Application of Artificial Intelligence in Inborn Errors of Immunity Identification and Management: Past, Present, and Future—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria and Search Strategy
2.2. Data Extraction
Author, Year | Number of Patients | AI Type | AUC | Sensitivity | Specificity | Accuracy | Error | IEI | Outcome |
---|---|---|---|---|---|---|---|---|---|
Keerthikumar et al., 2009 [31] | Training dataset: - Positive dataset (all the known PID genes): 148 genes. - Negative dataset (genes with no immune/hematopoietic system abnormalities): 3162 genes. | SVM learning | / | 0.85 | 0.98 | / | Training data set: - LOO error: 8–15% | Myd88 deficiency PRKCD deficiency G6PC3 mutations ITK deficiency CORO1A mutations | Predict candidate PID genes |
Validation/Test dataset: 36,677 genes. | / | ||||||||
Woellner et al., 2010 [32] | Training dataset: 100 | SVM learning | / | Training dataset: 0.88 | Training dataset: 0.81 | Training dataset: - LOO error: 15% | STAT3 AD HIES | Clinical assessment of HIES prior to a confirmation of the suspected diagnosis by laboratory and molecular analysis (i.e., the presence of a STAT3 mutation). | |
Validation/Test dataset: 50 | Validation/Test dataset: 0.94 | Validation/Test dataset: 0.71 | Validation/Test dataset: - LOO error: 14% | ||||||
Orange et al., 2011 [33] | Training data set: - CVID patients: 179 - healthy controls: 1197 | SVM learning | / | / | / | / | / | CVID | Link SNP with likelihood for CVID from GWAS for an earlier diagnosis. |
Validation/Test dataset: - CVID patients: 109 - Healthy controls: 1114 | / | / | / | Validation/Test dataset: 0.99 | / | ||||
Engelhardt et al., 2015 [34] | Validation/Test dataset: 82 | SVM learning | / | 0.91 | 0.88 | / | 11.1% | DOCK8 AR HIES | Compare clinical data from patients with DOCK8 deficiency with AR-HIES patients without a DOCK8 mutation and patients with STAT3 mutations. |
Mücke et al., 2017 [35] | Training set: 99 | SVM learning, RF, LR, BN, linear discriminant analysis and nearest neighbor classifiers | / | Training dataset: 0.98 | / | / | / | CVID Ataxia teleangiectasia C2 deficiency Cernunnos CID with different cytopenia Nijmegen breakage syndrome X-linked CGD Undefined severe immunodeficiency | To support physicians to consider a PID with a questionnaire based on patient’s experience. |
Validation/Test set: 27 | Validation dataset: 0.90 | / | / | / | |||||
Emmaneel et al., 2019 [36] | Validation/Test set: 179 | Machine learning (SVM and RF) | / | / | / | 0.93 | / | CVID | To assist the diagnosis of CVID patients and differentiate them from other PADs. |
Berbers et al., 2021 [37] | Training set: 45 | Machine learning (RF, Enet, XGboost) | Training set: - RF: 0.71 - Enet: 0.72 - XGboost: 0.70 | Training set: - RF: 0.70 - Enet: 0.74 - XGboost: 0.78 | Training set: - RF: 0.71 - Enet: 0.71 - XGboost: 0.67 | / | / | CVID | To assess the potential of serum proteomics in the stratification of patients with immune dysregulation and to identify cytokine and chemokine signaling pathways underlying immune dysregulation in CVID. |
Validation/Test set: 74 | Testing cohort: - Enet: 0.73 | Testing cohort: - Enet: 0.83 | Testing cohort: - Enet: 0.75 | / | |||||
Rider et al., 2021 [23] | Training set: 100 | BN probabilistic model (“PI prob”) | Validation/Test set: 0.95 | Validation/Test set: 0.87 | Validation/Test set: 0.91 | Validation/Test set: 0.89 | / | CID PADs Immune disregulatory disorder Phagocyte disorders Innate disorders AID Complement disorders | To predict risk of primary immune defects and guide clinical decision-making process. |
Validation/Test set: 75 | / | ||||||||
Diana et al., 2022 [38] | Training set: 32 | BN | / | At 3 months: 0.41. At 6 months 0.74. | At 3 months: 0.88. At 6 months 0.90. | At 3 months: 0.79. At 6 months 0.87. | Relative standard error: 8.03–9.93 | SCID | To explore a modelling approach for the prediction of the time course and extent of CD4+ T-cell immune reconstitution after SCID transplantation. |
