The Role of Artificial Intelligence in the Diagnosis and Management of Diabetic Retinopathy
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. AI in Screening Programs and Accessibility
3.2. Risk Prediction and Progression Modeling
3.3. Limitations and Ethical Considerations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DR | Diabetic Retinopathy |
AI | Artificial Intelligence |
autoML | Automated Machine Learning |
DESP | Diabetic Eye Screening Programme |
NPDR | Non-Proliferative Diabetic Retinopathy |
AUC | Area Under the Curve |
AUROC | Area Under the Receiver Operating Characteristic Curve |
CFP | Color Fundus Photograph |
DL | Deep Learning |
ETDRS | Early-Treatment Diabetic Retinopathy Study |
F1-score | Harmonic Mean of Precision and Recall |
GP | General Practitioner |
HbA1c | Glycated Hemoglobin |
Mask-RCNN | Mask Regional Convolutional Neural Network |
NPV | Negative Predictive Value |
NRDR | Non-Referable Diabetic Retinopathy |
PPV | Positive Predictive Value |
RDR | Referable Diabetic Retinopathy |
AUPRC | Area Under the Precision-Recall Curve |
EURODIAB | European Diabetes Study |
References
- Fung, T.H.; Patel, B.; Wilmot, E.G.; Amoaku, W.M. Diabetic retinopathy for the non-ophthalmologist. Clin. Med. 2022, 22, 112–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.K.S.; de Clerck, E.; Polivka, J., Jr.; Potuznik, P.; Stetkarova, I.; et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinclair, S.H.; Schwartz, S.S. Diabetic Retinopathy–An Underdiagnosed and Undertreated Inflammatory, Neuro-Vascular Complication of Diabetes. Front. Endocrinol. 2019, 10, 843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, M.; Song, S.J. Artificial Intelligence Applications in Diabetic Retinopathy: What We Have Now and What to Expect in the Future. Endocrinol. Metab. 2024, 39, 416–424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grzybowski, A.; Singhanetr, P.; Nanegrungsunk, O.; Ruamviboonsuk, P. Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Ophthalmol. Ther. 2023, 12, 1419–1437. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.I.; Regillo, C.D.; Sadda, S.R.; Ipp, E.; Bhaskaranand, M.; Ramachandra, C.; Solanki, K.; Dubiner, H.; Levy-Clarke, G.; Pesavento, R.; et al. Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists’ Dilated Examinations. Ophthalmol. Sci. 2022, 3, 100228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, X.; Wang, H.; She, C.; Feng, J.; Liu, X.; Hu, X.; Chen, L.; Tao, Y. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Front. Endocrinol. 2022, 13, 946915. [Google Scholar] [CrossRef] [PubMed]
- Mathenge, W.; Whitestone, N.; Nkurikiye, J.; Patnaik, J.L.; Piyasena, P.; Uwaliraye, P.; Lanouette, G.; Kahook, M.Y.; Cherwek, D.H.; Congdon, N.; et al. Impact of Artificial Intelligence Assessment of Diabetic Retinopathy on Referral Service Uptake in a Low-Resource Setting: The RAIDERS Randomized Trial. Ophthalmol. Sci. 2022, 2, 100168. [Google Scholar] [CrossRef] [PubMed]
- Cleland, C.R.; Bascaran, C.; Makupa, W.; Shilio, B.; Sandi, F.A.; Philippin, H.; Marques, A.P.; Egan, C.; Tufail, A.; A Keane, P.; et al. Artificial intelligence-supported diabetic retinopathy screening in Tanzania: Rationale and design of a randomised controlled trial. BMJ Open 2024, 14, e075055. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.M.; Channa, R.; Liu, T.Y.A.; Zehra, A.; Bromberger, L.; Patel, D.; Ananthakrishnan, A.; Brown, E.A.; Prichett, L.; Lehmann, H.P.; et al. Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: The ACCESS randomized control trial. Nat. Commun. 2024, 15, 421. [Google Scholar] [CrossRef] [PubMed]
