Head-to-Head Comparison of Single- Versus Dual-Chamber ICD Discriminators for Tachyarrhythmia Detection: A Single-Manufacturer, Remote Monitoring-Based Bicentric Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population and Data Collection
2.2. Study Endpoints
2.3. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics
3.2. Sensing/Pacing Parameters and VT Zone Settings
3.3. Clinical Outcomes
4. Discussion
4.1. Main Findings
4.2. Tachyarrhythmia Discrimination
4.3. Possible Causes of Inappropriate Detection in SC and DC Configurations
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEI | angiotensin-converting-enzyme inhibitor |
ARB | angiotensin II receptor blocker |
ARNI | angiotensin receptor-neprilysin inhibitor |
ARVC | arrhythmogenic right ventricular cardiomyopathy |
ATP | antitachycardia pacing |
AV | atrioventricular |
CCB | calcium channel blocker |
CI | confidence interval |
CMP | cardiomyopathy |
CRT | cardiac resynchronization therapy |
CRT-D | cardiac resynchronization therapy with defibrillator |
DC | dual-chamber |
DDD ICD | dual-chamber ICD |
eGFR | estimated glomerular filtration rate |
EGM | electrogram |
HCM | hypertrophic cardiomyopathy |
HM | Home Monitoring |
HR | hazard ratio |
ICD | implantable cardioverter defibrillator |
LBBB | left bundle branch block |
LVEF | left ventricular ejection fraction |
MRA | mineralocorticoid receptor antagonist |
PSVT | paroxysmal supraventricular tachycardia |
Q1 | first quartile |
Q3 | third quartile |
RAAS | renin-angiotensin-aldosterone system |
RBBB | right bundle branch block |
SC | single-chamber |
SD | standard deviation |
SGLT2 | sodium–glucose cotransporter-2 |
SMART | specific, morphology-based arrhythmia recognition technology |
SSS | sick sinus syndrome |
SVT | supraventricular tachycardia |
TIA | transient ischemic attack |
VDD ICD | single-lead ICD device with a floating atrial dipole |
VF | ventricular fibrillation |
VT | ventricular tachycardia |
VVI ICD | single-chamber ICD |
References
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Stroobandt, R.X.; Barold, S.S.; Sinnaeve, A.F. Implantable Cardioverter-Defibrillators Step by Step: An Illustrated Guide; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Biffi, M.; Statuto, G.; Calvi, V.; Iori, M.; De Maria, E.; Bolognesi, M.G.; Allocca, G.; Notarangelo, F.; Carinci, V.; Ammendola, E.; et al. Inappropriate therapies in modern implantable cardioverter-defibrillators: A propensity score–matched comparison between single-and dual-chamber discriminators in single-chamber devices THe sINGle lead Study (THINGS Study). Heart Rhythm 2024, 22, E141–E148. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.K.; Sohal, M.; Shanmugam, N.; Pearse, S.; Jouhra, F. Successful identification of and discrimination between atrial and ventricular arrhythmia with the aid of pacing and defibrillator devices. Arrhythmia Electrophysiol. Rev. 2021, 10, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Brüggemann, T.; Dahlke, D.; Chebbo, A.; Neumann, I. Tachycardia detection in modern implantable cardioverter–defibrillators. Herzschrittmacherther. Elektrophysiol. 2016, 27, 171. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.L.; Swerdlow, C.D. Sensing and detection in Medtronic implantable cardioverter defibrillators. Herzschrittmacherther. Elektrophysiol. 2016, 27, 193–212. [Google Scholar] [CrossRef]