Abyazi et al., 2021 [39] | 79 patients: - CVID patients: 26 subjects with complicated CVID and 31 subjects with uncomplicated CVID; - Control patients: 12 age and sex-matched HCs and 10 subjects with other forms of PAD | MFA | / | / | / | / | / | CVID | Identify, correlate, and determine the significance of immunologic features of CVID with non-infectious complications. |
Fang et al., 2022 [14] | Training dataset: - IEI SNVs: 4865 - non-IEI SNVs: 4237 | ML (Conditional Inference Forest model) | Training set: - Non-gene-specific: 0.89 - Gene-specific: 0.91 | / | / | / | / | Immune dysregulation Syndromic CID PAD Complement defects CID Phagocytic defects AID | Predict the pathogenicity of SNVs for IEI, using a gene-specific approach through the functional validation of SNVs in IEI genes with improved accuracy. |
Validation/Test dataset: 1318 patients | Validation set: 0.86 | / | |||||||
Takao et al., 2022 [40] | Training set: 102 patients | LR and ML (RF, XGboost and CART) | Training set: / | Training set: / | Training set: / | Training set: / | / | SIgAD Isolated primary neutropenia THI, History of severe infections with lymphopenia awaiting lymphocyte subsets counting Glycogen storage diseases with associated neutropenia CVID CGD Cyclic neutropenia DiGeorge Syndrome WAS | Measure the individual chance of a confirmed diagnosis of IEI in children at risk, according to previous evaluation by general pediatrician/ Clinician. |
Validation/Test set: 26 patients | Validation/Test set: - RF:0.94 - XGboost:0.85 - CART: 0.87 - LR: 0.80 | Validation/Test set: - RF: 0.95 - XGboost: 0.86 - CART: 0.82 - LR: 0.77 | Validation/Test set: - RF: 0.63 - XGboost: 0.56 - CART: 0.69 - LR: 0.63 | Validation/Test set - RF: 0.93 - XGboost: 0.84 - CART: 0.85 - LR: 0.79 | / | ||||
Mayampurath et al., 2022 [41] | Training set: - Case set (IEI): 247; - Control set (asthma): 6175) | LR, EN, RF | - LR: 0.70 - EN: 0.70 - RF: 0.62 | - LR: 0.79/72 - EN: / - RF: / | - LR: 0.58/0.62 - EN: / - RF: / | / | / | DiGeorge syndrome CVID CID SCID WAS Congenital hypogammaglobulinemia Evans Syndrome ALPS | To develop a predictive algorithm for early diagnosis of IEI using EHR data and ML. |
Rider et al., 2022 [27] | Training set: 428 patients | ML (SVM, LR, DNN) | / | / | / | / | / | IEI with other major disease PAD Complement disorders and other IEI CVID Disorders of neutrophils CID | Population-wide detection of infection susceptibility and risk of IEI. |
Validation/Test set: 184 | Validation/Test set: - SVM: 0.52 - LR: 0.97 - DNN 1 × 128: 0.98 DNN 2 × 128: 0.99 - DNN 1 × 64: 0.95 | / | / | Validation/Test set: - SVM: 0.87 - LR: 0.98–0.99 - DNN 1 × 128: 0.99 DNN 2 × 128: 0.99 - DNN 1 × 64: 0.96 | / | ||||
Ding et al., 2023 [42] | Training set: 129 (no-PID:PID = 75:54) | LR | Training set: 0.84 | Training set: 0.78 | Training set: 0.78 | Training set: 0.72 | Training set: 4% | / | To use the analysis of radiomics based on un-enhanced CT for identifying immunodeficiency status in children with PTB. |
Validation/Test set: 44 (no-PID:PID = 26:18) | Validation set: 0.85 | Validation/Test set: 0.83 | Validation/Test set: 0.72 | Validation/Test set: 0.68 | Validation/Test set: 7.4–14% | ||||
Wang et al., 2023 [43] | Training set: 152 patients | Multivariate LR, Lasso, RF, XGboost | Training set: 0.83 | Training set: 0.77 | Training set: 0.77 | / | / | SCID VEO-IBD CGD WAS LAD HIGM syndrome | Identify pre-transplantation risk factors associated with early mortality and build predictive models through ML algorithms in pediatric IEI patients who underwent UCBT. |
Validation/Test set: 78 patients | Validation set: 0.74 | Validation set: 0.54 | Validation set: 0.82 | / | / | ||||
Méndez Barrera et al., 2023 [18] | Training set: 1677 | XGBoost | Training set: - CVID: 0.80 | / | / | Training set: - CVID: 0.80 | / | CVID DGS Congenital agammaglobulinemia Not otherwise classified PID PAD CGD Complement deficiency HIGM syndrome LAD Ectodermal dysplasia with immune deficiency SCID WAS | Predict IEI |