- Noriega, A.; Meizner, D.; Camacho, D.; Enciso, J.; Quiroz-Mercado, H.; Morales-Canton, V.; Almaatouq, A.; Pentland, A. Screening Diabetic Retinopathy Using an Automated Retinal Image Analysis System in Independent and Assistive Use Cases in Mexico: Randomized Controlled Trial. JMIR Form. Res. 2021, 5, e25290. [Google Scholar] [CrossRef] [PubMed]
- Dow, E.R.; Chen, K.M.; Zhao, C.S.; Knapp, A.; Phadke, A.; Weng, K.; Do, D.V.; Mahajan, V.B.; Mruthyunjaya, P.; Leng, T.; et al. Artificial Intelligence Improves Patient Follow-Up in a Diabetic Retinopathy Screening Program. Clin. Ophthalmol. 2023, 17, 3323–3330. [Google Scholar] [CrossRef] [PubMed]
- Gardner, G.G.; Keating, D.; Williamson, T.H.; Elliott, A.T. Automatic detection of diabetic retinopathy using an artificial neural network: A screening tool. Br. J. Ophthalmol. 1996, 80, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, J.; Peng, Y.; Zhao, Z.; Zheng, Q.; Wang, Z.; Liu, K.; Jiao, S.; Qiu, K.; Zhou, Z.; et al. Artificial intelligence-enabled screening for diabetic retinopathy: A real-world, multicenter and prospective study. BMJ Open Diabetes Res. Care 2020, 8, e001596. [Google Scholar] [CrossRef] [PubMed]
- Heydon, P.; Egan, C.; Bolter, L.; Chambers, R.; Anderson, J.; Aldington, S.; Stratton, I.M.; Scanlon, P.H.; Webster, L.; Mann, S.; et al. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br. J. Ophthalmol. 2020, 105, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Yanagihara, R.T.; Lee, C.S.; Blazes, M.; Jung, H.C.; Chee, Y.E.; Gencarella, M.D.; Gee, H.; Maa, A.Y.; Cockerham, G.C.; et al. Multicenter, Head-to-Head, Real-World Validation Study of Seven Automated Artificial Intelligence Diabetic Retinopathy Screening Systems. Diabetes Care 2021, 44, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Cao, T.; Xu, F.; Wang, S.; Tao, H.; Wu, T.; Sun, L.; Chen, J. Artificial intelligence-based screening for diabetic retinopathy at community hospital. Eye 2020, 34, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Ming, S.; Xie, K.; Lei, X.; Yang, Y.; Zhao, Z.; Li, S.; Jin, X.; Lei, B. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: A real-world study. Int. Ophthalmol. 2021, 41, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Bellemo, V.; Lim, Z.W.; Lim, G.; Nguyen, Q.D.; Xie, Y.; Yip, M.Y.T.; Hamzah, H.; Ho, J.; Lee, X.Q.; Hsu, W.; et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: A clinical validation study. Lancet Digit. Health 2019, 1, e35–e44. [Google Scholar] [CrossRef] [PubMed]
- Verbraak, F.D.; Abramoff, M.D.; Bausch, G.C.; Klaver, C.; Nijpels, G.; Schlingemann, R.O.; van der Heijden, A.A. Diagnostic accuracy of a device for the automated detection of diabetic retinopathy in a primary care setting. Diabetes Care 2019, 42, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Pinto, I.; Olazarán, Á.; Jurío, D.; De la Osa, B.; Sainz, M.; Oscoz, A.; Ballaz, J.; Gorricho, J.; Galar, M.; Andonegui, J.; et al. Improving diabetic retinopathy screening using artificial intelligence: Design, evaluation and before-and-after study of a custom development. Front. Digit. Health 2025, 7, 1547045. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.Y.; Lo, M.-T.; Chen, T.-C.; Huang, C.-H.; Huang, A.; Wang, P.-C. A deep learning-based ADRPPA algorithm for the prediction of diabetic retinopathy progression. Sci. Rep. 2024, 14, 31772. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.S.; Zhang, D.; Jacoba, C.M.P.; Fickweiler, W.; Lewis, D.; Leitmeyer, J.; Curran, K.; Salongcay, R.P.; Doan, D.; Ashraf, M.; et al. Automated Machine Learning for Predicting Diabetic Retinopathy Progression from Ultra-Widefield Retinal Images. JAMA Ophthalmol. 2024, 142, 171–178, Erratum in JAMA Ophthalmol. 2024, 142, 588. [Google Scholar] [CrossRef] [PubMed]
