“Ozempic Face”: An Emerging Drug-Related Aesthetic Concern and Its Treatment with Endotissutal Bipolar Radiofrequency (RF)—Our Experience
Abstract
1. Introduction
- Regulation of glucose metabolism;
- Promotion of weight loss.
1.1. GLP-1 Receptor Agonists (GLP-1 RAs)
- Long-acting GLP-1 Ras;
- Short-acting GLP-1 RAs.
- Exenatide (Bydureon),
- Dulaglutide (Trulicity),
- Semaglutide (Ozempic and Wegovy),
- Tirzepatide (Mounjaro).
- Exenatide (Byetta),
- Lixisenatide (Lyxumia),
- Liraglutide (Saxenda),
- Semaglutide (Rybelsus, oral formulation).
1.2. Bipolar Radiofrequency (RF)
- Minimal invasiveness,
- Low cost,
- Few complications,
- Repeatability,
- Absence of contraindications.
1.3. Physical Principles of Bipolar Radiofrequency (RF) and Clinical Applications
2. Materials and Methods
- Submandibular area,
- Submental area,
- Melolabial fold,
- Labiomental sulcus.
3. Metabolic Analysis of the Sample
4. Technical Procedure
- Melolabial fold,
- Labiomental sulcus,
- Submandibular area,
- Submental area.
5. Results
- A moderate degree of variability exists between patients’ self-reported satisfaction levels and the expert’s evaluations, as indicated by a standard deviation of approximately 1.04.
- Patients exhibited a tendency to slightly overestimate their outcomes compared to the expert’s assessment, as reflected by a Cohen’s d of approximately −0.32.
6. Clinical Cases
7. Discussion
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.Z.; Wan, J.Y.; Yuan, C.S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drucker, D.J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab. 2022, 57, 101351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.; Carlos-Bolumbu, M.; Galtier, F. Blood pressure-lowering effects of SGLT2 inhibitors and GLP-1 receptor agonists for preventing of cardiovascular events and death in type 2 diabetes: A systematic review and meta-analysis. Acta Diabetol. 2023, 60, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.V.; Bilal, A.; Lee, M.M.Y.; Sattar, N.; Gerstein, H.C.; Ruff, C.T.; McMurray, J.J.V.; Rossing, P.; Bakris, G.; Mahaffey, K.W.; et al. Effects of GLP-1 receptor agonists on kidney and cardiovascular disease outcomes: A meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 2025, 13, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, S.F.; Pusapati, S.; Anwar, M.S.; Lohana, D.; Kumar, P.; Nandula, S.A.; Nawaz, F.K.; Tracey, K.; Yang, H.; LeRoith, D.; et al. Glucagon-like peptide-1: A multi-faceted anti-inflammatory agent. Front. Immunol. 2023, 14, 1148209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [PubMed]
- Maselli, D.B.; Camilleri, M. Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity. Adv. Exp. Med. Biol. 2021, 1307, 171–192. [Google Scholar] [CrossRef] [PubMed]