Validation/Test set: 719 | Validation set: - CVID: 0.75 - DGS: 0.87 - Congenital agammaglobulinemia: 0.76 - Not otherwise classified PID: 0.74 - PAD: 0.74 - CGD: 0.83 - Complement deficiency: 0.46 - HIGM syndrome: 0.65 - LAD: 0.66 - Ectodermal dysplasia with immune deficiency: 0.62 - SCID: 0.73 - WAS: 0.74 | / | / | Validation set: - CVID: 0.76 - DGS: 0.90 - Congenital agammaglobulinemia: 0.89 - Not otherwise classified PID: 0.88 - PAD: 0.84 - CGD: 0.92 - Complement deficiency: 0.92 - HIGM syndrome: 0.93 - LAD: 0.99 - Ectodermal dysplasia with immune deficiency: 0.97 - SCID: 0.85 - WAS: 0.76 | / | ||||
Lu et al., 2024 [17] | - Training set: 60 - Validation set: 133 - Test set: 186 | AI-assisted workflow (DeepFlowTM) | / | / | / | / | / | Not specified | To diagnose immunological disorders in a clinical setting through AI-assisted flow cytometry providing a transformative approach within a concise timeframe. |
Roberts et al., 2024 [44] | Training set: 5.901 | Linear SVM | 0.95 | / | / | / | / | Hypogammaglobulinemia DGS SIgAD CID | To develop an NLP system capable of early IEI patient recognition using real-world clinical notes before their receipt of an IEI diagnosis via clinical practice. |
Rider et al., 2024 [45] | Validation/Test set: - IEI cohort: 41,080 - Control cohort: 250,262 | SPIRIT analyzer (rule-based AI tool) | / | / | / | / | / | CID CID with syndromic features PAD Disorders of immune dysregulation Phagocyte defects Innate immune disorders AID Complement disorders | Quantify the value of having >2 WS for the diagnosis of IEI using a highly representative real-world US cohort. |
Johnson et al., 2024 [46] | - Training set: 197 (CVID) vs. 1106 (control) - Validation/Test set: 100 (CVID) vs. 100 (control) | PheNet (marginal LR) | - Training set: AUC-ROC: 0.95 AUC-PR: 0.96 | / | / | / | / | CVID | To recognize clinical features of patients with CVID from their EHR data identifying undiagnosed patients. |
Sobrino et al., 2024 [47] | 5 patients | Elastic-net LR | 0.99 | / | / | 0.97 | / | XL-CGD | To identify predictive markers of engraftment failure in patients with XL-CGD who underwent GT. |
Pello et al., 2024 [48] | Validation/Test dataset 1: 32 Validation/Test dataset 2 (naïve T-cell available): 24 [80% of samples for model training and 20% of samples for model validation] | RF | / | / | / | Validation/Test dataset 1 (training set): - Respiratory infections: 0.93 - Severe infections: 0.93 Validation/Test dataset 2 (training set): - Respiratory infections: 1 - Severe infections: 1 | / | Non–severe CID CHH | To correlate early childhood clinical and laboratory features with clinical outcomes on long-term follow-up of CHH patients. |
3. Results
3.1. AI and IEI Genetics
3.2. AI in the Real-World Clinic of Patients with IEI
3.3. AI and Immunological Investigation
- The percentages of switched memory B cell IgG+, CD38+, and CD21+ decreased, and the percentages of switched memory B cell CD21+, CD24+, and IgA+ increased.
- The increase in FoxP3 for a specific regulatory T cell population and CCR7 for another regulatory T cell population.
- The increase in the CD14 markers for the conventional dendritic cell population.
- The increase in CD8+ effector memory T cells and CD8+CD45RO-CD31+ T cells.
- The decrease in specific gamma delta T cells in the CVID patients.
3.4. AI and Radiology Are Unveiling the Potential Underlying IEI
3.5. Risk of Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Oksenhendler, E.; Picard, C.; et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022, 42, 1473–1507. [Google Scholar] [CrossRef]
- Casanova, J.L.; Abel, L. The Genetic Theory of Infectious Diseases: A Brief History and Selected Illustrations. Annu. Rev. Genom. Hum. Genet. 2013, 14, 215–243. [Google Scholar] [CrossRef]
- Casanova, J.L.; Abel, L. The human genetic determinism of life-threatening infectious diseases: Genetic heterogeneity and physiological homogeneity? Hum. Genet. 2020, 139, 681–694. [Google Scholar] [CrossRef]
- Notarangelo, L.D.; Bacchetta, R.; Casanova, J.L.; Su, H.C. Human inborn errors of immunity: An expanding universe. Sci. Immunol. 2020, 5, eabb1662. [Google Scholar] [CrossRef] [PubMed]
