Thermal Imaging as a New Perspective in the Study of Physiological Changes in Pregnant Women—A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carmichael, R.D. Considerations for the Pregnant Endurance Athlete. Strength Cond. J. 2021, 43, 35–41. [Google Scholar] [CrossRef]
- Davenport, M.H.; Skow, R.J.; Steinback, C.D. Maternal Responses to Aerobic Exercise in Pregnancy. Clin. Obstet. Gynecol. 2016, 59, 541–551. [Google Scholar] [CrossRef]
- Wyrwoll, C.S. RISING STARS: The heat is on: How does heat exposure cause pregnancy complications? J. Endocrinol. 2023, 259, e230030. [Google Scholar] [CrossRef] [PubMed]
- Kazma, M.J.; van den Anker, J.; Allegaert, K.; Dallmann, A.; Ahmadzia, H.K. Anatomical and physiological alterations of pregnancy. J. Pharmacokinet. Pharmacodyn. 2020, 47, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.M.; de Sousa Dantas, D.; de Santana, D.R.S.; Brioschi, M.L.; Ferreira, C.W.S.; Maia, J.N. Thermography evaluation of low back pain in pregnant women: Cross-sectional study. J. Bodyw. Mov. Ther. 2021, 28, 478–482. [Google Scholar] [CrossRef]
- Vermani, E.; Mittal, R.; Weeks, A. Pelvic girdle pain and low back pain in pregnancy: A review. Pain Pract. 2010, 10, 60–71. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Berghella, V.; Bilardo, C.M.; Chalouhi, G.E.; Costa, F.D.S.; Hernandez-Andrade, E.; Malinger, G.; Munoz, H.; Paladini, D.; et al. ISUOG Practice Guidelines (updated): Performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2022, 59, 840–856. [Google Scholar] [CrossRef]
- Ayres-De-Campos, D.; Spong, C.Y.; Chandraharan, E. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 2015, 131, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Ring, E.F.J.; Ammer, K. The technique of infrared imaging in medicine. In Infrared Imaging: A Casebook in Clinical Medicine; IOP Publishing Ltd.: Bristol, UK, 2015. [Google Scholar] [CrossRef]
- Wang, H., Jr.; Wade, D.R.; Kam, J. IR Imaging of Blood Circulation of Patients with Vascular Disease; Burleigh, D.D., Cramer, K.E., Peacock, G.R., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2004; p. 115. [Google Scholar] [CrossRef]
- Merla, A.; Di Donato, L.; Di Luzio, S.; Farina, G.; Pisarri, S.; Proietti, M.; Salsano, F.; Romani, G. Infrared functional imaging applied to Raynaud’s phenomenon. IEEE Eng. Med. Biol. Mag. 2022, 21, 73–79. [Google Scholar] [CrossRef]
- Cook, R.J.; Thakore, S.; Nichol, N.M. Thermal imaging—A hotspot for the future? Inj. Extra 2005, 36, 395–397. [Google Scholar] [CrossRef]
- Harding, J.; Wertheim, D.; Williams, R.; Melhuish, J.; Banerjee, D.; Harding, K. Infrared imaging in diabetic foot ulceration. In Proceedings of the Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, Hong Kong, China, 1 November 1998. [Google Scholar]
- Baic, A.; Plaza, D.; Lange, B.; Reudelsdorf-Ullmann, M.; Michalecki, Ł.; Stanek, A.; Ślosarek, K.; Cholewka, A. The Use of Thermal Imaging in the Evaluation of Temperature Effects of Radiotherapy in Patients after Mastectomy—First Study. Sensors 2021, 21, 7068. [Google Scholar] [CrossRef]
- Glik, J.; Cholewka, A.; Stanek, A.; Sieroń, K.; Mikuś-Zagórska, K.; Knefel, G.; Nowak, M.; Kawecki, M. Thermal imaging and planimetry evaluation of the results of chronic wounds treatment with hyperbaric oxygen therapy. Adv. Clin. Exp. Med. 2019, 28, 229–236. [Google Scholar] [CrossRef]
- Flores-Sahagun, J.H.; Vargas, J.V.C.; Mulinari-Brenner, F.A. Analysis and diagnosis of basal cell carcinoma (BCC) via infrared imaging. Infrared Phys. Technol. 2011, 54, 367–378. [Google Scholar] [CrossRef]
- Domino, M.; Borowska, M.; Kozłowska, N.; Zdrojkowski, Ł.; Jasiński, T.; Smyth, G.; Maśko, M. Advances in thermal image analysis for the detection of pregnancy in horses using infrared thermography. Sensors 2022, 22, 191. [Google Scholar] [CrossRef]
