The VTI-VeXUS Index in Septic Shock: An Exploratory Proof-of-Concept Observational Study of a Novel Hemodynamic Parameter
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Reporting
2.3. Study Design and Setting
2.4. Participants
2.5. Ultrasound Measurements
2.6. Data Collection
2.7. Sample Size Justification
2.8. Data Analysis
3. Results
3.1. Baseline Characteristics
3.2. Echocardiographic Data
3.3. Patient Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, R.M.; Semler, M.W. Fluid Management in Sepsis. J. Intensive Care Med. 2019, 34, 364–373. [Google Scholar] [CrossRef]
- Mouncey, P.R.; Osborn, T.M.; Power, G.S.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Jahan, R.; Harvey, S.E.; Bell, D.; Bion, J.F.; et al. Trial of early, goal-directed resuscitation for septic shock. N. Engl. J. Med. 2015, 372, 1301–1311. [Google Scholar] [CrossRef]
- Yealy, D.M.; Kellum, J.A.; Huang, D.T.; Barnato, A.E.; Weissfeld, L.A.; Pike, F.; Terndrup, T.; Wang, H.E.; Hou, P.C.; LoVecchio, F.; et al. A randomized trial of protocol-based care for early septic shock. N. Engl. J. Med. 2014, 370, 1683–1693. [Google Scholar] [CrossRef]
- Feldheiser, A.; Gelman, S.; Chew, M.; Stopfkuchen-Evans, M. Vasopressor effects on venous return in septic patients: A review. Eur. J. Anaesthesiol. 2021, 38, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Beaubien-Souligny, W.; Benkreira, A.; Robillard, P.; Bouabdallaoui, N.; Chassé, M.; Desjardins, G.; Lamarche, Y.; White, M.; Bouchard, J.; Denault, A. Alterations in Portal Vein Flow and Intrarenal Venous Flow Are Associated With Acute Kidney Injury After Cardiac Surgery: A Prospective Observational Cohort Study. J. Am. Hear Assoc. 2018, 7, e009961. [Google Scholar] [CrossRef] [PubMed]
- Rola, P.; Miralles-Aguiar, F.; Argaiz, E.; Beaubien-Souligny, W.; Haycock, K.; Karimov, T.; Dinh, V.A.; Spiegel, R. Clinical applications of the venous excess ultrasound (VExUS) score: Conceptual review and case series. Ultrasound J. 2021, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Beaubien-Souligny, W.; Rola, P.; Haycock, K.; Bouchard, J.; Lamarche, Y.; Spiegel, R.; Denault, A.Y. Quantifying systemic congestion with Point-Of-Care ultrasound: Development of the venous excess ultrasound grading system. Ultrasound J. 2020, 12, 16. [Google Scholar] [CrossRef]
- Prager, R.; Arntfield, R.; Wong, M.Y.S.; Ball, I.; Lewis, K.; Rochwerg, B.; Basmaji, J. Venous congestion in septic shock quantified with point-of-care ultrasound: A pilot prospective multicentre cohort study. J. Can. Anesth. 2024, 71, 640–649. [Google Scholar] [CrossRef]
- Prager, R.; Argaiz, E.; Pratte, M.; Rola, P.; Arntfield, R.; Beaubien-Souligny, W.; Denault, A.Y.; Haycock, K.; Aguiar, F.M.; Bakker, J.; et al. Doppler identified venous congestion in septic shock: Protocol for an international, multi-centre prospective cohort study (Andromeda-VEXUS). BMJ Open 2023, 13, e074843. [Google Scholar] [CrossRef]
- Spiegel, R.; Teeter, W.; Sullivan, S.; Tupchong, K.; Mohammed, N.; Sutherland, M.; Leibner, E.; Rola, P.; Galvagno, S.M.; Murthi, S.B. The use of venous Doppler to predict adverse kidney events in a general ICU cohort. Crit. Care 2020, 24, 615. [Google Scholar] [CrossRef]