- Castagnoli, R.; Lougaris, V.; Giardino, G.; Volpi, S.; Leonardi, L.; La Torre, F.; Federici, S.; Corrente, S.; Cinicola, B.L.; Soresina, A.; et al. Allergy ITF of the IS of P, Immunology (SIAIP). Inborn errors of immunity with atopic phenotypes: A practical guide for allergists. World Allergy Organ. J. 2021, 14, 100513. [Google Scholar] [CrossRef] [PubMed]
- Sogkas, G.; Witte, T. The link between rheumatic disorders and inborn errors of immunity. eBioMedicine 2023, 90, 104501. [Google Scholar] [CrossRef] [PubMed]
- Taietti, I.; Catamerò, F.; Lodi, L.; Giovannini, M.; Castagnoli, R. Inborn errors of immunity with atopic phenotypes in the allergy and immunology clinic: A practical review. Curr. Opin. Allergy Clin. Immunol. 2025, 25, 105. [Google Scholar] [CrossRef]
- Castagnoli, R.; Cenzato, F.; Taietti, I.; Licari, A.; Marseglia, G.L. Studying inborn errors of immunity to understand the pathogenic mechanisms underlying highly prevalent immune-mediated diseases. Minerva Pediatr. 2025, 77, 4–6. [Google Scholar] [CrossRef]
- Staels, F.; Collignon, T.; Betrains, A.; Gerbaux, M.; Willemsen, M.; Humblet-Baron, S.; Liston, A.; Vanderschueren, S.; Schrijvers, R. Monogenic Adult-Onset Inborn Errors of Immunity. Front. Immunol. 2021, 12, 753978. [Google Scholar] [CrossRef]
- Fischer, A. Gene therapy for inborn errors of immunity: Past, present and future. Nat. Rev. Immunol. 2023, 23, 397–408. [Google Scholar] [CrossRef]
- Abolhassani, H.; Azizi, G.; Sharifi, L.; Yazdani, R.; Mohsenzadegan, M.; Delavari, S.; Sohani, M.; Shirmast, P.; Chavoshzadeh, Z.; Mahdaviani, S.A.; et al. Global systematic review of primary immunodeficiency registries. Expert. Rev. Clin. Immunol. 2020, 16, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Rider, N.L.; Srinivasan, R.; Khoury, P. Artificial intelligence and the hunt for immunological disorders. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 565. [Google Scholar] [CrossRef]
- Lee, K.; Abraham, R.S. Next-generation sequencing for inborn errors of immunity. Human. Immunol. 2021, 82, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Su, Z.; Abolhassani, H.; Itan, Y.; Jin, X.; Hammarström, L. VIPPID: A gene-specific single nucleotide variant pathogenicity prediction tool for primary immunodeficiency diseases. Brief. Bioinform. 2022, 23, bbac176. [Google Scholar] [CrossRef]
- Casanova, J.L. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc. Natl. Acad. Sci. USA 2015, 112, E7128–E7137. [Google Scholar] [CrossRef] [PubMed]
- Modell, V.; Quinn, J.; Ginsberg, G.; Gladue, R.; Orange, J.; Modell, F. Modeling strategy to identify patients with primary immunodeficiency utilizing risk management and outcome measurement. Immunol. Res. 2017, 65, 713–720. [Google Scholar] [CrossRef]
- Lu, Z.; Morita, M.; Yeager, T.S.; Lyu, Y.; Wang, S.Y.; Wang, Z.; Fan, G. Validation of Artificial Intelligence (AI)-Assisted Flow Cytometry Analysis for Immunological Disorders. Diagnostics 2024, 14, 420. [Google Scholar] [CrossRef]
- Barrera, J.A.M.; Guzmán, S.R.; Cascajares, E.H.; Garabedian, E.K.; Fuleihan, R.L.; Sullivan, K.E.; Reyes, S.O.L. Who’s your data? Primary immune deficiency differential diagnosis prediction via machine learning and data mining of the USIDNET registry. Clin. Immunol. 2023, 255, 109759. [Google Scholar] [CrossRef]
- Modell, V.; Quinn, J.; Orange, J.; Notarangelo, L.D.; Modell, F. Primary immunodeficiencies worldwide: An updated overview from the Jeffrey Modell Centers Global Network. Immunol. Res. 2016, 64, 736–753. [Google Scholar] [CrossRef]
- Modell, V.; Gee, B.; Lewis, D.B.; Orange, J.S.; Roifman, C.M.; Routes, J.M.; Sorensen, R.U.; Notarangelo, L.D.; Modell, F. Global study of primary immunodeficiency diseases (PI)—Diagnosis, treatment, and economic impact: An updated report from the Jeffrey Modell Foundation. Immunol. Res. 2011, 51, 61–70. [Google Scholar] [CrossRef]
- Arai, Y.; Kondo, T.; Fuse, K.; Shibasaki, Y.; Masuko, M.; Sugita, J.; Teshima, T.; Uchida, N.; Fukuda, T.; Kakihana, K.; et al. Using a machine learning algorithm to predict acute graft-versus-host disease following allogeneic transplantation. Blood Adv. 2019, 3, 3626–3634. [Google Scholar] [CrossRef]