- Jaśkowski, J.M.; Wozniak, G.; Kaźmierczak, P. Non-invasive methods for diagnosing pregnancy in cows and their real value. Pol. J. Vet. Sci. 2024, 27, 655–665. [Google Scholar] [CrossRef]
- Falzon, O.; Ciantar, A.; Sammut, L.; Schembri, M.; Baron, Y.M.; Calleja-Agius, J.; Demicoli, P.; Camilleri, K.P. Principal Component Analysis of Dynamic Thermography Data from Pregnant and Non-Pregnant Women. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5664–5667. [Google Scholar] [CrossRef]
- Topalidou, A.; Markarian, G.; Downe, S. Thermal imaging of the fetus: An empirical feasibility study. PLoS ONE 2020, 15, e0226755. [Google Scholar] [CrossRef]
- Topalidou, A.; Downe, S. Investigation of the use of thermography for research and clinical applications in pregnant women. Infrared Phys. Technol. 2016, 75, 59–64. [Google Scholar] [CrossRef]
- Pereira, T.; Nogueira-Silva, C.; Simoes, R. Normal range and lateral symmetry in the skin temperature profile of pregnant women. Infrared Phys. Technol. 2016, 78, 84–91. [Google Scholar] [CrossRef]
- Simoes, R.; Vardasca, R.; Nogueira-Silva, C. Thermal skin reference values in healthy late pregnancy. J. Therm. Biol. 2012, 37, 608–614. [Google Scholar] [CrossRef]
- Sillero Quintana, M.; Conde Pascual, E.; Gómez Carmona, P.M. Effect of Yoga and Swimming on Body Temperature of Pregnant Women. 2012. Available online: https://www.researchgate.net/publication/254559966 (accessed on 16 May 2025).
- Bø, K.; Artal, R.; Barakat, R.; Brown, W.; Davies, G.A.L.; Dooley, M.; Evenson, K.R.; Haakstad, L.A.H.; Henriksson-Larsen, K.; Kayser, B.; et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 1—Exercise in women planning pregnancy and those who are pregnant. Br. J. Sports Med. 2016, 50, 571–589. [Google Scholar] [CrossRef]
- Gilbert, R.D.; Schroder, H.; Kawamura, T.; Dale, P.S.; Power, G.G. Heat transfer pathways between fetal lamb and ewe. J. Appl. Physiol. 1985, 59, 634–638. [Google Scholar] [CrossRef]
- Bręborowicz, G. Położnictwo I Ginekologia; Wydawnictwo Naukowe PWN Spółka Akcyjna: Warszawa, Poland, 2021. [Google Scholar]
- Landon, M.B.; Galan, H.L.; Jauniaux, E.R.M.; Driscoll, D.A.; Berghella, V.; Grobman, W.A.; Kilpatrick, S.J.; Cahill, A.G. Gabbe’s Obstetrics: Normal and Problem Pregnancies, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Clapp, J.F.; Capeless, E. Cardiovascular Function Before, During, and After the First and Subsequent Pregnancies. Am. J. Cardiol. 1997, 80, 1469–1473. [Google Scholar] [CrossRef]
- Yoo, H.; Shin, D.; Song, C. Changes in the spinal curvature, degree of pain, balance ability, and gait ability according to pregnancy period in pregnant and nonpregnant women. J. Phys. Ther. Sci. 2015, 27, 279–284. [Google Scholar] [CrossRef]
- Branco, M.; Santos-Rocha, R.; Vieira, F.; Aguiar, L.; Veloso, A.P. Three-Dimensional Kinetic Adaptations of Gait throughout Pregnancy and Postpartum. Scientifica 2015, 2015, 580374. [Google Scholar] [CrossRef]
- Davenport, M.H.; Marchand, A.-A.; Mottola, M.F.; Poitras, V.J.; Gray, C.E.; Jaramillo Garcia, A.J.; Barrowman, N.; Sobierajski, F.; James, M.; Meah, V.L.; et al. Exercise for the prevention and treatment of low back, pelvic girdle and lumbopelvic pain during pregnancy: A systematic review and meta-analysis. Br. J. Sports Med. 2019, 53, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Krywko, D.M.; King, K.C. Aortocaval Compression Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Cornu-Thenard, A.; Boivin, P. Chronic Venous Disease During Pregnancy. 2014. Available online: www.phlebolymphology.org (accessed on 22 May 2025).