- Vellinga, N.A.; Ince, C.; Boerma, E.C. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: A hypothesis generating post hoc analysis. BMC Anesthesiol. 2013, 13, 17. [Google Scholar] [CrossRef]
- Guarino, M.; Perna, B.; Cesaro, A.E.; Maritati, M.; Spampinato, M.D.; Contini, C.; De Giorgio, R. 2023 update on sepsis and septic shock in adult patients: Management in the emergency department. J. Clin. Med. 2023, 12, 3188. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, C.; Tadeo-Espinoza, H.; Solis-Huerta, F.; Leal-Villarreal, M.A.d.J.; Guerrero-Cabrera, P.; Cruz, N.; Gaytan-Arocha, J.E.; Soto-Mota, A.; Vasquez, Z.; Gamba, G.; et al. Hemodynamic Evaluation of Right-Sided Congestion with Doppler Ultrasonography in Pulmonary Hypertension. Am. J. Cardiol. 2023, 203, 459–462. [Google Scholar] [CrossRef]
- Beaubien-Souligny, W.; Galarza, L.; Buchannan, B.; Lau, V.I.; Adhikari, N.K.; Deschamps, J.; Charbonney, E.; Denault, A.; Wald, R. Prospective study of ultrasound markers of organ congestion in critically ill patients with acute kidney injury. Kidney Int. Rep. 2024, 9, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Aslaner, M.A.; Helvacı, Ö.; Haycock, K. The VExUS score and mortality in patients with Acute Kidney Injury: Findings from a multidisciplinary prospective study. Med. Ultrason. 2024, 26, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Shin, J.; Kim, W.-Y. Impact of left ventricular dysfunction and fluid balance on the outcomes of patients with sepsis. Eur. J. Intern. Med. 2020, 74, 61–66. [Google Scholar] [CrossRef]
- Saleh, M.H.; Elkhawaas, M.; Soliman, R.; Elgenegeehy, S. Diastolic Dysfunction in Sepsis and Septic Shock: Which Parameters are Most Predictive? Egypt. J. Crit. Care Med. 2023, 10, 15–19. Available online: https://link.springer.com/article/10.1097/EJ9.0000000000000061 (accessed on 29 July 2025).
- Landesberg, G.; Gilon, D.; Meroz, Y.; Georgieva, M.; Levin, P.D.; Goodman, S.; Avidan, A.; Beeri, R.; Weissman, C.; Jaffe, A.S.; et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur. Hear J. 2012, 33, 895–903. (In English) [Google Scholar] [CrossRef]
- Kenny, J.S.M.; Prager, R.; Rola, P.; Haycock, K.; Basmaji, J.; HernánDez, G. Unifying Fluid Responsiveness and Tolerance With Physiology: A Dynamic Interpretation of the Diamond-Forrester Classification. Crit. Care Explor. 2023, 5, e1022. (In English) [Google Scholar] [CrossRef] [PubMed]
- Kang, G.; Ha, R.; Banerjee, D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J. Hear Lung Transplant. 2016, 35, 67–73. [Google Scholar] [CrossRef]
- Zern, E.K.; Wang, D.; Rambarat, P.; Bernard, S.; Paniagua, S.M.; Liu, E.E.; McNeill, J.; Wang, J.K.; Andrews, C.T.; Pomerantsev, E.V.; et al. Association of pulmonary artery pulsatility index with adverse cardiovascular events across a hospital-based sample. Circ. Hear Fail. 2022, 15, e009085. [Google Scholar] [CrossRef] [PubMed]