- Shouval, R.; Labopin, M.; Unger, R.; Giebel, S.; Ciceri, F.; Schmid, C.; Esteve, J.; Baron, F.; Gorin, N.C.; Savani, B.; et al. Prediction of Hematopoietic Stem Cell Transplantation Related Mortality- Lessons Learned from the In-Silico Approach: A European Society for Blood and Marrow Transplantation Acute Leukemia Working Party Data Mining Study. PLoS ONE 2016, 11, e0150637. [Google Scholar] [CrossRef]
- Rider, N.L.; Cahill, G.; Motazedi, T.; Wei, L.; Kurian, A.; Noroski, L.M.; Seeborg, F.O.; Chinn, I.K.; Roberts, K.; Son, L.H. PI Prob: A risk prediction and clinical guidance system for evaluating patients with recurrent infections. PLoS ONE 2021, 16, e0237285. [Google Scholar] [CrossRef]
- Knight, V.; Heimall, J.R.; Chong, H.; Nandiwada, S.L.; Chen, K.; Lawrence, M.G.; Akha, A.A.S.; Kumánovics, A.; Jyonouchi, S.; Ngo, S.Y.; et al. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. J. Allergy Clin. Immunol. Pract. 2021, 9, 3293–3307.e6. [Google Scholar] [CrossRef] [PubMed]
- Khoury, P.; Srinivasan, R.; Kakumanu, S.; Ochoa, S.; Keswani, A.; Sparks, R.; Rider, N.L. A Framework for Augmented Intelligence in Allergy and Immunology Practice and Research—A Work Group Report of the AAAAI Health Informatics, Technology, and Education Committee. J. Allergy Clin. Immunol. Pract. 2022, 10, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Rider, N.L. Digital systems for improving outcomes in patients with primary immune defects. Curr. Opin. Pediatr. 2020, 32, 772. [Google Scholar] [CrossRef] [PubMed]
- Rider, N.L.; Coffey, M.; Kurian, A.; Quinn, J.; Orange, J.S.; Modell, V.; Modell, F. A validated artificial intelligence-based pipeline for population-wide primary immunodeficiency screening. J. Allergy Clin. Immunol. 2023, 151, 272–279. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wolff, R.F.; Moons, K.G.; Riley, R.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S.; The PROBAST Group. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef]
- Collins, G.S.; Dhiman, P.; Navarro, C.L.A.; Ma, J.; Hooft, L.; Reitsma, J.B.; Logullo, P.; Beam, A.L.; Peng, L.; Van Calster, B.; et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021, 11, e048008. [Google Scholar] [CrossRef]
- Keerthikumar, S.; Bhadra, S.; Kandasamy, K.; Raju, R.; Ramachandra, Y.; Bhattacharyya, C.; Imai, K.; Ohara, O.; Mohan, S.; Pandey, A. Prediction of Candidate Primary Immunodeficiency Disease Genes Using a Support Vector Machine Learning Approach. DNA Res. 2009, 16, 345–351. [Google Scholar] [CrossRef]
- Woellner, C.; Gertz, E.M.; Schäffer, A.A.; Lagos, M.; Perro, M.; Glocker, E.-O.; Pietrogrande, M.C.; Cossu, F.; Franco, J.L.; Matamoros, N.; et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J. Allergy Clin. Immunol. 2010, 125, 424–432.e8. [Google Scholar] [CrossRef]
- Orange, J.S.; Glessner, J.T.; Resnick, E.; Sullivan, K.E.; Lucas, M.; Ferry, B.; Kim, C.E.; Hou, C.; Wang, F.; Chiavacci, R.; et al. Genome-wide association identifies diverse causes of common variable immunodeficiency. J. Allergy Clin. Immunol. 2011, 127, 1360–1367.e6. [Google Scholar] [CrossRef]
- Engelhardt, K.R.; Gertz, M.E.; Keles, S.; Schäffer, A.A.; Sigmund, E.C.; Glocker, C.; Saghafi, S.; Pourpak, Z.; Ceja, R.; Sassi, A.; et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 2015, 136, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Mücke, U.; Klemann, C.; Baumann, U.; Meyer-Bahlburg, A.; Kortum, X.; Klawonn, F.; Lechner, W.M.; Grigull, L. Patient’s Experience in Pediatric Primary Immunodeficiency Disorders: Computerized Classification of Questionnaires. Front. Immunol. 2017, 8, 384. [Google Scholar] [CrossRef] [PubMed]
- Emmaneel, A.; Bogaert, D.J.; Van Gassen, S.; Tavernier, S.J.; Dullaers, M.; Haerynck, F.; Saeys, Y. A Computational Pipeline for the Diagnosis of CVID Patients. Front. Immunol. 2019, 10, 2009. [Google Scholar] [CrossRef] [PubMed]
- Berbers, R.-M.; Drylewicz, J.; Ellerbroek, P.M.; van Montfrans, J.M.; Dalm, V.A.S.H.; van Hagen, P.M.; Keller, B.; Warnatz, K.; van de Ven, A.; van Laar, J.M.; et al. Targeted Proteomics Reveals Inflammatory Pathways that Classify Immune Dysregulation in Common Variable Immunodeficiency. J. Clin. Immunol. 2021, 41, 362–373. [Google Scholar] [CrossRef]