- Nieminen, L.K.; Pyysalo, L.M.; Kankaanpää, M.J. Prognostic factors for pain chronicity in low back pain: A systematic review. Pain Rep. 2021, 6, e919. [Google Scholar] [CrossRef] [PubMed]
- Koukoulithras, I.; Stamouli, A.; Kolokotsios, S.; Plexousakis, M.; Mavrogiannopoulou, C. The Effectiveness of Non-Pharmaceutical Interventions Upon Pregnancy-Related Low Back Pain: A Systematic Review and Meta-Analysis. Cureus 2021, 13, e13011. [Google Scholar] [CrossRef]
- Chen, A.; Klebanoff, M.A.; Basso, O. Pre-pregnancy body mass index change between pregnancies and preterm birth in the following pregnancy. Paediatr. Perinat. Epidemiol. 2009, 23, 207–215. [Google Scholar] [CrossRef]
- Ansari, N.N.; Hasson, S.; Naghdi, S.; Keyhani, S.; Jalaie, S. Low back pain during pregnancy in Iranian women: Prevalence and risk factors. Physiother. Theory Pract. 2010, 26, 40–48. [Google Scholar] [CrossRef]
- Shiri, R.; Coggon, D.; Falah-Hassani, K. Exercise for the prevention of low back and pelvic girdle pain in pregnancy: A meta-analysis of randomized controlled trials. Eur. J. Pain 2018, 22, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Liddle, S.D.; Pennick, V. Interventions for preventing and treating low-back and pelvic pain during pregnancy. Cochrane Database Syst. Rev. 2015, 2015, CD001139. [Google Scholar] [CrossRef] [PubMed]
- Gjestland, K.; Bø, K.; Owe, K.M.; Eberhard-Gran, M. Do pregnant women follow exercise guidelines? Prevalence data among 3482 women, and prediction of low-back pain, pelvic girdle pain and depression. Br. J. Sports Med. 2013, 47, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A.; Gajewska, E. Temperature distribution of selected body surfaces in scoliosis based on static infrared thermography. Int. J. Environ. Res. Public Health 2020, 17, 8913. [Google Scholar] [CrossRef] [PubMed]
I Trimester | II Trimester | III Trimester | |||||||
---|---|---|---|---|---|---|---|---|---|
No. | Left Paraspinal Part—Mean Temperatures [°C] | Right Paraspinal Part—Mean Temperatures [°C] | Temperature Difference ∆TL/R [°C] | Left Paraspinal Part—Mean Temperatures [°C] | Right Paraspinal Part—Mean Temperatures [°C] | Temperature Difference ∆TL/R [°C] | Left Paraspinal Part—Mean Temperatures [°C] | Right Paraspinal Part—Mean Temperatures [°C] | Temperature Difference ∆TL/R [°C] |
1 | 33.2 | 33.6 | 0.4 | 34.8 | 34.7 | 0.1 | 33.1 | 33.1 | 0 |
2 | 33.2 | 33.2 | 0 | 34 | 34.1 | 0.1 | 32.1 | 31.9 | 0.2 |
3 | 34 | 33.9 | 0.1 | 35.7 | 35.5 | 0.2 | 31 | 30.7 | 0.3 |
4 | 32.1 | 32.5 | 0.4 | 35.1 | 35.3 | 0.2 | 33.9 | 33.8 | 0.1 |
5 | 34.3 | 34.3 | 0 | 34.6 | 34.8 | 0.2 | 32.3 | 32.4 | 0.1 |
6 | 34.6 | 34.5 | 0.1 | 32 | 32 | 0 | 33.1 | 32.8 | 0.3 |
7 | 33.6 | 33.4 | 0.2 | 31.7 | 31.7 | 0 | 30.7 | 30.5 | 0.2 |
8 | 33 | 32.9 | 0.1 | 34.6 | 34.7 | 0.1 | 30 | 29.7 | 0.3 |
9 | 35 | 35.2 | 0.2 | 34.7 | 34.5 | 0.2 | 34.6 | 34.4 | 0.2 |
10 | 35.4 | 35.4 | 0 | 32.3 | 32.4 | 0.1 | |||
11 | 31.9 | 31.7 | 0.2 | 32.1 | 32.3 | 0.2 | |||
12 | 34.6 | 34.6 | 0 | ||||||
13 | 35.2 | 35.4 | 0.2 | ||||||
14 | 32.9 | 33 | 0.1 | ||||||
Average value for all female volunteers | 33.67 | 33.72 | 0.17 | 34.09 | 34.1 | 0.11 | 32.29 | 32.18 | 0.18 |
I Trimester | II Trimester | III Trimester | |||||||
---|---|---|---|---|---|---|---|---|---|