- Biffi, M. ICD programming. Indian Heart J. 2014, 66, S88–S100. [Google Scholar] [CrossRef]
- Stiles, M.K.; Fauchier, L.; Morillo, C.A.; Wilkoff, B.L. 2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Heart Rhythm 2019, 21, 1442–1443. [Google Scholar] [CrossRef]
- Zanker, N.; Schuster, D.; Gilkerson, J.; Stein, K. Tachycardia detection in ICDs by Boston Scientific: Algorithms, pearls, and pitfalls. Herzschrittmacherther. Elektrophysiol. 2016, 27, 186. [Google Scholar] [CrossRef]
- Zdarek, J.; Israel, C.W. Detection and discrimination of tachycardia in ICDs manufactured by St. Jude Medical. Herzschrittmacherther. Elektrophysiol. 2016, 27, 226–239. [Google Scholar] [CrossRef]
- Vamos, M.; Nemeth, M.; Balazs, T.; Zima, E.; Duray, G.Z. Rationale and feasibility of the atrioventricular single-lead ICD systems with a floating atrial dipole (DX) in clinical practice. Trends Cardiovasc. Med. 2022, 32, 84–89. [Google Scholar] [CrossRef]
- Theuns, D.A.; Rivero-Ayerza, M.; Boersma, E.; Jordaens, L. Prevention of inappropriate therapy in implantable defibrillators: A meta-analysis of clinical trials comparing single-chamber and dual-chamber arrhythmia discrimination algorithms. Int. J. Cardiol. 2008, 125, 352–357. [Google Scholar] [CrossRef]
- Friedman, P.A.; Bradley, D.; Koestler, C.; Slusser, J.; Hodge, D.; Bailey, K.; Kusumoto, F.; Munger, T.M.; Militanu, A.; Glikson, M. A prospective randomized trial of single-or dual-chamber implantable cardioverter-defibrillators to minimize inappropriate shock risk in primary sudden cardiac death prevention. Europace 2014, 16, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.R.; Ahmad, S.; Browne, K.; Berg, K.C.; Thackeray, L.; Berger, R.D. Prospective comparison of discrimination algorithms to prevent inappropriate ICD therapy: Primary results of the Rhythm ID Going Head to Head Trial. Heart Rhythm 2012, 9, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Wilkoff, B.L.; Fauchier, L.; Stiles, M.K.; Morillo, C.A.; Al-Khatib, S.M.; Almendral, J.; Aguinaga, L.; Berger, R.D.; Cuesta, A.; Daubert, J.P.; et al. 2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. EP Eur. 2016, 18, 159–183. [Google Scholar] [CrossRef]
- Kolb, C.; Sturmer, M.; Sick, P.; Reif, S.; Davy, J.M.; Molon, G.; Schwab, J.O.; Mantovani, G.; Dan, D.; Lennerz, C.; et al. Reduced risk for inappropriate implantable cardioverter-defibrillator shocks with dual-chamber therapy compared with single-chamber therapy: Results of the randomized OPTION study. JACC Heart Fail. 2014, 2, 611–619. [Google Scholar] [CrossRef]
- Briongos-Figuero, S.; Sánchez, A.; Pérez, M.L.; Martínez-Ferrer, J.B.; García, E.; Viñolas, X.; Arenal, Á.; Alzueta, J.; Basterra, N.; Rodríguez, A.; et al. Single-brand dual-chamber discriminators to prevent inappropriate shocks in patients implanted with prophylactic implantable cardioverter defibrillators: A propensity-weighted comparison of single-and dual-chamber devices. J. Interv. Card. Electrophysiol. 2019, 54, 267–275. [Google Scholar] [CrossRef]
- Theuns, D.A.; Klootwijk, A.P.J.; Goedhart, D.M.; Jordaens, L.J. Prevention of inappropriate therapy in implantable cardioverter-defibrillators: Results of a prospective, randomized study of tachyarrhythmia detection algorithms. J. Am. Coll. Cardiol. 2004, 44, 2362–2367. [Google Scholar] [CrossRef]