- Diana, J.-S.; Bouazza, N.; Couzin, C.; Castelle, M.; Magnani, A.; Magrin, E.; Rosain, J.; Treluyer, J.-M.; Picard, C.; Moshous, D.; et al. Bayesian Modeling Immune Reconstitution Apply to CD34+ Selected Stem Cell Transplantation for Severe Combined Immunodeficiency. Front. Pediatr. 2022, 9, 804912. [Google Scholar] [CrossRef]
- Abyazi, M.L.; Bell, K.A.; Gyimesi, G.; Baker, T.S.; Byun, M.; Ko, H.M.; Cunningham-Rundles, C.; Feng, F.; Maglione, P.J. Convergence of cytokine dysregulation and antibody deficiency in common variable immunodeficiency with inflammatory complications. J. Allergy Clin. Immunol. 2022, 149, 315–326.e9. [Google Scholar] [CrossRef]
- Takao, M.M.V.; Carvalho, L.S.F.; Silva, P.G.P.; Pereira, M.M.; Viana, A.C.; da Silva, M.T.N.; Riccetto, A.G.L. Artificial Intelligence in Allergy and Immunology: Comparing Risk Prediction Models to Help Screen Inborn Errors of Immunity. Int. Arch. Allergy Immunol. 2022, 183, 1226–1230. [Google Scholar] [CrossRef]
- Mayampurath, A.; Ajith, A.; Anderson-Smits, C.; Chang, S.-C.; Brouwer, E.; Johnson, J.; Baltasi, M.; Volchenboum, S.; Devercelli, G.; Ciaccio, C.E. Early Diagnosis of Primary Immunodeficiency Disease Using Clinical Data and Machine Learning. J. Allergy Clin. Immunol. Pract. 2022, 10, 3002–3007.e5. [Google Scholar] [CrossRef]
- Ding, H.; Chen, X.; Wang, H.; Zhang, L.; Wang, F.; He, L. Identifying immunodeficiency status in children with pulmonary tuberculosis: Using radiomics approach based on un-enhanced chest computed tomography. Transl. Pediatr. 2023, 12, 2191202–2192202. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, C.; Wei, Z.; Jiang, W.; Sun, H.; Wang, Y.; Hou, J.; Sun, J.; Huang, Y.; Wang, H.; et al. Nomogram for Predicting Early Mortality after Umbilical Cord Blood Transplantation in Children with Inborn Errors of Immunity. J. Clin. Immunol. 2023, 43, 1379–1392. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.; Chin, A.T.; Loewy, K.; Pompeii, L.; Shin, H.; Rider, N.L. Natural language processing of clinical notes enables early inborn error of immunity risk ascertainment. J. Allergy Clin. Immunol. Glob. 2024, 3, 100224. [Google Scholar] [CrossRef]
- Rider, N.L.; Truxton, A.; Ohrt, T.; Margolin-Katz, I.; Horan, M.; Shin, H.; Davila, R.; Tenembaum, V.; Quinn, J.; Modell, V.; et al. Validating inborn error of immunity prevalence and risk with nationally representative electronic health record data. J. Allergy Clin. Immunol. 2024, 153, 1704–1710. [Google Scholar] [CrossRef]
- Johnson, R.; Stephens, A.V.; Mester, R.; Knyazev, S.; Kohn, L.A.; Freund, M.K.; Bondhus, L.; Hill, B.L.; Schwarz, T.; Zaitlen, N.; et al. Electronic health record signatures identify undiagnosed patients with common variable immunodeficiency disease. Sci. Transl. Med. 2024, 16, eade4510. [Google Scholar] [CrossRef]
- Sobrino, S.; Magnani, A.; Semeraro, M.; Martignetti, L.; Cortal, A.; Denis, A.; Couzin, C.; Picard, C.; Bustamante, J.; Magrin, E.; et al. Severe hematopoietic stem cell inflammation compromises chronic granulomatous disease gene therapy. Cell Rep. Med. 2023, 4, 100919. [Google Scholar] [CrossRef]
- Pello, E.; Kainulainen, L.; Vakkilainen, M.; Klemetti, P.; Taskinen, M.; Mäkitie, O.; Vakkilainen, S. Shorter birth length and decreased T-cell production and function predict severe infections in children with non–severe combined immunodeficiency cartilage–hair hypoplasia. J. Allergy Clin. Immunol. Glob. 2024, 3, 100190. [Google Scholar] [CrossRef]
- Rivière, J.G.; Palacín, P.S.; Butte, M.J. Proceedings from the inaugural Artificial Intelligence in Primary Immune Deficiencies (AIPID) conference. J. Allergy Clin. Immunol. 2024, 153, 637–642. [Google Scholar] [CrossRef]