No. | Left Paraspinal Part—Mean Temperatures [°C] | Right Paraspinal Part—Mean Temperatures [°C] | Temperature Difference [°C] | Left Paraspinal Part—Mean Temperatures [°C] | Right Paraspinal Part—Mean Temperatures [°C] | Temperature Difference [°C] | Left Paraspinal Part—Mean Temperatures [°C] | Right Paraspinal Part—Mean Temperatures [°C] | Temperature Difference [°C] |
1 | 32.50 | 32.10 | 0.40 | 34.70 | 34.80 | 0.10 | 31.80 | 32.00 | 0.20 |
2 | 32.90 | 33.00 | 0.10 | 33.60 | 33.80 | 0.20 | 31.90 | 31.50 | 0.40 |
3 | 32.80 | 33.00 | 0.20 | 35.60 | 35.80 | 0.20 | 32.80 | 32.10 | 0.70 |
4 | 31.60 | 32.30 | 0.70 | 35.10 | 35.20 | 0.10 | 33.20 | 32.80 | 0.40 |
5 | 34.00 | 33.80 | 0.20 | 34.20 | 34.50 | 0.30 | 31.10 | 31.10 | 0.00 |
6 | 34.70 | 34.60 | 0.10 | 32.00 | 32.50 | 0.50 | 32.00 | 31.80 | 0.20 |
7 | 34.00 | 33.10 | 0.90 | 32.40 | 32.30 | 0.10 | 30.90 | 31.10 | 0.20 |
8 | 31.80 | 31.30 | 0.50 | 34.20 | 34.20 | 0.00 | 30.30 | 30.90 | 0.60 |
9 | 35.00 | 34.90 | 0.10 | 34.20 | 34.20 | 0.00 | 33.30 | 33.20 | 0.10 |
10 | 33.26 | 33.12 | 0.13 | 35.00 | 35.40 | 0.40 | 31.70 | 32.50 | 0.80 |
11 | 32.20 | 32.30 | 0.10 | 33.20 | 33.00 | 0.20 | |||
12 | 34.00 | 33.80 | 0.20 | ||||||
13 | 35.20 | 35.30 | 0.10 | ||||||
14 | 32.50 | 32.00 | 0.50 | ||||||
Average value for all female volunteers | 33.26 | 33.12 | 0.33 | 33.92 | 34.01 | 0.20 | 32.02 | 32.00 | 0.35 |
I Trimester | II Trimester | III Trimester | ||||
---|---|---|---|---|---|---|
Body Areas Examined | The Average Value for Both Sides of the Body Tested [°C] | Difference Between Average Temperatures ∆Tmean [°C] | The Average Value for Both Sides of the Body Tested [°C] | Difference Between Average Temperatures ∆Tmean [°C] | The Average Value for Both Sides of the Body Tested [°C] | Difference Between Average Temperatures ∆Tmean [°C] |
Thighs | 30.13 | 0.18 | 31.07 | 0.02 | 29.34 | 0.25 |
Calves | 30.42 | 0.27 | 30.74 | 0.12 | 29.60 | 0.49 |
Upper paravertebral part | 33.69 | 0.06 | 34.09 | 0.01 | 32.24 | 0.11 |
Lower paravertebral part | 33.19 | 0.13 | 33.96 | 0.09 | 32.01 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rykała, K.; Szurko, A.; Wziątek-Kuczmik, D.; Kiełboń, A.; Sillero-Quintana, M.; Cholewka, A.; Kasprzyk-Kucewicz, T. Thermal Imaging as a New Perspective in the Study of Physiological Changes in Pregnant Women—A Preliminary Study. J. Clin. Med. 2025, 14, 5998. https://doi.org/10.3390/jcm14175998
Rykała K, Szurko A, Wziątek-Kuczmik D, Kiełboń A, Sillero-Quintana M, Cholewka A, Kasprzyk-Kucewicz T. Thermal Imaging as a New Perspective in the Study of Physiological Changes in Pregnant Women—A Preliminary Study. Journal of Clinical Medicine. 2025; 14(17):5998. https://doi.org/10.3390/jcm14175998
Chicago/Turabian StyleRykała, Karolina, Agnieszka Szurko, Daria Wziątek-Kuczmik, Agnieszka Kiełboń, Manuel Sillero-Quintana, Armand Cholewka, and Teresa Kasprzyk-Kucewicz. 2025. "Thermal Imaging as a New Perspective in the Study of Physiological Changes in Pregnant Women—A Preliminary Study" Journal of Clinical Medicine 14, no. 17: 5998. https://doi.org/10.3390/jcm14175998
APA StyleRykała, K., Szurko, A., Wziątek-Kuczmik, D., Kiełboń, A., Sillero-Quintana, M., Cholewka, A., & Kasprzyk-Kucewicz, T. (2025). Thermal Imaging as a New Perspective in the Study of Physiological Changes in Pregnant Women—A Preliminary Study. Journal of Clinical Medicine, 14(17), 5998. https://doi.org/10.3390/jcm14175998