- Popoviciu, M.S.; Păduraru, L.; Yahya, G.; Metwally, K.; Cavalu, S. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int. J. Mol. Sci. 2023, 24, 10449. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nauck, M.A.; D’Alessio, D.A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc. Diabetol. 2022, 21, 169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jalleh, R.J.; Rayner, C.K.; Hausken, T.; Jones, K.L.; Camilleri, M.; Horowitz, M. Gastrointestinal effects of GLP-1 receptor agonists: Mechanisms, management, and future directions. Lancet Gastroenterol. Hepatol. 2024, 9, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Janež, A. Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Obesity. Horm. Res. Paediatr. 2023, 96, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Novikoff, A.; Grandl, G.; Liu, X.; DMüller, T. Why are we still in need for novel anti-obesity medications? Lancet Reg. Health Eur. 2024, 47, 101098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saran, A.; Raisinghani, R.; Paliwal, S.; Sharma, S. GLP-1R agonists: Recent advances, current gaps, and future challenges. Mol. Divers. 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Forzano, I.; Varzideh, F.; Avvisato, R.; Jankauskas, S.S.; Mone, P.; Santulli, G. Tirzepatide: A Systematic Update. Int. J. Mol. Sci. 2022, 23, 14631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, H.; Yan, X.; Tang, H.; Zhang, X. Assessment of Exenatide loaded Biotinylated Trimethylated Chitosan/HP- 55 Nanoparticles. Curr. Drug Deliv. 2022, 19, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Cerillo, J.L.; Parmar, M. Liraglutide. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Kimura, T.; Katakura, Y.; Shimoda, M.; Kawasaki, F.; Yamabe, M.; Tatsumi, F.; Matsuki, M.; Iwamoto, Y.; Anno, T.; Fushimi, Y.; et al. Comparison of clinical efficacy and safety of weekly glucagon-like peptide-1 receptor agonists dulaglutide and semaglutide in Japanese patients with type 2 diabetes: Randomized, parallel-group, multicentre, open-label trial (COMING study). Diabetes Obes. Metab. 2023, 25, 3632–3647. [Google Scholar] [CrossRef] [PubMed]
- Elkinson, S.; Keating, G.M. Lixisenatide: First global approval. Drugs 2013, 73, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.M.; Van Raalte, D.H. Safety of Semaglutide. Front. Endocrinol. 2021, 12, 645563, Erratum in Front. Endocrinol. 2021, 12, 786732. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kosiborod, M.N.; Deanfield, J.; Pratley, R.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Emerson, S.S.; Kahn, S.E.; Kitzman, D.W.; Lingvay, I.; et al. Semaglutide versus placebo in patients with heart failure and mildly reduced or preserved ejection fraction: A pooled analysis of the SELECT, FLOW, STEP-HFpEF, and STEP-HFpEF DM randomised trials. Lancet 2024, 404, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.P.H.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: The STEP 1 trial extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davies, M.; Færch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; Wadden, T.A.; et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): A randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021, 397, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Wadden, T.A.; Bailey, T.S.; Billings, L.K.; Davies, M.; Frias, J.P.; Koroleva, A.; Lingvay, I.; O’Neil, P.M.; Rubino, D.M.; Skovgaard, D.; et al. Effect of Subcutaneous Semaglutide vs. Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA 2021, 325, 1403–1413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hankosky, E.R.; Wang, H.; Neff, L.M.; Kan, H.; Wang, F.; Ahmad, N.N.; Griffin, R.; Stefanski, A.; Garvey, W.T. Tirzepatide reduces the predicted risk of atherosclerotic cardiovascular disease and improves cardiometabolic risk factors in adults with obesity or overweight: SURMOUNT-1 post hoc analysis. Diabetes Obes. Metab. 2024, 26, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Ida, S.; Kaneko, R.; Imataka, K.; Okubo, K.; Shirakura, Y.; Azuma, K.; Fujiwara, R.; Murata, K. Effects of Antidiabetic Drugs on Muscle Mass in Type 2 Diabetes Mellitus. Curr. Diabetes Rev. 2021, 17, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Raičević, B.B.; Belančić, A.; Mirković, N.; Janković, S.M. Analysis of Reporting Trends of Serious Adverse Events Associated with Anti-Obesity Drugs. Pharmacol. Res. Perspect. 2025, 13, e70080. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryan, D.H. Next Generation Antiobesity Medications: Setmelanotide, Semaglutide, Tirzepatide and Bimagrumab: What do They Mean for Clinical Practice? J. Obes. Metab. Syndr. 2021, 30, 196–208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chavda, V.P.; Ajabiya, J.; Teli, D.; Bojarska, J.; Apostolopoulos, V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. Molecules 2022, 27, 4315, Erratum in Molecules 2025, 30, 1190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Popa, M.A.; Venier, S.; Menè, R.; Della Rocca, D.G.; Sacher, F.; Derval, N.; Hocini, M.; Dulucq, S.; Caluori, G.; Combes, S.; et al. Characterization and Clinical Significance of Hemolysis After Pulsed Field Ablation for Atrial Fibrillation: Results of a Multicenter Analysis. Circ. Arrhythm. Electrophysiol. 2024, 17, e012732. [Google Scholar] [CrossRef] [PubMed]
- Elemam, E.M.; Abdel Dayem, O.T.; Mousa, S.A.; Mohammed, H.M. Ultrasound-guided monopolar versus bipolar radiofrequency ablation for genicular nerves in chronic knee osteoarthritis pain: A randomized controlled study. Ann. Med. Surg. 2022, 77, 103680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Labadie, J.G.; Chilukuri, S.; Cohen, J.; Kilmer, S.; Lupo, M.; Rohrich, R.; Dover, J.S. Noninvasive Hands-free Bipolar Radiofrequency Facial Remodeling Device for the Improvement of Skin Appearance. Dermatol. Surg. 2023, 49, 54–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woolery-Lloyd, H.; Kammer, J.N. Skin tightening. Curr. Probl. Dermatol. 2011, 42, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Kreindel, M.; Mulholland, S. The Basic Science of Radiofrequency-Based Devices. In Enhanced Liposuction—New Perspectives and Techniques; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Palmieri, B.; Vadala, M.; Rottigni, V.; Aspiro, A.; Di Carmine, M.S.; Scarano, A. Evaluation of short-term face rejuvenation effects of non-ablative bipolar radiofrequency treatment performed by Med-RF© device. Skin Res. Technol. 2023, 29, e13422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, J.; Liu, T.; Zhou, Y.; Guo, Y.; Chen, L. The Application of Subcutaneous Radiofrequency After Liposuction for the Lower Face and Neck Contouring Under Local Anesthesia. J. Craniofac. Surg. 2023, 34, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, C.D.; Lawrence, A.C. Implications of Ozempic and Other Semaglutide Medications for Facial Plastic Surgeons. Facial Plast. Surg. 2023, 39, 719–721, Erratum in Facial Plast. Surg. 2023, 39, e1. [Google Scholar] [CrossRef] [PubMed]