- Akalu, Y.T.; Bogunovic, D. Inborn errors of immunity: An expanding universe of disease and genetic architecture. Nat. Rev. Genet. 2024, 25, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Odnoletkova, I.; Kindle, G.; Quinti, I.; Grimbacher, B.; Knerr, V.; Gathmann, B.; Ehl, S.; Mahlaoui, N.; Van Wilder, P.; Bogaerts, K.; et al. The burden of common variable immunodeficiency disorders: A retrospective analysis of the European Society for Immunodeficiency (ESID) registry data. Orphanet J. Rare Dis. 2018, 13, 201. [Google Scholar] [CrossRef]
- Khanna, N.N.; Maindarkar, M.A.; Viswanathan, V.; E Fernandes, J.F.; Paul, S.; Bhagawati, M.; Ahluwalia, P.; Ruzsa, Z.; Sharma, A.; Kolluri, R.; et al. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare 2022, 10, 2493. [Google Scholar] [CrossRef]
- Park, K.J.; Gromiha, M.M.; Horton, P.; Suwa, M. Discrimination of outer membrane proteins using support vector machines. Bioinformatics 2005, 21, 4223–4229. [Google Scholar] [CrossRef]
- Prashanth, R.; Dutta Roy, S.; Mandal, P.K.; Ghosh, S. High-Accuracy Detection of Early Parkinson’s Disease through Multimodal Features and Machine Learning. Int. J. Med. Inform. 2016, 90, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 2017, 24, 361–370. [Google Scholar] [CrossRef]
- Costa, L.; Gago, M.F.; Yelshyna, D.; Ferreira, J.; Silva, H.D.; Rocha, L.; Sousa, N.; Bicho, E. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease. Comput. Intell. Neurosci. 2016, 2016, 3891253. [Google Scholar] [CrossRef]
- Taslimitehrani, V.; Dong, G.; Pereira, N.L.; Panahiazar, M.; Pathak, J. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function. J. Biomed. Inform. 2016, 60, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Lingren, T.; Chen, P.; Bochenek, J.; Doshi-Velez, F.; Manning-Courtney, P.; Bickel, J.; Welchons, L.W.; Reinhold, J.; Bing, N.; Ni, Y.; et al. Electronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorder. PLoS ONE 2016, 11, e0159621. [Google Scholar] [CrossRef] [PubMed]
- Lyman, J.A.; Cohn, W.F.; Bloomrosen, M.; Detmer, D.E. Clinical decision support: Progress and opportunities. J. Am. Med. Inform. Assoc. 2010, 17, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.W.; Kuperman, G.J.; Wang, S.; Gandhi, T.; Kittler, A.; Volk, L.; Spurr, C.; Khorasani, R.; Tanasijevic, M.; Middleton, B. Ten Commandments for Effective Clinical Decision Support: Making the Practice of Evidence-based Medicine a Reality. J. Am. Med. Inform. Assoc. JAMIA 2003, 10, 523. [Google Scholar] [CrossRef]
- Vandewiele, G.; De Backere, F.; Lannoye, K.; Berghe, M.V.; Janssens, O.; Van Hoecke, S.; Keereman, V.; Paemeleire, K.; Ongenae, F.; De Turck, F. A decision support system to follow up and diagnose primary headache patients using semantically enriched data. BMC Med. Inform. Decis. Mak. 2018, 18, 98. [Google Scholar] [CrossRef]
- Cahan, A.; Cimino, J.J. A Learning Health Care System Using Computer-Aided Diagnosis. J. Med. Internet Res. 2017, 19, e6663. [Google Scholar] [CrossRef]
- Rider, N.L.; Miao, D.; Dodds, M.; Modell, V.; Modell, F.; Quinn, J.; Schwarzwald, H.; Orange, J.S. Calculation of a Primary Immunodeficiency “Risk Vital Sign” via Population-Wide Analysis of Claims Data to Aid in Clinical Decision Support. Front. Pediatr. 2019, 7, 70. [Google Scholar] [CrossRef]
- Saeys, Y.; Van Gassen, S.; Lambrecht, B.N. Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 2016, 16, 449–462. [Google Scholar] [CrossRef]
- Monaco, G.; Chen, H.; Poidinger, M.; Chen, J.; de Magalhães, J.P.; Larbi, A. flowAI: Automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics 2016, 32, 2473–2480. [Google Scholar] [CrossRef]
- Fletez-Brant, K.; Špidlen, J.; Brinkman, R.R.; Roederer, M.; Chattopadhyay, P.K. flowClean: Automated identification and removal of fluorescence anomalies in flow cytometry data. Cytom. Part A 2016, 89, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Boyne, D.; Slater, J.J.; Gupta, A.; Brenner, D.R.; Druzdzel, M.J. Bayesian Networks for Risk Prediction Using Real-World Data: A Tool for Precision Medicine. Value Health 2019, 22, 439–445. [Google Scholar] [CrossRef]
- Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Vega, J.B.M. Tutorial: XGBoost en Python. Medium. 24 January 2022. Available online: https://medium.com/@jboscomendoza/tutorial-xgboost-en-python-53e48fc58f73 (accessed on 3 September 2024).