- Deisenhofer, I.; Kolb, C.; Ndrepepa, G.; Schreieck, J.; Karch, M.; Schmieder, S.; Zrenner, B.; Schmitt, C. Do current dual chamber cardioverter defibrillators have advantages over conventional single chamber cardioverter defibrillators in reducing inappropriate therapies? A randomized, prospective study. J. Cardiovasc. Electrophysiol. 2001, 12, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Choi, D.Y.; Doppalapudi, H.; Richards, M.; Iwai, S.; Daoud, E.G.; Houmsse, M.; Kanagasundram, A.N.; Mainigi, S.K.; Lubitz, S.A.; et al. Subclinical atrial fibrillation detection with a floating atrial sensing dipole in single lead implantable cardioverter-defibrillator systems: Results of the SENSE trial. J. Cardiovasc. Electrophysiol. 2019, 30, 1994–2001. [Google Scholar] [CrossRef]
- Gausz, F.D.; Lena, K.N.M.; Gedeon, P.E.; Miklos, M.; Benak, A.; Bencsik, G.; Makai, A.; Kranyak, D.; Gagyi, R.B.; Pap, R.; et al. Arrhythmia Detection in Atrioventricular, Single-Lead, Floating Atrial Dipole ICD Systems Compared with Conventional Single-and Dual-Chamber Defibrillators. J. Cardiovasc. Dev. Dis. 2024, 11, 386. [Google Scholar] [CrossRef]
- Mitacchione, G.; Curnis, A.; Celentano, E.; Rovaris, G.; Battista, A.; Marini, M.; Della Bella, P.; Santobuono, V.E.; Biffi, M.; Tomasi, L.; et al. New-Onset Device-Detected Atrial Fibrillation in Patients With Atrial Floating Dipole Implantable Cardioverter-Defibrillators: A Propensity Score-Matched Comparison With Conventional Dual-Chamber Systems. J. Cardiovasc. Electrophysiol. 2025, 36, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Safak, E.; D’Ancona, G.; Kaplan, H.; Caglayan, E.; Kische, S.; Öner, A.; Ince, H.; Ortak, J. New generation cardioverter-defibrillator lead with a floating atrial sensing dipole: Long-term performance. Pacing Clin. Electrophysiol. 2018, 41, 128–135. [Google Scholar] [CrossRef] [PubMed]
- BIOTRONIK SE & Co. KG. Rivacor 3/5/7 ICD Family, Function Manual, 446194, Revision C (2019-10-16); BIOTRONIK SE & Co. KG: Berlin, Germany.
- Biffi, M.; Iori, M.; De Maria, E.; Bolognesi, M.G.; Placci, A.; Calvi, V.; Allocca, G.; Ammendola, E.; Carinci, V.; Boggian, G.; et al. The role of atrial sensing for new-onset atrial arrhythmias diagnosis and management in single-chamber implantable cardioverter-defibrillator recipients: Results from the THINGS registry. J. Cardiovasc. Electrophysiol. 2020, 31, 846–853. [Google Scholar] [CrossRef] [PubMed]
Overall (N = 557) | Single-Chamber (N = 124) | Dual-Chamber (N = 433) | p-Value | |
---|---|---|---|---|
Age at implantation, years (median [Q1–Q3]) | 65 (55–72) | 67 (59–75) | 64 (54–71) | 0.002 |
Time from ICD implantation to Home Monitoring registration, days (median [Q1–Q3]) | 5 (1–225) | 129 (3–682) | 4 (1–62) | <0.001 |
Male, n (%) | 431 (77%) | 94 (76%) | 337 (78%) | 0.635 |
Primary prophylaxis, n (%) a | 321 (58%) | 57 (46%) | 264 (61%) | 0.002 |
Chronic coronary syndromes, n (%) b | 270 (49%) | 61 (49%) | 209 (49%) | 0.979 |
Structural heart disease, n (%) c | 460 (83%) | 99 (80%) | 361 (84%) | 0.282 |
Ischemic cardiomyopathy | 266 (48%) | 61 (49%) | 205 (48%) | |
Dilatative cardiomyopathy | 165 (30%) | 32 (26%) | 133 (31%) | |
Hypertrophic cardiomyopathy | 23 (4%) | 6 (5%) | 17 (4%) | |