- Ostad, S.; Sugarman, J.; Alkhodair, A.; Liang, J.; Mielniczuk, L.M.; Hambly, N.; Helmersen, D.; Hirani, N.; Thakrar, M.; Varughese, R.; et al. Association between the pulmonary artery pulsatility index and prognosis in pulmonary arterial hypertension: A multicentre study. CJC Open 2023, 5, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Kenny, J.S.; Prager, R.; Rola, P.; Haycock, K.; Gibbs, S.O.; Johnston, D.H.; Horner, C.; Eibl, J.K.; Lau, V.C.; Kemp, B.O. Simultaneous venous-arterial Doppler ultrasound during early fluid resuscitation to characterize a novel Doppler starling curve: A prospective observational pilot study. J. Intensive Care Med. 2024, 39, 628–635. [Google Scholar] [CrossRef] [PubMed]
Demographic Variables | Overall, N = 62 | High VTI-VeXUS Index N = 31 | Low VTI-VeXUS Index N = 31 | p-Value |
---|---|---|---|---|
Age (Q1, Q3) | 64.0 (56.0, 73.0) | 64.0 (56.0, 73.0) | 63.0 (54.0, 72.5) | 0.9 |
Male n (%) | 25 (40.3%) | 11 (35.5%) | 14 (45.2%) | 0.6 |
Body Mass Index (kg/m2) | 26.7 (21.2, 33.1) | 27.0 (23.6, 34.1) | 25.6 (20.2, 31.9) | 0.4 |
MODS (IQR) | 4.0 (3.0, 6.0) | 4.0 (2.0, 6.0) | 5.0 (3.3, 8.0) | 0.14 |
Comorbidities, n (%) | ||||
CHF | 3 (4.8%) | 2 (6.5%) | 1 (3.2%) | >0.9 |
CAD | 7 (11.3%) | 1 (3.2%) | 6 (19.4%) | 0.1 |
CKD | 3 (4.8%) | 1 (3.2%) | 2 (6.5%) | >0.9 |
Stroke | 3 (4.8%) | 3 (9.7%) | 0 (0.0%) | 0.2 |
Cirrhosis | 1 (1.6%) | 0 (0.0%) | 1 (3.2%) | >0.9 |
COPD | 8 (12.9%) | 5 (16.1%) | 3 (9.7%) | 0.7 |
Atrial Fibrillation | 7 (11.3%) | 2 (6.5%) | 5 (16.1%) | 0.4 |
Diabetes | 14 (22.6%) | 8 (25.8%) | 6 (19.4%) | 0.8 |
Source of Sepsis | ||||
Pulmonary | 52 (83.9%) | 30 (96.8%) | 22 (71.0%) | 0.016 |
Intraabdominal | 10 (16.1%) | 1 (3.2%) | 9 (29.0%) | 0.016 |
Clinical Variables | Overall, N = 62 | High VTI-VeXUS Index, N = 31 | Low VTI-VeXUS Index, N = 31 | p-Value |
---|---|---|---|---|
MAP at time of admission, mmHg, median (IQR) | 70.5 (64.3, 84.0) | 70.0 (65.0, 87.5) | 71.0 (64.0, 80.5) | 0.6 |
HR at time of admission, bpm, median (IQR) | 93.0 (82.3, 111.5) | 90.0 (81.5, 104.5) | 99.0 (84.0, 110.0) | 0.3 |
Highest vasopressor dose (NE equivalents) on day 1 (mcg) | 0.30 (0.11, 0.40) | 0.2 (0.13, 0.30) | 0.30 (0.11, 0.40) | 0.6 |
Use of inotropes on day 1, n (%) | 10 (16.1%) | 3 (9.7%) | 7 (22.6%) | 0.3 |
Positive Pressure Ventilation at time of POCUS day 1, n (%) | 40 (64.5%) | 16 (51.6%) | 24 (77.4%) | 0.063 |
Fluid balance before day 1 VEXUS mL, median (IQR) | 1112.0 (425.0, 3434.0) | 1000.0 (225.0, 3280.0) | 1533.0 (628.5, 3264.5) | 0.3 |
Laboratory Data | ||||
Lactate, mmoL/L, median (IQR) | 2.2 (1.6, 4.0) | 1.9 (1.3, 3.3) | 3.1 (1.9, 4.1) | 0.075 |
Baseline Creatinine, μmol/L, median (IQR) | 93.0 (65.5, 107.0) | 94.0 (71.5, 107.0) | 92.0 (61.0, 107.0) | 0.5 |
WBC × 109/L, median (IQR) | 17.0 (10.0, 26.0) | 14.0 (9.0, 23.5) | 17.5 (11.3, 27.5) | 0.4 |
Hemoglobin, g/dL, median (IQR) | 103.5 (86.8, 123.8) | 108.0 (88.5, 123.5) | 103.0 (87.5, 124.5) | 0.7 |
Platelets × 109/L, median (IQR) | 214.5 (137.0, 273.5) | 217.0 (120.0, 277.0) | 212.0 (144.0, 265.5) | 0.6 |
Echocardiography Variables | Overall, N = 62 | High VTI-VeXUS Index, N = 31 | Low VTI-VeXUS Index, N = 31 | p-Value |