- Dayan, E.; Chia, C.; Burns, A.J.; Theodorou, S. Adjustable Depth Fractional Radiofrequency Combined With Bipolar Radiofrequency: A Minimally Invasive Combination Treatment for Skin Laxity. Aesthet. Surg. J. 2019, 39 (Suppl. S3), S112–S119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rohrich, R.J.; Schultz, K.P.; Chamata, E.S.; Bellamy, J.L.; Alleyne, B. Minimally Invasive Approach to Skin Tightening of the Face and Body: Systematic Review of Monopolar and Bipolar Radiofrequency Devices. Plast. Reconstr. Surg. 2022, 150, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Z.; Zhang, J.; Ma, Z.; Peng, H.; Huang, J. Experimental Study of Skin Contraction Induced by Bipolar Radiofrequency. Altern. Ther. Health Med. 2024, 30, 176–181. [Google Scholar] [PubMed]
- Stochaj, A.S.; Jezierska, D.H.; Kubisz, L. Comparing the Efficacy of Monopolar and Bipolar Radiofrequency Treatment on Facial Skin in Women. J. Clin. Aesthet. Dermatol. 2022, 15, 22–27. [Google Scholar] [PubMed] [PubMed Central]
- Gentile, R.D.; Kinney, B.M.; Sadick, N.S. Radiofrequency Technology in Face and Neck Rejuvenation. Facial Plast. Surg. Clin. N. Am. 2018, 26, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Hantash, B.M.; Ubeid, A.A.; Chang, H.; Kafi, R.; Renton, B. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg. Med. 2009, 41, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alexiades-Armenakas, M.; Newman, J.; Willey, A.; Kilmer, S.; Goldberg, D.; Garden, J.; Berman, D.; Stridde, B.; Renton, B.; Berube, D.; et al. Prospective multicenter clinical trial of a minimally invasive temperature-controlled bipolar fractional radiofrequency system for rhytid and laxity treatment. Dermatol. Surg. 2013, 39, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak, A.; Rotsztejn, H. Efficacy of fractional laser, radiofrequency and IPL rejuvenation of periorbital region. Lasers Med. Sci. 2022, 37, 895–903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin, J.C.; Dokic, Y.; Munavalli, G.; Malone, C.H. Bipolar fractionated radiofrequency midface lift: A retrospective review. J. Cosmet. Dermatol. 2022, 21, 268–270. [Google Scholar] [CrossRef] [PubMed]
- Sadick, N. Bipolar radiofrequency for facial rejuvenation. Facial Plast. Surg. Clin. N. Am. 2007, 15, 161–167. [Google Scholar] [CrossRef] [PubMed]
Patients | Cause of Weight Loss | Regular Physical Activity | Obesity/Diabetes | Duration | % of Weight Loss | Kg Lost | Bioimpedance Analysis * |
---|---|---|---|---|---|---|---|
1 | Wegovy (1 mg/week) | No | Obesity | 20 weeks | 5% | 6.4 kg | 39/61% (initial) |
20/80% (end) | |||||||
2 | Ozempic (0.5 mg/week) | Yes | Diabetes | 30 weeks | 8% | 9.2 kg | 42/58 (initial) |
22/78% (end) | |||||||
3 | Diet | Yes | Obesity | 50 weeks | 12% | 19 kg | 43/57% (initial) |
