 14(12):4381. https://doi.org/10.3390/jcm14124381
Chicago/Turabian StyleKamiński, Pawel, Jarosław Ambroży, and Rafał Obuchowicz. 2025. "Comparison of the Trabecular Titanium Acetabular Shell with Burch–Schneider Cages in Revision Hip Arthroplasty" Journal of Clinical Medicine 14, no. 12: 4381. https://doi.org/10.3390/jcm14124381
APA StyleKamiński, P., Ambroży, J., & Obuchowicz, R. (2025). Comparison of the Trabecular Titanium Acetabular Shell with Burch–Schneider Cages in Revision Hip Arthroplasty. Journal of Clinical Medicine, 14(12), 4381. https://doi.org/10.3390/jcm14124381