- Martinson, A.K.; Chin, A.T.; Butte, M.J.; Rider, N.L. Artificial Intelligence and Machine Learning for Inborn Errors of Immunity: Current State and Future Promise. J. Allergy Clin. Immunol. Pract. 2024, 12, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Noble, W. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Marimuthu, R.; Shivappriya, S.N.; Saroja, M.N. Chapter 14—A study of machine learning algorithms used for detecting cognitive disorders associated with dyslexia. In Handbook of Decision Support Systems for Neurological Disorders; Jude, H.D., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 245–262. ISBN 9780128222713. [Google Scholar]
- Jurafsky, D.; Martin, J.H. Speech and Language Processing—Chapter 5. Available online: https://pages.ucsd.edu/~bakovic/compphon/Jurafsky,%20Martin.-Speech%20and%20Language%20Processing_%20An%20Introduction%20to%20Natural%20Language%20Processing%20(2007).pdf (accessed on 15 February 2025).
- ElKalaawy, N.; Wassal, A. Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: A primer. Biosystems 2015, 129, 1–18. [Google Scholar] [CrossRef]
- Sara van Erp Daniel, L. Oberski, Joris Mulder, Shrinkage priors for Bayesian penalized regression. J. Math. Psychol. 2019, 89, 31–50. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Y.; Xie, W.; Li, X.; Wang, Y.; Xu, Z.; Bai, Y.; Yin, P.; Wu, Q. Lasso-Based Machine Learning Algorithm for Predicting Postoperative Lung Complications in Elderly: A Single-Center Retrospective Study from China. Clin. Interv. Aging 2023, 18, 597–606. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Hong, L.; Han, L.; Wang, L. Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges. Appl. Soft. Comput. 2023, 136, 110066. [Google Scholar] [CrossRef]
- Díez-Sanmartín, C.; Sarasa-Cabezuelo, A.; Belmonte, A.A. The impact of artificial intelligence and big data on end-stage kidney disease treatments. Expert Syst. Appl. 2021, 180, 115076. [Google Scholar] [CrossRef]
- Krzywinski, M.; Altman, N. Classification and regression trees. Nat. Methods 2017, 14, 757–758. [Google Scholar] [CrossRef]
- Pettit, R.W.; Fullem, R.; Cheng, C.; Amos, C.I. Artificial intelligence, machine learning, and deep learning for clinical outcome prediction. Emerg. Top. Life Sci. 2021, 5, 729–745. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
- Population: children and adult patients with a diagnosis of IEI according to Human IEI IUIS classification [1]. - Intervention: application of AI tools to support the diagnosis, prediction, and management of IEI, including the use of EHR, genetic/molecular data, clinical features, and flow cytometry data. - Outcome: improved diagnostic accuracy, early identification of IEI, prediction of disease outcomes, personalized treatment strategies, reduction in diagnostic time and healthcare costs, and enhanced understanding of molecular mechanisms. - Study design: original data (all study design). | - Clinical guidelines, consensus documents, reviews, systematic reviews, meta-analyses, abstracts, and conference proceedings. - Studies that did not involve the application of AI or ML models. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taietti, I.; Votto, M.; Colaneri, M.; Passerini, M.; Leoni, J.; Marseglia, G.L.; Licari, A.; Castagnoli, R. Application of Artificial Intelligence in Inborn Errors of Immunity Identification and Management: Past, Present, and Future—A Systematic Review. J. Clin. Med. 2025, 14, 5958. https://doi.org/10.3390/jcm14175958
Taietti I, Votto M, Colaneri M, Passerini M, Leoni J, Marseglia GL, Licari A, Castagnoli R. Application of Artificial Intelligence in Inborn Errors of Immunity Identification and Management: Past, Present, and Future—A Systematic Review. Journal of Clinical Medicine. 2025; 14(17):5958. https://doi.org/10.3390/jcm14175958
Chicago/Turabian StyleTaietti, Ivan, Martina Votto, Marta Colaneri, Matteo Passerini, Jessica Leoni, Gian Luigi Marseglia, Amelia Licari, and Riccardo Castagnoli. 2025. "Application of Artificial Intelligence in Inborn Errors of Immunity Identification and Management: Past, Present, and Future—A Systematic Review" Journal of Clinical Medicine 14, no. 17: 5958. https://doi.org/10.3390/jcm14175958
APA StyleTaietti, I., Votto, M., Colaneri, M., Passerini, M., Leoni, J., Marseglia, G. L., Licari, A., & Castagnoli, R. (2025). Application of Artificial Intelligence in Inborn Errors of Immunity Identification and Management: Past, Present, and Future—A Systematic Review. Journal of Clinical Medicine, 14(17), 5958. https://doi.org/10.3390/jcm14175958