23/77% (end) | |||||||
4 | Mounjaro (5 mg/week) | Yes | Diabetes | 40 weeks | 7% | 8 kg | 41/59 (initial) |
26/74 (end) | |||||||
5 | Diet | No | Obesity | 15 weeks | 5% | 5.6 kg | N/A |
6 | Ozempic (0.25 mg/week) | Yes | Obesity (off label) | 18 weeks | 9% | 11.6 kg | N/A |
7 | Diet | Yes | Obesity | 34 weeks | 14% | 20.7 kg | 40/60% (initial) |
19/81% (end) | |||||||
8 | Saxenda (3 mg/die) | No | Obesity | 8 weeks | 8% | 6 kg | N/A |
9 | Diet | Yes | Obesity | 10 weeks | 8% | 8 kg | 41/59% (initial) |
23/77% (end) | |||||||
10 | Ozempic (1 mg/week) | Yes | Diabetes | 30 weeks | 6% | 7 kg | N/A |
11 | Bydureon (2 mg/week) | Yes | Diabetes | 40 weeks | 10% | 8 kg | N/A |
12 | Diet | Yes | Obesity | 30 weeks | 7% | 7.8 kg | 42/58% (initial) |
22/78% (end) | |||||||
13 | Ozempic (0.25 mg/week) | Yes | Obesity (off label) | 20 weeks | 10% | 10 kg | N/A |
14 | Diet | No | Diabetes | 28 weeks | 5% | 5 kg | 38/62% (initial) |
32/68% (end) | |||||||
15 | Diet | Yes | Obesity | 40 weeks | 12% | 9.4 kg | N/A |
16 | Wegovy (1 mg/week) | Yes | Obesity | 32 weeks | 14% | 17.4 kg | 40/60% (initial) |
28/72% (end) | |||||||
17 | Ozempic (1 mg/week) | Yes | Diabetes | 40 weeks | 7% | 9.6 kg | N/A |
18 | Trulicity (1.5 mg/week) | No | Diabetes | 20 weeks | 5% | 7 kg | N/A |
19 | Rybelsus (7 mg/day, per os) | Yes | Diabetes | 35 weeks | 12% | 10 kg | N/A |
20 | Diet | Yes | Obesity | 40 weeks | 8% | 7 kg | 42/58% (initial) |
20/80% (end) | |||||||
21 | Ozempic (0.5 mg/week) | Yes | Diabetes | 30 weeks | 7% | 9 kg | N/A |
22 | Mounjaro (5 mg/week) | Yes | Diabetes | 25 weeks | 10% | 12 kg | N/A |
23 | Diet | Yes | Obesity | 30 weeks | 8% | 10 kg | 42/58% (initial) |
22/78% (end) | |||||||
24 | Victoza (0.6 mg/die) | Yes | Obesity (off label) | 20 weeks | 7% | 12 kg | N/A |
Patients (Sex) | Therapy | Duration | Kg Lost | Weight (kg) | FM/MM Ratio (%) | FM (kg) | FFM (kg) | VAT (kg) | MM (kg) | SMM (kg) | TBW (L) | ECW (L) | ICW (L) | Phase Angle |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | Wegovy (1 mg/week) | 20 weeks | 6.4 | 128 | 39–61 | 49.92 | 78.08 | 9.98 | 42.94 | 38.65 | 57.00 | 19.00 | 38.00 | 5.0° |
121.6 | 20–80 | 24.32 | 97.28 | 4.86 | 53.50 | 48.15 | 71.01 | 23.67 | 47.34 | 6.5° | ||||
W | Ozempic (0.5 mg/week) | 30 weeks | 9.2 | 115 | 42–58 | 48.3 | 66.7 | 7.25 | 56.7 | 36.9 | 48.7 | 16.1 | 32.6 | 4.6° |
105.8 | 22–78 | 23.28 | 92.52 | 3.49 | 70.1 | 45.6 | 60.2 | 19.9 | 40.3 | 5.8° | ||||
W | Mounjaro (5 mg/week) | 40 weeks | 8 | 114.3 | 41–59 | 46.86 | 67.4 | 7.03 | 57.3 | 37.2 | 49.2 | 16.2 | 33 | 4.7 |
106.3 | 26–74 | 27.64 | 78.66 | 4.15 | 66.9 | 43.5 | 57.4 | 18.9 | 38.5 | 5.6° | ||||
M | Diet | 10 weeks | 8 | 100 | 41–59 | 41 | 59 | 8.2 | 53.1 | 37.2 | 43.1 | 14.2 | 28.9 | 5.4° |
92 | 23–77 | 21.16 | 70.84 | 4.23 | 63.8 | 44.7 | 51.7 | 17.1 | 34.6 | 6.4° | ||||
W | Diet | 30 weeks | 7.8 | 111.4 | 42–58 | 46.79 | 64.61 | 7.0 | 54.9 | 35.7 | 47.2 | 15.6 | 31.6 | 4.6° |
103.6 | 22–78 | 22.79 | 80.81 | 3.42 | 68.7 | 44.7 | 59.0 | 19.5 | 39.5 | 5.8° | ||||
M | Diet | 50 weeks | 19 | 158.3 | 43.57 | 67.94 | 90.06 | 13.6 | 81.1 | 56.8 | 65.7 | 21.7 | 44 | 5.0° |