- Arcadu, F.; Benmansour, F.; Maunz, A.; Willis, J.; Haskova, Z.; Prunotto, M. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit. Med. 2019, 2, 92, Erratum in NPJ Digit. Med. 2020, 3, 160. [Google Scholar] [CrossRef] [PubMed]
- Bora, A.; Balasubramanian, S.; Babenko, B.; Virmani, S.; Venugopalan, S.; Mitani, A.; Marinho, G.d.O.; Cuadros, J.; Ruamviboonsuk, P.; Corrado, G.S.; et al. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit. Health 2021, 3, e10–e19. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Sheng, B.; Chen, T.; Wu, Q.; Liu, R.; Cai, C.; Wu, L.; Yang, D.; Hamzah, H.; Liu, Y.; et al. A deep learning system for predicting time to progression of diabetic retinopathy. Nat. Med. 2024, 30, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Pu, Y.; Ning, T.; Zhu, Y.; Mu, G.; Li, J. Deep learning for enhanced prediction of diabetic retinopathy: A comparative study on the diabetes complications data set. Front. Med. 2025, 12, 1591832. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yang, B.; Naaz, S. Development and validation of predictive models for diabetic retinopathy using machine learning. PLoS ONE 2025, 20, e0318226. [Google Scholar] [CrossRef] [PubMed]
- Crew, A.; Reidy, C.; van der Westhuizen, H.; Graham, M. A Narrative Review of Ethical Issues in the Use of Artificial Intelligence Enabled Diagnostics for Diabetic Retinopathy. J. Eval. Clin. Pract. 2024. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Pachauri, P.; Akram, W.; Parvez, M.; Ahmad, S.; Yahya, Z. Enhancing retinal disease diagnosis through AI: Evaluating performance, ethical considerations, and clinical implementation. Inform. Health 2024, 1, 57–69. [Google Scholar] [CrossRef]
- Ursin, F.; Timmermann, C.; Orzechowski, M.; Steger, F. Diagnosing Diabetic Retinopathy with Artificial Intelligence: What Information Should Be Included to Ensure Ethical Informed Consent? Front. Med. 2021, 8, 695217. [Google Scholar] [CrossRef] [PubMed]
- Raman, R.; Dasgupta, D.; Ramasamy, K.; George, R.; Mohan, V.; Ting, D. Using artificial intelligence for diabetic retinopathy screening: Policy implications. Indian J. Ophthalmol. 2021, 69, 2993–2998. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, M.; van Ginneken, B.; Russell, S.R.; Suttorp-Schulten, M.S.A.; AbramOff, M.D. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Investig. Opthalmology Vis. Sci. 2007, 48, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Abràmoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med. 2018, 1, 39. [Google Scholar] [CrossRef] [PubMed]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Keel, S.; Liu, C.; He, Y.; Meng, W.; Scheetz, J.; Lee, P.Y.; Shaw, J.; Ting, D.; Wong, T.Y.; et al. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Diabetes Care 2018, 41, 2509–2516. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, A.A.; Abramoff, M.D.; Verbraak, F.; Van Hecke, M.V.; Liem, A.; Nijpels, G. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. Acta Ophthalmol. 2018, 96, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Yim, J.; Chopra, R.; Spitz, T.; Winkens, J.; Obika, A.; Kelly, C.; Askham, H.; Lukic, M.; Huemer, J.; Fasler, K.; et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat. Med. 2020, 26, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, P.H. The English National Screening Programme for diabetic retinopathy 2003–2016. Acta Diabetol. 2017, 54, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Beede, E.; Baylor, E.; Hersch, F.; Iurchenko, A.; Wilcox, L.; Ruamviboonsuk, P.; Vardoulakis, L.M. A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 21 April 2020. [Google Scholar] [CrossRef]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health; WHO: Geneva, Switzerland, 2021. Available online: https://www.who.int/publications/i/item/9789240029200 (accessed on 10 July 2025).