Arrhythmogenic right ventricular cardiomyopathy | 6 (1%) | 0 (0%) | 6 (1%) | |
Other | 94 (17%) | 25 (20%) | 69 (16%) | |
Previously diagnosed atrial fibrillation/atrial flutter, n (%) c | 213 (39%) | 71 (58 %) | 142 (33%) | <0.001 |
Paroxysmal | 117 (55%) | 21 (29.5%) | 96 (67.5%) | |
Persistent | 23 (11%) | 2 (3%) | 21 (15%) | |
Permanent | 73 (34%) | 48 (67.5%) | 25 (17.5%) | |
Hypertension, n (%) a | 436 (79%) | 110 (89%) | 326 (76%) | 0.002 |
Diabetes mellitus, n (%) a | 166 (30%) | 39 (32%) | 127 (30%) | 0.670 |
Stroke/TIA, n (%) c | 39 (7%) | 13 (11%) | 26 (6%) | 0.083 |
Bradypacing indication, n (%) d | 98 (18%) | 20 (16%) | 78 (18%) | 0.623 |
No bradypacing indication | 454 (82%) | 103 (84%) | 351 (82%) | |
Sick sinus syndrome | 44 (8%) | 2 (2%) | 42 (10%) | |
AV block in sinus rhythm | 34 (6%) | 3 (2%) | 31 (7%) | |
Atrial fibrillation with slow ventricular response | 20 (4%) | 15 (12%) | 5 (1%) | |
QRS, n (%) e | 0.545 | |||
Narrow QRS | 255 (48%) | 57 (50%) | 198 (47%) | |
LBBB | 115 (21%) | 20 (17%) | 95 (22%) | |
RBBB | 43 (8%) | 10 (9%) | 33 (8%) | |
Paced rhythm/Other | 124 (23%) | 27 (24%) | 97 (23%) | |
LVEF % (median [Q1–Q3]) f | 30 (25–40) | 35 (25–48) | 30 (23–38) | 0.002 |
Heart rate, bpm (median [Q1–Q3]) g | 70 (61–81) | 73 (62–84) | 70 (60–81) | 0.273 |
Creatinine, umol/L (median [Q1–Q3]) h | 98 (82–120) | 99 (80–119) | 98 (82–121) | 0.615 |
eGFR, mL/min/1.73 m2 (median [Q1–Q3]) i | 63 (50–81) | 60 (48–80) | 64 (50–81) | 0.473 |
Hemoglobin, mmol/L (median [Q1–Q3]) j | 137 (125–148) | 135 (121–148) | 137 (125–148) | 0.449 |
Implanted device type, n (%) | <0.001 | |||
VVI | 76 (14%) | 76 (61%) | 0 (0%) | |
VDD | 226 (40%) | 23 (19%) | 203 (47%) | |
DDD | 76 (14%) | 1 (<1%) | 75 (17%) | |
CRT-D k | 179 (32%) | 24 (19%) | 155 (36%) |
Overall (N = 557) | Single-Chamber (N = 124) | Dual-Chamber (N = 433) | p-Value | |
---|---|---|---|---|
Antiplatelets, n (%) a | 266 (48%) | 51 (41%) | 215 (50%) | 0.082 |
Anticoagulation, n (%) a | 311 (56%) | 77 (62%) | 234 (54%) | 0.129 |
Beta-blocker, n (%) a | 534 (96%) | 120 (97%) | 414 (96%) | 0.795 |
RAAS inhibitor, n (%) b | 493 (89%) | 108 (88%) | 385 (90%) | 0.586 |
Diuretics, n (%) a | 375 (68%) | 74 (60%) | 301 (70%) | 0.030 |
MRA, n (%) a | 395 (71%) | 75 (61%) | 320 (74%) | 0.003 |
Digitalis, n (%) a | 35 (6%) | 11 (9%) | 24 (6%) | 0.185 |
CCB, n (%) a | 54 (10%) | 17 (14%) | 37 (9%) | 0.091 |
Amiodaron, n (%) a | 144 (26%) | 28 (23%) | 116 (27%) | 0.325 |
Statin, n (%) a | 364 (66%) | 80 (65%) | 284 (66%) | 0.752 |
SGLT2-inhibitor, n (%) b | 87 (16%) | 20 (16%) | 67 (16%) | 0.890 |
Single-Chamber (N = 124) | Dual-Chamber (N = 433) | p-Value | |
---|---|---|---|
Atrial sensing at HM registration, mV (median [Q1–Q3]) a | 5.7 (3.4–6.8) | 4.1 (2.4–6.3) | 0.166 |
Ventricular sensing at HM registration, mV (median [Q1–Q3]) b | 14.6 (9.4–19.5) | 16.9 (12.0–20.0) | 0.016 |
Atrial pacing at 1st month after HM registration, % (median [Q1–Q3]) c | n/a | 3.0 (0.0–42.0) | |
Ventricular pacing at 1st month after HM registration, % (median [Q1–Q3]) d | 0 (0–21) | 1 (0–96) | 0.002 |
Single-Chamber (N = 124) | Dual-Chamber (N = 433) | p-Value | |
---|---|---|---|
Inappropriate therapy, n (%) | 4 (3.2%) | 19 (4.4%) | 0.566 |
resulted in ATP therapy alone | 3 (75%) | 16 (84%) | 0.659 |