139.3 | 23–77 | 31.97 | 107.03 | 6.39 | 96.3 | 67.4 | 78.1 | 25.8 | 52.3 | 6.5° | ||||
W | Diet | 28 weeks | 5 | 100 | 38–62 | 38 | 62 | 5.7 | 52.7 | 34.3 | 45.3 | 14.9 | 30.4 | 5.0° |
95 | 32–68 | 30.4 | 64.6 | 4.6 | 54.9 | 35.7 | 47.2 | 15.6 | 31.6 | 5.6° | ||||
W | Wegovy (1 mg/week) | 32 weeks | 17.4 | 124.3 | 40–60 | 49.72 | 74.58 | 7.46 | 63.4 | 41.2 | 54.4 | 17.9 | 36.5 | 4.8° |
106.9 | 28–72 | 29.93 | 76.97 | 4.49 | 65.4 | 42.5 | 56.2 | 18.5 | 37.7 | 5.9° | ||||
W | Diet | 40 weeks | 7 | 87.5 | 42–58 | 36.7 | 50.75 | 5.51 | 43.14 | 28.04 | 37.05 | 12.23 | 24.82 | 4.8° |
80.5 | 20–80 | 16.10 | 64.4 | 2.42 | 54.74 | 35.58 | 47.01 | 15.5 | 31.6 | 6° | ||||
W | Diet | 30 weeks | 10 | 125 | 42–58 | 52.5 | 72.5 | 8.34 | 57.3 | 28.3 | 53.2 | 20.33 | 32.9 | 4.7° |
115 | 22/78 | 25.3 | 89.7 | 4.2 | 71.3 | 37.2 | 65.6 | 9.3 | 26.3 | 5.8° | ||||
W | Diet | 34 weeks | 20.7 | 147.8 | 40–60 | 59.1 | 88.7 | 8.9 | 71.9 | 38.1 | 65.4 | 26.3 | 39.1 | 4.8° |
127.1 | 19–81 | 24.1 | 103.0 | 3.8 | 82.9 | 45.6 | 76.9 | 36.9 | 40.0 | 6.2° |
Patients | Gender | Age | Complications | Satisfaction | Stability |
---|---|---|---|---|---|
1 | W | 56 | No | 8/10 | 9/10 |
2 | W | 43 | No | 9/10 | 7/10 |
3 | W | 53 | No | 7/10 | 8/10 |
4 | M | 62 | No | 10/10 | 9/10 |
5 | W | 27 | No | 7/10 | 7/10 |
6 | W | 43 | No | 8/10 | 9/10 |
7 | M | 32 | No | 8/10 | 8/10 |
8 | M | 58 | Erythema | 8/10 | 8/10 |
9 | W | 45 | No | 7/10 | 9/10 |
10 | W | 60 | No | 9/10 | 8/10 |
11 | W | 57 | Erythema | 6/10 | 8/10 |
12 | W | 65 | No | 7/10 | 7/10 |
13 | W | 29 | No | 8/10 | 9/10 |
14 | M | 54 | No | 9/10 | 8/10 |
15 | W | 41 | No | 6/10 | 7/10 |
16 | W | 64 | Erythema | 10/10 | 9/10 |
17 | W | 58 | No | 8/10 | 8/10 |
18 | W | 62 | No | 9/10 | 9/10 |
19 | M | 33 | No | 7/10 | 9/10 |
20 | W | 47 | No | 10/10 | 8/10 |
21 | W | 52 | Erythema | 8/10 | 9/10 |
22 | W | 39 | No | 9/10 | 9/10 |
23 | W | 40 | No | 8/10 | 9/10 |
24 | W | 59 | No | 9/10 | 8/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catalfamo, L.; De Ponte, F.S.; De Rinaldis, D. “Ozempic Face”: An Emerging Drug-Related Aesthetic Concern and Its Treatment with Endotissutal Bipolar Radiofrequency (RF)—Our Experience. J. Clin. Med. 2025, 14, 5269. https://doi.org/10.3390/jcm14155269
Catalfamo L, De Ponte FS, De Rinaldis D. “Ozempic Face”: An Emerging Drug-Related Aesthetic Concern and Its Treatment with Endotissutal Bipolar Radiofrequency (RF)—Our Experience. Journal of Clinical Medicine. 2025; 14(15):5269. https://doi.org/10.3390/jcm14155269
Chicago/Turabian StyleCatalfamo, Luciano, Francesco Saverio De Ponte, and Danilo De Rinaldis. 2025. "“Ozempic Face”: An Emerging Drug-Related Aesthetic Concern and Its Treatment with Endotissutal Bipolar Radiofrequency (RF)—Our Experience" Journal of Clinical Medicine 14, no. 15: 5269. https://doi.org/10.3390/jcm14155269
APA StyleCatalfamo, L., De Ponte, F. S., & De Rinaldis, D. (2025). “Ozempic Face”: An Emerging Drug-Related Aesthetic Concern and Its Treatment with Endotissutal Bipolar Radiofrequency (RF)—Our Experience. Journal of Clinical Medicine, 14(15), 5269. https://doi.org/10.3390/jcm14155269