- Ting, D.S.W.; Cheung, C.Y.L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; Yeo, I.Y.S.; Lee, S.Y.; et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes. JAMA 2017, 318, 2211–2223. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. Artificial Intelligence Act; European Parliament and Council: Strasbourg, France, 2024. Available online: https://artificialintelligenceact.eu/ (accessed on 10 July 2025).
Study | AI Application | Main Results/Conclusions |
---|---|---|
Mathenge et al., Ophthalmol Sci, 2022 [8] | AI-supported DR screening with immediate feedback | AI group had significantly higher referral adherence (51.5% vs. 39.6%, p = 0.048); faster referral presentation; age, sex, and rural residence influenced adherence. |
Cleland et al., BMJ Open, 2024 [9] | AI-supported DR screening with SELENA + AI | Higher follow-up attendance, especially in low-resource settings; AI enabled immediate grading and counseling; included economic evaluation showing cost-effectiveness. |
Wolf et al., Nat Commun, 2024 [10] | Autonomous AI screening in primary care | Exam completion: 100% (AI) vs. 22% (control); follow-up: 64% (AI) vs. 22% (control); multivariate analysis identified diabetes duration as the key predictor. |
Noriega et al., JMIR Form Res, 2021 [11] | Automated deep learning analysis of fundus images | High accuracy (AUROC ~98%); improved ophthalmologist performance with AI assistance; mixed results with additional visual aids. |
Dow et al., Clin Ophthalmol, 2023 [12] | AI-only vs. hybrid vs. human DR screening workflows | AI group had 69.2% follow-up (vs. ~12% others); faster result delivery (≤48 h) improved adherence; main barriers were patient-related. |
Gardner et al., Br J Ophthalmol, 1996 [13] | Feature detection (vessels, exudates, hemorrhages) in fundus photos | High detection rates; DR detection: 88.4% sensitivity, 83.5% specificity; sensitivity could reach 99% with threshold adjustment. |
Zhang et al., BMJ Open Diabetes Res Care, 2020 [14] | Deep learning-based DR screening across multiple sites | DR prevalence: 28.8%; referable DR: 24.4%; vision-threatening DR: 10.8%; good concordance with specialists (83%). |
Heydon et al., Br J Ophthalmol, 2021 [15] | AI triage tool in English DESP | Sensitivity: 95.7% (100% for severe cases); specificity: 68–54%; high false-positive rate despite excellent detection of referable DR. |
Lee et al., Diabetes Care, 2021 [16] | Comparison of seven AI algorithms vs. human graders | Variable sensitivity (50.98–85.90%); three algorithms matched/exceeded human graders; high NPV, moderate PPV; need for further validation. |
He et al., Eye (Lond), 2020 [17] | AI vs. ophthalmologist grading in DR screening | High diagnostic performance: 91.18% sensitivity, 98.79% specificity for RDR; AI matched ophthalmologist detection rates. |
Ming et al., Int Ophthalmol, 2021 [18] | AI grading vs. retina specialists | Good agreement (κ = 0.715); RDR: 84.6% sensitivity, 98% specificity; effective for DR/RDR detection in community clinics. |
Bellemo et al., Lancet Digit Health, 2019 [19] | DL-based DR detection using ensemble model | AUC 0.973; RDR detection: 92.25% sensitivity, 89.04% specificity; excellent detection of vision-threatening DR and macular oedema. |
Verbraak et al., Diabetic Medicine, 2019 [20] | IDx-DR 2.0 (autonomous detection DR in primary care) | Sensitivity 91%, specificity 84% (EURODIAB); high NPV; AUC 0.87–0.94; effective for reducing unnecessary referrals. |