---|---|---|---|---|
LV dysfunction, n (%) | 11 (17.7%) | 1 (3.2%) | 10 (32.3%) | 0.006 |
RV dysfunction, n (%) | 11 (17.7%) | 0 (0.0%) | 11 (35.5%) | <0.001 |
RV dilation, n (%) | 19 (30.6%) | 4 (12.9%) | 15 (48.4%) | 0.006 |
Moderate or Severe TR, n (%) | 8 (13.1%) | 2 (6.7%) | 6 (19.4%) | 0.3 |
VTI (cm), median (IQR) | 17.1 (15.3, 19.8) | 18.2 (16.7, 21.1) | 16.0 (13.9, 18.9) | 0.003 |
Stroke volume, mL, median (IQR) | 58.0 (50.4, 67.0) | 62.0 (55.0, 70.0) | 54.0 (47.0, 65.2) | 0.005 |
Cardiac Output L/min, median (IQR) | 5.3 (4.1, 6.0) | 5.4 (4.7, 6.4) | 5.1 (3.5, 5.6) | 0.088 |
TAPSE, mm, median (IQR) | 21.8 (17.9, 24.8) | 21.7 (18.8, 24.4) | 22.0 (16.6, 24.9) | >0.9 |
TV S’, cm/s, median (IQR) | 13.4 (10.8, 15.1) | 14.2 (12.4, 15.7) | 12.0 (8.9, 14.5) | 0.027 |
Outcome | Estimate of Effect (95% CI) | p-Value |
---|---|---|
Primary Outcome | ||
30-Day Mortality (univariate) | ||
Low VTI-VeXUS Index (<11) | HR 3.83 (95% CI 1.25 to 11.78) | 0.018 |
30-Day Mortality (multivariable) | ||
Low VTI-VeXUS Index (<11) | HR 3.86 (95% CI 1.23 to 12.14) | 0.021 |
Age | HR 0.99 (95% CI 0.96 to 1.03) | 0.745 |
MODS | HR 1.03 (95% CI 0.88 to 1.20) | 0.717 |
Secondary Outcomes | ||
MAKE-30 | OR −0.06 (95% CI −0.15 to 0.03) | 0.188 |
New renal replacement therapy start at 30 days | OR 0.02 (95% CI −0.10 to 0.13) | 0.761 |
Duration of vasoactive medications, days | β −0.03 (95% CI −0.21 to 0.14) | 0.703 |
Duration of mechanical ventilation, days | β −0.1 (−0.41, 0.21) | 0.532 |
ICU length of stay, days | β −0.25 (−0.7, 0.70) | 0.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prager, R.; Pupulin, S.; Chakera, H.; Saha, R.; Orozco, N.; Kenny, J.-E.; Rola, P.; Wong, M.Y.S.; Slessarev, M.; Lewis, K.; et al. The VTI-VeXUS Index in Septic Shock: An Exploratory Proof-of-Concept Observational Study of a Novel Hemodynamic Parameter. J. Clin. Med. 2025, 14, 5774. https://doi.org/10.3390/jcm14165774
Prager R, Pupulin S, Chakera H, Saha R, Orozco N, Kenny J-E, Rola P, Wong MYS, Slessarev M, Lewis K, et al. The VTI-VeXUS Index in Septic Shock: An Exploratory Proof-of-Concept Observational Study of a Novel Hemodynamic Parameter. Journal of Clinical Medicine. 2025; 14(16):5774. https://doi.org/10.3390/jcm14165774
Chicago/Turabian StylePrager, Ross, Simon Pupulin, Hawwa Chakera, Rhidita Saha, Nicolas Orozco, Jon-Emile Kenny, Philippe Rola, Michelle Yee Suet Wong, Marat Slessarev, Kimberley Lewis, and et al. 2025. "The VTI-VeXUS Index in Septic Shock: An Exploratory Proof-of-Concept Observational Study of a Novel Hemodynamic Parameter" Journal of Clinical Medicine 14, no. 16: 5774. https://doi.org/10.3390/jcm14165774
APA StylePrager, R., Pupulin, S., Chakera, H., Saha, R., Orozco, N., Kenny, J.-E., Rola, P., Wong, M. Y. S., Slessarev, M., Lewis, K., Neil-Sztramko, S., Rochwerg, B., & Basmaji, J. (2025). The VTI-VeXUS Index in Septic Shock: An Exploratory Proof-of-Concept Observational Study of a Novel Hemodynamic Parameter. Journal of Clinical Medicine, 14(16), 5774. https://doi.org/10.3390/jcm14165774