resulted in ATP + shock therapy | 1 (25%) | 3 (16%) | |
Appropriate therapy, n (%) | 19 (15.3%) | 56 (12.9%) | 0.492 |
Single-chamber vs. Dual-chamber | 95% CI | p-value | |
Inappropriate therapy | HR (univariate) 1.165 | 0.393–3.448 | 0.783 |
HR (multivariate) a 1.152 | 0.387–3.433 | 0.799 | |
resulted in ATP therapy alone | HR (univariate) 1.264 | 0.365–4.377 | 0.712 |
resulted in ATP + shock therapy | HR (univariate) 0.871 | 0.091–8.372 | 0.905 |
Appropriate therapy | HR (univariate) 0.724 | 0.428–1.224 | 0.228 |
HR (multivariate) b 0.699 | 0.389–1.257 | 0.232 | |
All-cause mortality | HR (univariate) 0.930 | 0.598–1.448 | 0.749 |
HR (multivariate) c 0.714 | 0.426–1.197 | 0.201 | |
Single-chamber MorphMatch ON vs. Dual-chamber | |||
Inappropriate therapy | HR (univariate) 1.809 | 0.241–13.577 | 0.564 |
HR (multivariate) d 1.571 | 0.208–11.851 | 0.661 | |
Dual-chamber VDD vs. Dual-chamber DDD | |||
Inappropriate therapy | HR (univariate) 0.586 | 0.230–1.490 | 0.262 |
HR (multivariate) e 0.597 | 0.226–1.579 | 0.299 |
Single-Chamber (N = 124) | Dual-Chamber (N = 433) | |
---|---|---|
Underlying arrhythmia, n | ||
Atrial fibrillation or atrial flutter | 3 | 5 |
Sinus tachycardia or PSVT | 1 | 14 |
Underlying mechanism, n Atrial undersensing Atrial blanking causing misdetection of atrial rate by the SMART algorithm 1:1 SVT, but the SMART algorithm identifies VT due to sudden onset Sinus tachycardia, but SC discrimination identifies VT due to sudden onset (MorphMatch algorithm was not available) Atrial fibrillation, but both stability and sudden onset identified VT (MorphMatch algorithm was not available) Other | - - - 1 2 1 | 10 2 6 - - 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gausz, F.D.; Fodor, D.; Turani, M.; Miklos, M.; Benak, A.; Kranyak, D.; Makai, A.; Bencsik, G.; Bogyi, P.; Pap, R.; et al. Head-to-Head Comparison of Single- Versus Dual-Chamber ICD Discriminators for Tachyarrhythmia Detection: A Single-Manufacturer, Remote Monitoring-Based Bicentric Study. J. Clin. Med. 2025, 14, 5859. https://doi.org/10.3390/jcm14165859
Gausz FD, Fodor D, Turani M, Miklos M, Benak A, Kranyak D, Makai A, Bencsik G, Bogyi P, Pap R, et al. Head-to-Head Comparison of Single- Versus Dual-Chamber ICD Discriminators for Tachyarrhythmia Detection: A Single-Manufacturer, Remote Monitoring-Based Bicentric Study. Journal of Clinical Medicine. 2025; 14(16):5859. https://doi.org/10.3390/jcm14165859
Chicago/Turabian StyleGausz, Flora Diana, Daniel Fodor, Mirjam Turani, Marton Miklos, Attila Benak, Dora Kranyak, Attila Makai, Gabor Bencsik, Peter Bogyi, Robert Pap, and et al. 2025. "Head-to-Head Comparison of Single- Versus Dual-Chamber ICD Discriminators for Tachyarrhythmia Detection: A Single-Manufacturer, Remote Monitoring-Based Bicentric Study" Journal of Clinical Medicine 14, no. 16: 5859. https://doi.org/10.3390/jcm14165859
APA StyleGausz, F. D., Fodor, D., Turani, M., Miklos, M., Benak, A., Kranyak, D., Makai, A., Bencsik, G., Bogyi, P., Pap, R., Saghy, L., Nemes, A., Szili-Torok, T., Duray, G. Z., & Vamos, M. (2025). Head-to-Head Comparison of Single- Versus Dual-Chamber ICD Discriminators for Tachyarrhythmia Detection: A Single-Manufacturer, Remote Monitoring-Based Bicentric Study. Journal of Clinical Medicine, 14(16), 5859. https://doi.org/10.3390/jcm14165859