Pinto et al., Front Digit Health, 2025 [21] | NaIA-RD, a custom AI tool for DR screening integrated into GP workflow. | Increased GP sensitivity to 96.9%, strong agreement with ophthalmologists (Cohen’s kappa 0.818), reduced clinician workload by 4×, and matched or outperformed ophthalmologists across datasets. |
Study | AI Application | Main Results/Conclusions |
---|---|---|
Wang VY et al. Scientific Reports, 2024 [22] | Deep learning (ResNeXt) to classify DR severity and Mask-RCNN to detect microaneurysms using longitudinal fundus images | Combined model predicted progression from NRDR to RDR with F1-score of 0.422; AUC up to 0.971 for RDR detection; microaneurysm detection F1 score: 0.690 |
Silva PS et al. JAMA Ophthalmology, 2024 [23] | Automated machine learning using ultra-widefield retinal images for patients with mild/moderate NPDR | Accurately predicted 1-year DR progression: 100% detection in mild NPDR and 85–89% in moderate NPDR; AUPRC: 0.717 (mild), 0.863 (moderate); 3-year progression accuracy: 64.3–73.8% |
Arcadu F et al. NPJ Digital Medicine, 2019 [24] | DL model to predict two-step or greater worsening on ETDRS scale from a single baseline fundus photo | AUCs: 0.68 (6 mo), 0.79 (12 mo), 0.77 (24 mo); peripheral fields (F3–F7) more predictive than central; model focused on microvascular abnormalities consistent with clinical markers |
Bora A et al. The Lancet Digital Health, 2021 [25] | DL model predicting 2-year DR risk in patients without baseline DR using 1- or 3-field CFPs | Internal AUCs: 0.78–0.79; external AUC: 0.70; outperformed clinical factors (e.g., HbA1c); combining DL with clinical data increased AUC to 0.81; effective risk stratification |
Dai L et al. Nature Medicine, 2024 [26] | DL system predicting 5-year individualized DR risk and time to progression using only fundus images | Trained on 717,000 images; concordance indices: 0.754–0.846; AUCs: 0.738–0.896; extended safe screening intervals from 12 to ~32 months; delayed detection rate: 0.18% |
Gong et al. Frontiers in Medicine, 2025 [27] | Compared DNN vs. traditional ML models (logistic regression, decision tree, naive Bayes, random forest, SVM) | DNN achieved best performance (AUC: 0.833). SHAP analysis identified HbA1c, nephropathy, and CHD as top predictors |
Yang et al. PLoS ONE, 2025 [28] | Compared logistic regression, neural networks, random forest, XGBoost | Tree-based models (random forest, XGBoost) had highest accuracy (~95%) and AUC (~0.99). Key predictors: renal and glycemic markers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, A.; Ansari, N.; Khalid, U.; Markov, D.; Bechev, K.; Aleksiev, V.; Markov, G.; Poryazova, E. The Role of Artificial Intelligence in the Diagnosis and Management of Diabetic Retinopathy. J. Clin. Med. 2025, 14, 5150. https://doi.org/10.3390/jcm14145150
Ansari A, Ansari N, Khalid U, Markov D, Bechev K, Aleksiev V, Markov G, Poryazova E. The Role of Artificial Intelligence in the Diagnosis and Management of Diabetic Retinopathy. Journal of Clinical Medicine. 2025; 14(14):5150. https://doi.org/10.3390/jcm14145150
Chicago/Turabian StyleAnsari, Areeb, Nabiha Ansari, Usman Khalid, Daniel Markov, Kristian Bechev, Vladimir Aleksiev, Galabin Markov, and Elena Poryazova. 2025. "The Role of Artificial Intelligence in the Diagnosis and Management of Diabetic Retinopathy" Journal of Clinical Medicine 14, no. 14: 5150. https://doi.org/10.3390/jcm14145150
APA StyleAnsari, A., Ansari, N., Khalid, U., Markov, D., Bechev, K., Aleksiev, V., Markov, G., & Poryazova, E. (2025). The Role of Artificial Intelligence in the Diagnosis and Management of Diabetic Retinopathy. Journal of Clinical Medicine, 14(14), 5150. https://doi.org/10.3390/jcm14145150